
David P. Reed/SAP Research

7 June 2012

“Simultaneous” Considered Harmful:

Modular Parallelism

Time is what keeps everything from happening at once...
And space is what keeps everything from happening to me.

- John Wheeler (following Ray Cummings)

© 2012 SAP AG. All rights reserved. 3 Public

Overview

Why must parallel computing be difficult? The world is embarrassingly parallel!

 A change in perspective is worth 80 IQ points. (Alan Kay)

Traps Better ideas

Careless primitive design Deprecate/replace them

Bad modularity Hide internal effects

Virtualization by parts Virtualization of wholes

Calls to action

Principles

Escaping our tangled roots (examples)

© 2012 SAP AG. All rights reserved. 4 Public

Calls to Action

Accept into your life: “Parallel” is the norm, not radical exception

“Simultaneous-action-at-a-distance” is a bad habit:

 Eliminate constructs whose operational semantics feed the habit

Question serializability for defining correctness

“Good modularity principles” should never discuss “simultaneous”

Fix programmer thinking: teach parallel programming first.

Reject Amdahl’s Law. It dominates only

 because programs are conceived as sequential,

 not because the problems are sequential.

© 2012 SAP AG. All rights reserved. 5 Public

Issues

All important computing systems will evolve, scale up, outlive embodiments

Unfortunate belief from HPC culture: parallel means “tune to bare silicon”

Parallel execution disrupts “clean” modular system designs, due to

Naïve “time” concept: total ordering

Virtualization based on sequential (and hard to reverse) resource binding

Coroutine-based processor multiplexing (time-sharing)

Module composition conceived as order of execution

Write-ordering to memory

Caller waits for callee

Concurrency control needed because concurrent modules interfere with each other

Correctness defined by “serializability” – superscalar processor, DBMS

Compilation and interpretation (hardware, OS, compiler, interpreter, DBMS)

resource binding overconstrains execution flexibility, complicating design

© 2012 SAP AG. All rights reserved. 6 Public

Simultaneous should be unspeakable

Lamport (Time, Clocks, and the Ordering of Events in a Distributed System)

argued: causal ordering is sufficient to specify correct behavior and

described a system of clocks that defines a total causal ordering

But Einstein (and Goedel) argued for the universe being based on a causal

partial ordering – different observers in the system may observe different

orderings

A consistent total ordering of all events is not needed to define correctness of

any physical system (computing systems are a subset of physical systems).

Total orderings are costly to achieve because they imply simultaneous

operations at any distance.

Far too many computing primitives imply simultaneous action across an

unbounded system

© 2012 SAP AG. All rights reserved. 7 Public

Semantically problematic primitives

Hardware, OS and language primitives implying simultaneous distant action

Semaphores (Dijkstra – based on co-routines in THE O/S)

POSIX shared memory mprotect system call

POSIX open() system call binding a name to a file

Compare-and-swap instruction

Gratuituous implicit interactions (false sharing)

Clean primitives that imply only causal partial ordering

Fork() and join()

Eventcounts and sequencers

Producer-consumer LIFO and FIFO buffers

Multicast send/receive

Write-once, read-many memory cells

© 2012 SAP AG. All rights reserved. 8 Public

Good modularity in a parallel world

Parnas – Information Hiding Principle (hide all information about how a

module works “inside” the module)

Cleaning Atomic Action

System R locking paper: Atomic x = “for all y, either x precedes y or y precedes x”

 Serializable = “as-if sequential”

Cleaner: nothing about how x is executed can be observed by y, no matter when y

is carried out. (no hidden causal ordering)

Simplifies parallel composition of modules when there is no causal connection

Note: does not prevent transparent “caching” for speedup within modules.

Idempotency – without ordering – helps build fault tolerance

X || X || X == X can be implemented without simultaneous distant action

© 2012 SAP AG. All rights reserved. 9 Public

Virtualization with parallelism in mind

Virtualization – reversible binding of an abstract computing platform to

resources of an underlying computing platform of similar or different

capability. e.g. virtual memory, virtual processor, virtual machine, virtual

network, …

Virtualization (and “emulation”) usually enhance flexibility, scalability, fault

tolerance, availability, security, etc.

Not true when parallelism involved… why?

Observation: Ordering constraints on resource bindings of virtualization

interfere with primitives and modules that imply “simultaneous action at a

distance”.

This is because virtualization of parts is not virtualization of the whole.

A parallel machine where “simultaneous” is an unspeakable is easy to

virtualize.

© 2012 SAP AG. All rights reserved. 10 Public

Implications

Clarify modularity as isolation of internals and separation of concerns, not

distinctions of time

Scrub “simultaneous” thinking from our vocabulary and our computing

concepts.

Isolate “legacy” systems inside containers where only inputs and outputs are

exposed. They don’t scale today, and embed too many problematic concepts.

Start all systems designs as parallel - deprecate sequential execution as a

rare special case

Don’t try to “parallelize” sequential programs – Amdahl’s Law makes it a

waste of time to try to undo all the implicit choices made.

Parallel thinking is not any harder than sequential thinking, and ought to be a

lot easier, since most activities are parallel.

Thank you! Questions?

Debate?

Contact information: david.reed@sap.com

© 2012 SAP AG. All rights reserved. 12 Public

Example: Critical section

Critical

Section

© 2012 SAP AG. All rights reserved. 13 Public

Disclaimer

This document contains research concepts from SAP®, and is not intended to

be binding upon SAP for any particular course of business, product strategy,

and/or development. SAP assumes no responsibility for errors or omissions

in this document. SAP does not warrant the accuracy or completeness of the

information, text, graphics, links, or other items contained within this material

