Re-optimizing Data **Parallel Computing**

Sameer Agarwal

Srikanth Kandula, Nicolas Bruno, Ming-Chuan Wu, Ion Stoica, Jingren Zhou

Microsoft[®] Research

can be a collection of maps,

can be a collection of maps, reduces

can be a collection of maps, reduces, joins

... and other framework dependent operations

A MapReduce Phase

Key Metrics

Key Metrics

Imbalance

Different Work is being done at Every Stage (Data + Complexity)

Data Skews

Data is not independent and uniformly distributed

These problems are real!

Imbalance ~ Avg. Task time per Stage

Most stages take < 10 seconds

Top 4% (1%) take > 100 (1000) seconds

These problems are real!

Most stages have skew < 2 But, 5% have > 10

These problems are real!

Others in paper...

Optimizing the Job Execution

To optimize the completion time and cluster utilization, ideally you need to control:

- Parallelism
- Partition Sizes
- Operator Sequence
- Operator Implementation

The Execution Plan lets you control these knobs

Who generates execution plans?

Hadoop

Hive

Pig/Scope

Database

	Hadoop	Hive	Pig/Scope	Database
Parallelism	Statically Configurable	Statically Configurable	Statically Configurable	Static

	Hadoop	Hive	Pig/Scope	Database
Parallelism	Statically Configurable	Statically Configurable	Statically Configurable	Static
Data Partition	Statically Configurable	Rule Based (Data Size)	Cost Based (Fixed Cost)	Cost Based*

	Hadoop	Hive	Pig/Scope	Database
Parallelism	Statically Configurable	Statically Configurable	Statically Configurable	Static
Data Partition	Statically Configurable	Rule Based (Data Size)	Cost Based (Fixed Cost)	Cost Based*
Operator Implementation	N/A	Rule Based (Data Size)	Cost Based (Fixed Cost)	Cost Based*

	Hadoop	Hive	Pig/Scope	Database
Parallelism	Statically Configurable	Statically Configurable	Statically Configurable	Static
Data Partition	Statically Configurable	Rule Based (Data Size)	Cost Based (Fixed Cost)	Cost Based*
Operator Implementation	N/A	Rule Based (Data Size)	Cost Based (Fixed Cost)	Cost Based*
Operator Sequence	N/A	Rule Based (Data Size)	Cost Based (Fixed Cost)	Cost Based*

	Hadoop	Hive	Pig/Scope	Database
Parallelism	Statically Configurable	Statically Configurable	Statically Configurable	Static
Data Partition	Statically Configurable	Rule Based (Data Size)	Cost Based (Fixed Cost)	Cost Based*
Operator Implementation	N/A	Rule Based (Data Size)	Cost Based (Fixed Cost)	Cost Based*
Operator Sequence	N/A	Rule Based (Data Size)	Cost Based (Fixed Cost)	Cost Based*

RoPE: Re-optimizer for Parallel Executions

Data & Computation Information

- Degree of Parallelism at every operation
- Data Partitions for each operation
- Implementations for each operation
- Sequence of operations

Cost-based query optimizer

+ information about code and data

Usage Scenarios:

Better Execution Plans For

Recurring Jobs

Same "code" runs hourly on new data Data properties are stable

2. "Similar" Jobs

e.g., jobs with identical parts

3. Future parts of this Job

e.g., after a barrier

Information collected

Efficiently collecting this information is Challenging

Option 1:

Measure Input Properties, Propagate over operations

Option 1:

Measure Input Properties, Propagate over operations

Low Overhead

Bad Accuracy

- Estimation error increases exponentially with #operations [Rio]
- Hard to reason about user defined functions

Option 2:

Store all intermediate data, analyze offline

Option 2:

Store all intermediate data, analyze offline

High Overhead

Good Accuracy

- Lots of Intermediate Data
- Job latencies and resource requirements went up ~10x

RoPE's Distributed Stats Collection

Composing statistics with Resource constraints

- Trivial for some ... e.g., cardinality
- Doable for some ... e.g., heavy hitters, #distinct values
- Open problem for others ... e.g., equi-width histograms

Related Work

Implementing Execution Plans Well

- Placing Tasks to maximize locality (Quincy, Delay Scheduling)
- Dealing with Outliers (LATE, Mantri)
- Orchestrating Network Transfers (Orchestra, Camdoop, SUDO)

RoPE finds better execution plans

Related Work

Re-optimization in Databases

- Single Machine/Short Queries (Kabra/ Dewitt)
- Creating Robust plans given uncertainty in properties (Rio)
- Parametric Query optimization

RoPE reasons about Parallel Plans and deals with User-Defined Functions

Does it work?

Evaluation

- We evaluated RoPE on a large production cluster
- Our workload suite consisted of hundreds of production jobs from a wide range of users during March 2012.
- Baseline: Production Scope (State-of-Art-QO)
- Metrics: Completion Time & Cluster Utilization

Highlights

- 2x improvements across job latency for production jobs at 75th percentile while using
 1.5x fewer resources
 - Better Execution Plans
 - Reduction in terabytes of Intermediate data and crossrack shuffles
 - Better Parallelism
- 2-5% overhead incurred by our distributed statistics collection framework

Job Completion Time

Job Completion Time

Cluster Utilization

Cluster Utilization

RoPE improves execution plans for data-parallel jobs

- Measurements identify novel problems and opportunities
- To leverage, built RoPE, a re-optimizer, that learns/ uses code- and data- properties
- Running live in Bing Production Clusters since December 2011

Thank you