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A Data Parallel Job...

can be a collection of maps, reduces, joins
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A Data Parallel Job...

... and other framework dependent operations
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A Data Parallel Job...

Input Files




A Data Parallel Job...

Output




A Data Parallel Job...
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A MapReduce Phase



A Data Parallel Job...

¢

Runs on Large Clusters

Batched Jobs
(Dryad/Hadoop)
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Imbalance

Different Work is being done at Every Stage (Data + Complexity)




Data Skews

Data is not independent and uniformly distributed




These problems are real!

Imbalance ~ Avg. Task time per Stage

Most stages take < 10 seconds
Top 4% (1%) take > 100 (1000) seconds



These problems are real!

Skew = Maximum Partition Size

Average Partition Size

Most stages have skew < 2
But, 5% have > 10



These problems are real!

Others in paper...



Optimizing the Job Execution

To optimize the completion time and cluster
utilization, ideally you need to control:

— Parallelism

— Partition Sizes
— Operator Sequence

— Operator Implementation

The Execution Plan lets you control these knobs




Who generates execution plans?




High Level Abstractions

Hadoop Hive Pig/Scope Database
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High Level Abstractions
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High Level Abstractions

Want-automatic control of all four knobs
 Based on the data and computation
o “Robust for User Defined Functions (UDFs)



RoPE: Re-optimizer for
Parallel Executions

Data & Computation
Information

— Degree of Parallelism at every operation
— Data Partitions for each operation

- Implementations for each operation

- Sequence of operations




Cost-based query optimizer
+ information about code and data

Measured
Properties

Re-Optimizer

Execution

-

Plan



Usage Scenarios:

Better Execution Plans For

1. Recurring Jobs
Same “code” runs hourly on new data
Data properties are stable

2. "Similar” Jobs
e.g., jobs with identical parts

3. Future parts of this Job
e.g., after a barrier



Information collected

Cardinality CPU Cycles

—_— <

Avg. Row Length Peak Memory

Leading Statistics

Hash Histograms

# of Distinct Values
Heavy Hitters

Data Samples

Balance



Efficiently collecting this
information is Challenging



Collecting Information

Measure Input Properties,

Option 1: _
Propagate over operations




Collecting Information

Measure Input Properties,

Option 1: _
Propagate over operations

Bad Accuracy

* Estimation error increases exponentially with
#operations [RiO]
* Hardto reason about user defined functions



Collecting Information

Store all intermediate data,

Option 2: _
analyze offline
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Collecting Information

Store all intermediate data,

Option 2: _
analyze offline

High Overhead

Lots of Intermediate Data
* Job latencies and resource requirements went up ~10x



RoPE’s Distributed Stats Collection
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1 2 * Composable

* Light (single pass,
sub-linear state)




Composing statistics with
Resource constraints

C=3C

&
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* Trivial for some ... e.q., cardinality
* Doable forsome ... e.q., heavy hitters, #distinct values
* Open problem for others ... e.g., equi-width histograms



Related Work

Implementing Execution Plans Well

* Placing Tasks to maximize locality
(Quincy, Delay Scheduling)

* Dealing with Outliers (LATE, Mantri)

* Orchestrating Network Transfers
(Orchestra, Camdoop, SUDO)

RoPE finds better execution plans



Related Work

Re-optimization in Databases

* Single Machine/Short Queries (Kabra/

Dewitt)
* Creating Robust plans given uncertainty

In properties (Rio)
* Parametric Query optimization

RoPE reasons about Parallel Plans and

deals with User-Defined Functions



Does it work?



Evaluation

We evaluated RoPE on a large production cluster

Our workload suite consisted of hundreds of
production jobs from a wide range of users during
March 2012.

Baseline: Production Scope (State-of-Art-QO)

Metrics: Completion Time & Cluster Utilization



Highlights

* 2Xx improvements across job latency for
production jobs at 75t" percentile while using
1.5X fewer resources

— Better Execution Plans

— Reduction in terabytes of Intermediate data and cross-
rack shuffles

— Better Parallelism

* 2-5% overhead incurred by our distributed
statistics collection framework
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Reduction in

Cluster Utilization

Job Size
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RoPE improves execution
plans for data-parallel jobs

* Measurements identify novel problems and
opportunities

* Toleverage, built RoPE, a re-optimizer, that
learns/ uses code- and data- properties

* Running live in Bing Production Clusters since
December 2011



Thank you



