Re-optimizing Data
Parallel Computing

Sameer Agarwal
Srikanth Kandula, Nicolas Bruno, Ming-Chuan Wu,

lon Stoica, Jingren Zhou

Microsoft
Research ©ing 1 Ji%

A Data Parallel Job...

can be a collection of maps,

H
Q)

Y

H
Q)
©

A Data Parallel Job...

can be a collection of maps, reduces

\Y

\Y

=)
o 1%
oY) c oY) o
© ') © g
1 0]

A Data Parallel Job...

can be a collection of maps, reduces, joins

\Y

\Y

=)
o 1%
oY) c oY) o
© ') © g
1 0]

A Data Parallel Job...

... and other framework dependent operations

\Y

\Y

=)
o 1%
oY) c oY) o
© ') © g
1 0]

A Data Parallel Job...

Input Files

A Data Parallel Job...

Output

A Data Parallel Job...

Output

1

A MapReduce Phase

A Data Parallel Job...

¢

Runs on Large Clusters

Batched Jobs
(Dryad/Hadoop)

Key Metrics

Reduce

Job Completion
Reduce T|me

Reduce

Key Metrics

Reduce

Job Completion
Reduce T|me

Reduce

f1

Cluster Utilization

Imbalance

Different Work is being done at Every Stage (Data + Complexity)

Data Skews

Data is not independent and uniformly distributed

These problems are real!

Imbalance ~ Avg. Task time per Stage

Most stages take < 10 seconds
Top 4% (1%) take > 100 (1000) seconds

These problems are real!

Skew = Maximum Partition Size

Average Partition Size

Most stages have skew < 2
But, 5% have > 10

These problems are real!

Others in paper...

Optimizing the Job Execution

To optimize the completion time and cluster
utilization, ideally you need to control:

— Parallelism

— Partition Sizes
— Operator Sequence

— Operator Implementation

The Execution Plan lets you control these knobs

Who generates execution plans?

High Level Abstractions

Hadoop Hive Pig/Scope Database

High Level Abstractions

CTERRERw :

Hadoop Hive Pig/Scope Database

Parallelism Statically Statically Statically Static
Configurable Configurable Configurable

High Level Abstractions
e B

Hadoop Hive Pig/Scope Database

Parallelism Statically Statically Statically Static
Configurable Configurable Configurable

Data Partition Statically Rule Based Cost Based Cost Based*
Configurable (Data Size) (Fixed Cost)

High Level Abstractions

Hadoop Hive Pig/Scope Database

Parallelism Statically Statically Statically Static
Configurable Configurable Configurable

Data Partition Statically Rule Based Cost Based Cost Based*
Configurable (Data Size) (Fixed Cost)
Operator N/A Rule Based Cost Based Cost Based*

Implementation (Data Size) (Fixed Cost)

High Level Abstractions

Hadoop Hive Pig/Scope Database

Parallelism Statically Statically Statically Static
Configurable Configurable Configurable

Data Partition Statically Rule Based Cost Based Cost Based*
Configurable (Data Size) (Fixed Cost)

Operator N/A Rule Based Cost Based Cost Based*

Implementation (Data Size) (Fixed Cost)

Operator N/A Rule Based Cost Based Cost Based*

Sequence (Data Size) (Fixed Cost)

High Level Abstractions

CTERRERw :

3 @i

Hadoop

Hive

Pig/Scope

Database

Parallelism

Data Partition

Operator
Implementation

Operator
Sequence

Statically
Configurable

Statically
Configurable

N/A

N/A

Statically
Configurable

Rule Based
(Data Size)

Rule Based
(Data Size)

Rule Based
(Data Size)

Statically

Configurable

Cost Based
(Fixed Cost)

Cost Based
(Fixed Cost)

Cost Based
(Fixed Cost)

Static

Cost Based*™

Cost Based*™

Cost Based*™

High Level Abstractions

Want-automatic control of all four knobs
 Based on the data and computation
o “Robust for User Defined Functions (UDFs)

RoPE: Re-optimizer for
Parallel Executions

Data & Computation
Information

— Degree of Parallelism at every operation
— Data Partitions for each operation

- Implementations for each operation

- Sequence of operations

Cost-based query optimizer
+ information about code and data

Measured
Properties

Re-Optimizer

Execution

-

Plan

Usage Scenarios:

Better Execution Plans For

1. Recurring Jobs
Same “code” runs hourly on new data
Data properties are stable

2. "Similar” Jobs
e.g., jobs with identical parts

3. Future parts of this Job
e.g., after a barrier

Information collected

Cardinality CPU Cycles

—_— <

Avg. Row Length Peak Memory

Leading Statistics

Hash Histograms

of Distinct Values
Heavy Hitters

Data Samples

Balance

Efficiently collecting this
information is Challenging

Collecting Information

Measure Input Properties,

Option 1: _
Propagate over operations

Collecting Information

Measure Input Properties,

Option 1: _
Propagate over operations

Bad Accuracy

* Estimation error increases exponentially with
#operations [RiO]
* Hardto reason about user defined functions

Collecting Information

Store all intermediate data,

Option 2: _
analyze offline

t

Collecting Information

Store all intermediate data,

Option 2: _
analyze offline

High Overhead

Lots of Intermediate Data
* Job latencies and resource requirements went up ~10x

RoPE’s Distributed Stats Collection

{
/\)
il

1 2 * Composable

* Light (single pass,
sub-linear state)

Composing statistics with
Resource constraints

C=3C

&
|Ipﬂ > 1N

* Trivial for some ... e.q., cardinality
* Doable forsome ... e.q., heavy hitters, #distinct values
* Open problem for others ... e.g., equi-width histograms

Related Work

Implementing Execution Plans Well

* Placing Tasks to maximize locality
(Quincy, Delay Scheduling)

* Dealing with Outliers (LATE, Mantri)

* Orchestrating Network Transfers
(Orchestra, Camdoop, SUDO)

RoPE finds better execution plans

Related Work

Re-optimization in Databases

* Single Machine/Short Queries (Kabra/

Dewitt)
* Creating Robust plans given uncertainty

In properties (Rio)
* Parametric Query optimization

RoPE reasons about Parallel Plans and

deals with User-Defined Functions

Does it work?

Evaluation

We evaluated RoPE on a large production cluster

Our workload suite consisted of hundreds of
production jobs from a wide range of users during
March 2012.

Baseline: Production Scope (State-of-Art-QO)

Metrics: Completion Time & Cluster Utilization

Highlights

* 2Xx improvements across job latency for
production jobs at 75t" percentile while using
1.5X fewer resources

— Better Execution Plans

— Reduction in terabytes of Intermediate data and cross-
rack shuffles

— Better Parallelism

* 2-5% overhead incurred by our distributed
statistics collection framework

Job Completion Time

< 60
c S

>
Su40
o
:)-I—J
_DLIUZO
¥ 3

- O

<2min 2-10 Min 10-30 Min 30 min-1hr > 1hr

Job Size

Job Completion Time

B Median
,360
c S
S T 40
= C
D
> = -
3 © 20
Yy o
S o

<2min 2-10 Min 10-30 Min 30 min-1hr > 1hr

Job Size

Reduction in

Cluster Utilization

Job Size

<)

S 30
n

)

S 20
>

O

O

v 10
v

4

nwn O
= <2min 2-10 Min 10-30min 30omin-1hr > 1hr
O

Reduction in

Cluster Utilization

B Median
<)
S 30
n
)
S 20 -
)
@)
O
Y 10
O
)
nwn 0
= <2 min 2-10 Min 10-30min 30min-1hr > 1hr
O

Job Size

RoPE improves execution
plans for data-parallel jobs

* Measurements identify novel problems and
opportunities

* Toleverage, built RoPE, a re-optimizer, that
learns/ uses code- and data- properties

* Running live in Bing Production Clusters since
December 2011

Thank you

