
SaTC 2029

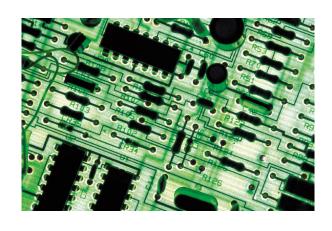
Amit Sahai

Director of

and Professor, UCLA

Cat and Mouse game?

 Must security be a cat-and-mouse game between attacker and defender?

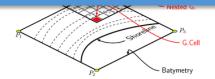

Unfortunately, Yes...

 This is true of any adversarial human activity: war, crime, etc.

The hope for 2029...

VS.

Move from:


Specific System

Hacker

The hope for 2029...

Goal: Security vs. large classes of attacks

Security Model + proof of security/ risk quantification

Hacker/ Researcher

Better Abstractions

- Bad abstractions are problematic... but we cannot realistically design systems at the level of quarks and electrons.
 - The role of science is to build better models, that more closely approximate reality, but which remain tractable
- We are still far from this for trusted computing, but we are getting better.
 - examples: NSF CEF: mathematical program obfuscation
 (full access to program), protocol concurrency, insider threats
 (e.g. ABE), side-channel attacks, physical tampering, ...
- Won't attackers always be able to find holes in the model, assumptions?
 - Sure, but we can expect that this will cause attacks to become qualitatively/quantitatively more difficult, more costly.

Predictions for 2029?

Main prediction:

xmY4uWEvVf0pHI8H1VpuM6yOwJoVZGD29NiOXG93aIQ3qHiLPK 2H2QI7qvoCv4iPMMCwSzx8qa7cVvlwoj70UUZJ3j20ikqsglgO h8F4HXJMkAFDRJBCRTKn1TGMOTgSV7WUraiYHqW8qPHuqllj2V vmPew84KDbi11bsZTJwJ7rDnjlDTw9tFDOvbKTIcT00A2nvBgu Drw9LFR8LqlwrW6f4ULsaHm4yI6QyIGWUbuGgmIJ4mIA2I9ERN iq0xaS5IbNi2waWVuIYExtNKJkorXm45OQnpnraDFEILuRmSaR pAZCSusK5ADzTCGIfoGltO86sWGE3r1emMhKkx8RNM4SKomKpk a7IYHicltaAmngTnYJCgXxAYI5cMW0uako0RyQYwvanYArA1WD gCbZfwmiz2T5lDox9nKSDHmACXBtI51bUuxYzZtoTN0TlctPE4 GqffSFu9R9cZ0HPsRToC5eJOfnu64jRqLMiewzD4CDismMwEz6

- Of course, prediction is in encrypted form.
- Will open in 2029 to see if I was right...
 (using a one-time pad key to be revealed later)

Predictions for 2029?

- NSF will continue to sponsor great security research
- More security systems based on mathematical hardness.
- Cryptographic innovations (e.g. secure computation protocols, zero-knowledge attestation, mathematical obfuscation) more widely used, at least for high-security scenarios.
- More use of physical assumptions to prevent purely remote digital attacks.
- Password-only authentication extinct (?)
- Pushback vs. SaTC due to major terrorist attack where strong encryption prevented detection.
- Many new attack targets:
 - Stealing cryptocurrency keys,
 - Cyborg devices: hacking enhanced perception of reality

Predictions for 2029?

- Basic Problem: Can we make castles out of excrement?
 - Real world: poor quality software, human limitations, interoperability concerns & lack of consensus
 - E.g. for many startups, security is usually not the top priority.
 Software written with duct tape will continue until (?)
 - Hope: Incentive changes: Smart regulation?
 - Perhaps mandatory insurance vs. hacks
 - Govt. re-insurance to mitigate lack of actuarial data
 - Insurance companies will demand **real** (vs. buzzword-based) best practices for lower premiums (?)
 - Hope: security as a service: Paypal, authentication, ...
 - Security without stifling pace of innovation (?)
 - Hope: Better engagement between SaTC Pis and policymakers

Extra slides

The mind-reading adversary

- Suppose you want to keep a secret.
 But there is an adversary that:
 - Captures your entire brain
 - Reads and tampers with the activity of every neuron in brain
- w cooket
- While you are thinking about your secret.
- Computing-analog of this scenario is common:
 - Can a computer program keep a secret,
 even if adversary captures the entire program?
 - No trusted hardware, no interaction.
 - Just an ordinary program with ordinary inputs and outputs.
 - Running on a single ordinary computer.

Earlier concepts

Secure Multi-Party Computation (80s-) & Homomorphic Encryption (2009-)

Previous concepts required some portion of computation to be *completely hidden* from Adversary.

Obfuscated Software:

No part of computation is hidden.