
Getting Real: Lessons in Transitioning 
Research Simulations into Hardware Systems 

Mohit Saxena, Yiying Zhang 

Michael Swift, Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau 



Flash Storage Stack Research 

• SSD Design 

 Flash management 

• OS & Applications 

 File systems, block 
cache, K-V stores 

• Device Interface 

 read, write, trim 

2 



How to evaluate new SSD designs? 
1. Modify SSD 

 Replace firmware/FTL 
 Are you a device vendor? 

 
2. FPGA Prototype 

 Flexible and fast  
 Hard and time-consuming 

 

3. Simulator or Emulator 
 Replay block traces 
 Implement device models 

3 



Simulator/Emulator Limitations 
• Real hardware performance 

 SSDs are complex: banks, 
packages, planes 

• Interaction with software 
stack 
 SSDs are sensitive to OS & 

app behavior 

• Trace replay 
 Unable to model request 

timing dependencies & new 
commands 

4 

FAST 
year 

Unmodified 
SSDs 

Simulator Hardware 

2011 2 5 0 

2012 2 7 0 

2013 2 3 2 



Approach 4. SSD Prototyping Kit 

5 OpenSSD Hardware Platform 



In this Talk 

• New SSD and Interface Designs 

 Research Simulation  Hardware Prototype 

 FlashTier’s Solid-State Cache (SSC) [EuroSys ‘12] 

 Nameless Write SSD [FAST ‘12] 

 

• Challenges, Experiences and Lessons 

 General insights applicable to other SSD 
designs and interfaces 

6 



7 

Talk Outline 

• Introduction  

• Background 

 OpenSSD Hardware Platform 

 SSC and Nameless Write SSD Interfaces 

• Prototyping Experiences 

• Evaluation 

• Conclusions 



Flash SSD 101 

• Remap in-place 
writes 

 Address translation 

 Log-structuring 

 Garbage collection 

8 

0 1 2 3 

OS 

Pages in Flash Erase Block 

0 

write 

0 0 

0 
1 
2 

0 

2 

FTL 

0 

write 3 

1 2 

1 2 

1 

3 

X 



OpenSSD Hardware Platform 

9 

• Hardware: commodity 
 Indilinx Barefoot ARM 

SSD controller 
 64 MB DRAM, 128 GB 

NAND Flash 

• Software: reference 
 Open-source FTL 

• Interface: standard 
 SATA read & write 
 UART serial debugging 



Solid-State Disk (SSD) 

10 

SSD Block Interface 

 Emulate disk: persistent block store 

Application 

Block Layer 
File System 

read, write, trim 

SSD 



Solid-State Cache (SSC) 

11 

Application 

Block Layer 
File System 

read, write, trim 

SSD 

SSC Caching Interface 

 Distinguish clean from dirty data 

 Return not-present read errors for evicted blocks 

 Fast and reliable SSC 

  Cache Manager 

Application 

Block Layer 
File System 

read, clean, exists 
write-clean/dirty 

not-present 
errors 

SSC 



Nameless-Write (NW-SSD) 

12 

Application 

Block Layer 
File System 

read, write, trim 

  Cache Manager 

Application 

Block Layer 
File System 

read, clean, exists 
write-clean/dirty 

not-present 
errors 

SSD SSC 

Nameless-Write SSD 

 nameless-write/read : physical address 

 migration callbacks : relocated blocks 

 Cheap and fast SSD 

Application 

Block Layer 
File System 

virtual-write/read 
nameless-write/read 

callbacks 
phy-address 

NW-SSD 



Summary of Interface Changes 

13 

New Interface 
Extensions 

SSC Nameless-Write SSD 

Forward 
Commands 

• write-dirty 
• write-clean 
• exists 
• clean 

• nameless-write 
• physical-read 
• virtual-write 
• virtual-read 

Return  
Values 

• not-present read 
errors 

• physical addresses 

Device 
Responses 

• migration-callbacks 



14 

Talk Outline 
• Introduction 

• Background  

• Prototyping Experiences 
 Challenges 

 Solutions 

 Lessons 

• Evaluation 

• Conclusions 



15 

Prototyping Challenges 

1. New Forward 
Commands 

2. New Device 
Responses 

3. Real Hardware 
Constraints for SSC 
and NW-SSD 



1. New Forward Commands 

Cache Manager 

File System or Application 

Device Interface 

SSD 

• Assumption 

 File system & cache 
manager directly 
interface with device 

write-dirty/clean, 
evict, clean, exists 

Simulated Interface 
(Function Calls) 

Simulated Device 

nw-write, 
physical-read, 
virtual-write 
virtual-read 



1. New Forward Commands 

Cache Manager 

File System or Application 

Device Mapper 

I/O Scheduler 

SCSI Layer 

ATA Layer 

AHCI Driver 

Device Interface 

Low-level 
drivers 

SSD 

• Assumption 

 File system & cache 
manager directly 
interface with device 

• Reality 

 Several intermediate 
OS, firmware & 
hardware layers 

write-dirty/clean, 
evict, clean, exists 

Hardware Command 
Queue & Firmware 

nw-write, 
physical-read, 
virtual-write 
virtual-read 



Implementing Forward Commands 

Cache Manager 

File System or Application 

Device Mapper 

I/O Scheduler 

SCSI Layer 

ATA Layer 

AHCI Driver 

Device Interface 

Low-level 
drivers 

SSD 

• Solutions 

 Disallow merging & 
re-ordering 

 Add new command 
sub-types 

 Mask command sub-
type in firmware for 
hardware queues 

write-dirty/clean, 
evict, clean, exists 

nw-write, 
physical-read, 
virtual-write 
virtual-read 

Hardware Command 
Queue & Firmware 

scsi_cmd 

ata_qc 

ahci_fis 

<lba,length+sub-type> 



Lesson 1 
Designing New Forward Commands 

• Research lesson: consider all layers of OS 
 I/O scheduler: merging and re-ordering 

 Storage device drivers: adding sub-types 

• Research lesson: consider complete SSD 
ecosystem 
 Firmware: encoding sub-types 

 Hardware: accelerating new command 
queues 

19 



2. New Device Responses 

Cache Manager 

File System or Application 

Device Responses 

SSD 

• Assumption 

 Device can directly 
send new responses 
to cache manager and 
file system 

phy-addresses, 
migration 
callbacks 

Simulated Responses 
(Function Upcalls) 

Simulated Device 

not-present 
read errors 



2. New Device Responses 

Cache Manager 

File System or Application 

Device Mapper 

I/O Scheduler 

SCSI Layer 

ATA Layer 

AHCI Driver 

Low-level 
drivers 

SSD 

• Reality 
 New errors do not 

propagate up beyond 
device drivers 

 Write responses can 
not encode physical 
addresses 

 Migration callbacks 
do not fit standard 
protocols 

ATA Responses and 
Protocol 

phy-addresses, 
migration 
callbacks 

not-present 
read errors 

8 bits+reserved 

Device Responses 



Reverse Path Errors 

Cache Manager 

File System or Application 

Device Mapper 

I/O Scheduler 

SCSI Layer 

ATA Layer 

AHCI Driver 

Read Response Data 

Low-level 
drivers 

SSD 

• Solution 

 not-present errors 
overloaded on read 
response data from 
device to OS 

phy-addresses, 
migration 
callbacks 

not-present 
read errors 

Magic #@!!@ 



Split-FTL Design 
• Solution 
 Kernel and Device FTLs 
 Forward commands 

transformed to raw flash 
commands from Kernel-
FTL 

 Physical addresses & 
migration callbacks 
returned from kernel-
FTL to file system 

 Garbage collection: 
copyback from/to host 
 
 

 

23 

File System or Application 

Block Layer 
I/O Scheduler 

Kernel-FTL 

SCSI, ATA, AHCI 

Device Interface 

Raw SSD 

flash page read/write, block erase 

Device 
FTL 

phy-addresses, 
migration 
callbacks 

nameless-read/write 
virtual-read/write 

copyback 



Lesson 2 
Designing New Device Responses 

• Research lesson: consider all OS layers 
 Storage device drivers: handling of frequent 

benign errors 
 Device & file system: race conditions for 

callbacks 

• Prototyping lesson: simplicity and 
correctness 
 Kernel-FTL: simpler block layer OS interface 
 Device-FTL: enforce correct erase-before-

overwrite 
 
 24 



25 

Talk Outline 

• Introduction 

• Background 

• Prototyping Experiences 

• Evaluation 

 Validate Performance Claims 

• Conclusions 



Methodology 

• Systems for comparison 
 SSD: Facebook FlashCache using SSD with GC 

 SSC: modified Facebook FlashCache using SSC with 
silent eviction 

 Nameless-Write SSD interface performance 

• Workload: filebench with read/write/fsync 

26 

Workload Ratio of operations 

fileserver 1:2 reads/writes 

webserver 10:1 reads/writes  

varmail 1:1:1 reads/writes/fysnc  



SSC Prototype Performance 

27 

Pe
rc

en
t 

p
er

fo
rm

an
ce

  
(r

el
at

iv
e 

to
 n

o
 c

ac
h

e)
 

write intensive read intensive fsync intensive 

0

50

100

150

200

250

300

350

400

450

fileserver webserver varmail

No Cache SSD SSC

+52% 

+27% 

SSC Claim 
168% better perf. than common  

hybrid FTL SSD 

SSC Prototype 
52% better perf. than faster  

page-map FTL SSD 



Nameless-Write SSD Performance 

0

2000

4000

6000

8000

10000

12000

14000

Seq. Write Rand. Write Seq. Read Rand. Read

SSD Nameless-Write SSD

28 fio benchmark: 4KB request size 

Merging 
optimization 

NW-SSD Prototype 
Perf. almost close to page-map FTL 

-60% 

NW-SSD Claim 
Perf. close to page-map FTL 

I/
O

 o
p

e
ra

ti
o

n
s/

s 

Device Memory 
Page-map FTL: 53 MB 

NW-SSD: 803 KB 



Conclusions 

• OpenSSD is a valuable tool for evaluating 
new SSD designs 

• Prototyping and research lessons 
applicable to other SSD designs 

• First high-performance open-source FTL 
 http://www.cs.wisc.edu/~msaxena/new/ftl.html 

 OpenSSD prototype on display at poster session today 

29 

http://www.cs.wisc.edu/~msaxena/new/ftl.html
http://www.cs.wisc.edu/~msaxena/new/ftl.html
http://www.cs.wisc.edu/~msaxena/new/ftl.html


30 

Thanks! 

Getting Real: Lessons in Transitioning 
Research Simulations into Hardware Systems 

 
 

Mohit Saxena, Yiying Zhang 
Michael Swift, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau 


