Getting Real: Lessons in Transitioning Research Simulations into Hardware Systems

Mohit Saxena, Yiying Zhang
Michael Swift, Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau

Flash Storage Stack Research

- SSD Design
 - Flash management
- OS & Applications
 - File systems, block cache, K-V stores
- Device Interface
 - read, write, trim

How to evaluate new SSD designs?

- 1. Modify SSD
 - Replace firmware/FTL
 - Are you a device vendor?
- 2. FPGA Prototype
 - Flexible and fast
 - Hard and time-consuming
- 3. Simulator or Emulator
 - Replay block traces
 - Implement device models

•3

Simulator/Emulator Limitations

- Real hardware performance
 - SSDs are complex: banks, packages, planes
- Interaction with software stack
 - SSDs are sensitive to OS & app behavior
- Trace replay
 - Unable to model request timing dependencies & new commands

FAST year	Unmodified SSDs	Simulator	Hardware
2011	2	5	0
2012	2	7	0
2013	2	3	2

Approach 4. SSD Prototyping Kit

In this Talk

- New SSD and Interface Designs
 - Research Simulation > Hardware Prototype
 - FlashTier's Solid-State Cache (SSC) [EuroSys '12]
 - Nameless Write SSD [FAST '12]

- Challenges, Experiences and Lessons
 - General insights applicable to other SSD designs and interfaces

Talk Outline

- Introduction
- Background
 - OpenSSD Hardware Platform
 - SSC and Nameless Write SSD Interfaces
- Prototyping Experiences
- Evaluation
- Conclusions

Flash SSD 101

- Remap in-place writes
 - Address translation
 - Log-structuring
 - Garbage collection

Pages in Flash Erase Block

•8

OpenSSD Hardware Platform

- Hardware: commodity
 - Indilinx Barefoot ARM SSD controller
 - 64 MB DRAM, 128 GB NAND Flash
- Software: reference
 - Open-source FTL
- Interface: standard
 - SATA read & write
 - UART serial debugging

Solid-State Disk (SSD)

SSD Block Interface

Emulate disk: persistent block store

Solid-State Cache (SSC)

SSC Caching Interface

- Distinguish clean from dirty data
- Return not-present read errors for evicted blocks
- Fast and reliable SSC

Nameless-Write (NW-SSD)

Nameless-Write SSD

- nameless-write/read: physical address
- migration callbacks: relocated blocks
- Cheap and fast SSD

Summary of Interface Changes

New Interface Extensions	SSC	Nameless-Write SSD
Forward Commands	write-dirtywrite-cleanexistsclean	nameless-writephysical-readvirtual-writevirtual-read
Return Values	 not-present read errors 	 physical addresses
Device Responses		migration-callbacks

Talk Outline

- Introduction
- Background
- Prototyping Experiences
 - Challenges
 - Solutions
 - Lessons
- Evaluation
- Conclusions

Prototyping Challenges

- New Forward Commands
- New Device Responses
- Real Hardware
 Constraints for SSC
 and NW-SSD

• 15

1. New Forward Commands

Assumption

 File system & cache manager directly interface with device

1. New Forward Commands

Assumption

 File system & cache manager directly interface with device

Reality

Several intermediateOS, firmware &hardware layers

Implementing Forward Commands

- Solutions
 - Disallow merging & re-ordering
 - Add new command sub-types
 - Mask command subtype in firmware for hardware queues

Lesson 1 Designing New Forward Commands

- Research lesson: consider all layers of OS
 - I/O scheduler: merging and re-ordering
 - Storage device drivers: adding sub-types
- Research lesson: consider complete SSD ecosystem
 - Firmware: encoding sub-types
 - Hardware: accelerating new command queues

• 19

2. New Device Responses

- Assumption
 - Device can directly send new responses to cache manager and file system

2. New Device Responses

Reality

- New errors do not propagate up beyond device drivers
- Write responses can not encode physical addresses
- Migration callbacks do not fit standard protocols

Reverse Path Errors

- Solution
 - not-present errors overloaded on read response data from device to OS

Split-FTL Design

Solution

- Kernel and Device FTLs
- Forward commands transformed to raw flash commands from Kernel-FTL
- Physical addresses & migration callbacks returned from kernel-FTL to file system
- Garbage collection: copyback from/to host

Lesson 2 Designing New Device Responses

- Research lesson: consider all OS layers
 - Storage device drivers: handling of frequent benign errors
 - Device & file system: race conditions for callbacks
- Prototyping lesson: simplicity and correctness
 - Kernel-FTL: simpler block layer OS interface
 - Device-FTL: enforce correct erase-beforeoverwrite

24

Talk Outline

- Introduction
- Background
- Prototyping Experiences
- Evaluation
 - Validate Performance Claims
- Conclusions

Methodology

- Systems for comparison
 - SSD: Facebook FlashCache using SSD with GC
 - SSC: modified Facebook FlashCache using SSC with silent eviction
 - Nameless-Write SSD interface performance
- Workload: filebench with read/write/fsync

Workload	Ratio of operations	
fileserver	1:2 reads/writes	
webserver	10:1 reads/writes	
varmail	1:1:1 reads/writes/fysnc	

26

SSC Prototype Performance

Nameless-Write SSD Performance

fio benchmark: 4KB request size

Conclusions

- OpenSSD is a valuable tool for evaluating new SSD designs
- Prototyping and research lessons applicable to other SSD designs
- First high-performance open-source FTL
 - http://www.cs.wisc.edu/~msaxena/new/ftl.html
 - OpenSSD prototype on display at poster session today

29

Thanks!

Getting Real: Lessons in Transitioning Research Simulations into Hardware Systems

Mohit Saxena, Yiying Zhang Michael Swift, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau

