Burst ORAM: Minimizing ORAM Response Times for Bursty Access Patterns

Jonathan Dautrich, Emil Stefanov, Elaine Shi

Usenix Security, San Diego August 22, 2014

Problems to Solve

Access pattern privacy for outsourced data

Practical response times for bursty workloads

3 Hours

56 ms

ObliviStore ORAM

Burst ORAM

99.9% response times, NetApp trace simulation, 50ms latency 32TB capacity, 100GB client storage, 400Mbps bandwidth

Outline

- > Private Data Outsourcing
 - Oblivious RAM
- > Practical ORAM Response Times
 - Burst ORAM
- > Burst ORAM Details
- > Results

Outline

- > Private Data Outsourcing
 - Oblivious RAM
- > Practical ORAM Response Times
 - > Burst ORAM
- > Burst ORAM Details
- > Results

Data Outsourcing (Cloud)

- Advantages
 - Accessibility and availability
 - IT overhead savings

Why care about data privacy?

- Inexpensive but untrusted provider
- > Privacy Regulations
 - > FERPA, HIPAA, ITAR, etc.

Access Pattern Privacy

- Encryption alone is insufficient
- Access patterns leak information
 - Patterns in plaintext (Dautrich & Ravishankar, EDBT 2013)
 - Search query contents (Islam et al., NDSS 2012)

Oblivious RAM (Goldreich & Ostrovsky, 1996)

- Provable access pattern privacy
- ORAM translates client requests to public IO
 - Online IO: Needed to satisfy request

Oblivious RAM (Goldreich & Ostrovsky, 1996)

- Provable access pattern privacy
- ORAM translates client requests to public IO
 - Online IO: Needed to satisfy request
 - Offline IO: After request completes (shuffling)

Outline

- > Private Data Outsourcing
 - Oblivious RAM
- > Practical ORAM Response Times
 - Burst ORAM
- > Burst ORAM Details
- > Results

ORAM Costs

Some Prior ORAM Schemes

N blocks of size B (B generally 1KB to 1MB)

Scheme	Client Space	Server Space	Bandwidth Cost
Goldreich & Ostrovsky 1996	O(B log N)	O(BN log N)	O(log ³ N)
Kushilevitz et al. 2012	O(B)	O(BN)	O(log ² N / log log N)
Goodrich et al. 2012	O(BN ^{1/c})	O(BN)	O(log N)
Stefanov et al. 2013 (ObliviStore)	~N log ₂ N + BN ^{1/2}	~2BN-4BN	~log ₂ N

ORAM Costs

Bursty Workload: Existing ORAMs

- Goals
 - Minimize burst response times
 - Keep total bandwidth cost low
- > Based on ObliviStore
 - Bandwidth-efficient
 - Large client space

Burst ORAM Strategies

1: Reduce Online IO

XOR technique

2: Delay Shuffling (Offline IO)

Maximally utilize client space

3: Prioritize Efficient Shuffling

- Less work to free same client space
- ➤ Efficiency ≈ Space Freed / Required IO
- Scheduling policy must be "oblivious"

Outline

- > Private Data Outsourcing
 - Oblivious RAM
- > Practical ORAM Response Times
 - > Burst ORAM
- > Burst ORAM Details
- > Results

Layout: Burst ORAM & ObliviStore

- > \sqrt{N} partitions of \sqrt{N} blocks each
- Each request routed to single partition

Online Cost
(Blocks Transferred During Read)

Offline Cost (Blocks Transferred During Shuffling)

Req. 1

Req. 2

Req. 3

Online Cost (Blocks Transferred During Read)

Offline Cost (Blocks Transferred During Shuffling)

Req. 1

Req. 2

Req. 3

Online Cost (Blocks Transferred During Read)

Offline Cost (Blocks Transferred During Shuffling)

Req. 1

DRDRDRDRR

Req. 2

Req. 3

Online Cost (Blocks Transferred During Read)

Offline Cost (Blocks Transferred During Shuffling)

Req. 1

R D D D

Req. 2

D R D D

Req. 3

Idle Time

DRDRDRDRR

R D D R D D R R D

Online Cost (Blocks Transferred During Read)

Offline Cost (Blocks Transferred During Shuffling)

R

Req. 1 R D D D

 D
 D
 D
 R
 D
 R
 D

Req. 2 DRDD

R D D R D D R R D

Req. 3

Online Cost (Blocks Transferred During Read)

Offline Cost (Blocks Transferred During Shuffling)

R

D

RI

Req. 1

Req. 3

R R R R D

R

D

Idle Time

Req. 2

Burst ORAM: XOR Technique

Online Cost (Blocks Transferred During Read)

Offline Cost (Blocks Transferred During Shuffling)

Req. 1

Req. 2

Req. 3

Idle Time

Dummy blocks reconstructed locally and subtracted out

Online Cost (Blocks Transferred During Read)

Offline Cost (Blocks Transferred During Shuffling)

Req. 1

Req. 2

Req. 3

Idle Time

Small Amount of Shuffling to Free Space for Next Block on Client

Online Cost
(Blocks Transferred During Read)

Offline Cost (Blocks Transferred During Shuffling)

Req. 1

Req. 2

Dog 2

Req. 3

Well suited to mobile device

Online Cost (Blocks Transferred During Read)

Offline Cost (Blocks Transferred During Shuffling)

Req. 1

X

Req. 2

X

Req. 3

Χ

Outline

- > Private Data Outsourcing
 - Oblivious RAM
- > Practical ORAM Response Times
 - > Burst ORAM
- > Burst ORAM Details
- > Results

Burst ORAM – Extended Burst

32 TB ORAM, 100 GB client storage

99.9% Reponse Time Comparison on NetApp Trace

(50ms network latency, 32 TB ORAM, 100 GB client storage)

99.9% Reponse Time Comparison on NetApp Trace

(50ms network latency, 32 TB ORAM, 100 GB client storage)

NetApp Trace Bandwidth Costs

(50ms network latency, 32 TB ORAM, 100 GB client storage, 400Mbps bandwidth)

Conclusion

- Accomplishments
 - Practical response times during bursts
 - Maintains low bandwidth cost
- Limitations
 - Does not reduce total bandwidth cost
- > Future
 - Lower bandwidth cost and low response times

