
How the ELF ruined
Christmas
Alessandro Di Federico

Amat Cama
Yan Shoshitaishvili

Giovanni Vigna
Christopher Kruegel

UC Santa Barbara

24th USENIX Security Symposium

Overview

We’re going to present an exploitation technique
1 able to call arbitrary library functions
2 not requiring a memory leak vulnerability
3 bypassing specific protections such as ASLR and RELRO

Index

The exploit

The dynamic loader

The attacks

RELRO

Implementation

Recap & countermeasures

The exploitation process

1 Find a useful vulnerability
2 Get control of the IP
3 Perform the desired actions

Our focus is on the last step

The IP is not enough

• Controlling the IP is not enough
• The problem is then where to point execution

The typical situation

• Suppose the main binary is not randomized (no PIE)
• Typically, to bypass ASLR, attackers...

1 Leak the address of an imported function (e.g. printf)
2 Compute the address of the target function (e.g. execve)
3 Divert the execution to the computed address

target = addressOf(printf)−distance(printf , execve)

The problem

• Requires a memory leak vulnerability
• Requires knowledge of the layout of the library
• Requires an interaction between the victim and the attacker

Let’s re-think the attack

What are we trying to do?

We’re trying to obtain the address
of an arbitrary library function

But we already have
an OS component for that!

Introducing...

The dynamic loader

Index

The exploit

The dynamic loader

The attacks

RELRO

Implementation

Recap & countermeasures

The dynamic loader

• The role of the dynamic loader is to resolve symbols
• An ELF executable imports a function from a library
• The dynamic loader provides it with its address

Lazy loading in ELF

• The ELF standard provides a way to resolve function lazily
• This means that a function is resolved only if called

Calling a library function

i n t main () {
p r i n t f (" He l lo wor ld ! \ n ") ;
r e t u r n 0 ;

}

Calling a library function

i n t main () {
p r i n t f @ p l t (" He l lo wor ld ! \ n ") ;
r e t u r n 0 ;

}

printf@plt pseudocode

i n t p r i n t f @ p l t (. . .) {
i f (f i r s t _ c a l l) {

/ / Find p r i n t f , cache i t s address i n the GOT
/ / and c a l l i t
d l run t ime_reso lve (e l f _ i n f o , p r i n t f _ i n d e x) ;

} e lse {
jmp * (p r i n t f _ g o t _ e n t r y)

}
}

Relocation table

.rel.plt

Symbol table

.dynsym

String table

.dynstr

...

r offset

r info
...

r offset

r info
...

E
l
f
R
e
l

E
l
f
R
e
l

...

st name

st info
...

...

st name

st info
...

...

E
l
f
S
y
m

E
l
f
S
y
m

...

read\0
...

printf\0
...

dl runtime resolve(elf info, printf index)

Index

The exploit

The dynamic loader

The attacks

RELRO

Implementation

Recap & countermeasures

The attack scenario

Suppose that:
• our exploit is able to run a ROP chain
• we can call _dl_runtime_resolve1

• the main binary has simple gadgets to write in memory

1There’s a reserved GOT entry for it

Suppose we’re able to force the loader
to use a fake string table

We can replace printf with execve,
and force its resolution

Symbol table

.dynsym

String table

.dynstr

Writeable area

.bss .dynamic

...

st name

st info
...

...

E
l
f
S
y
m

...

read\0
printf\0
...

...

d tag: DT STRTAB

d val
...

E
l
f
D
y
n

...

read\0
execve\0

...

Index

The exploit

The dynamic loader

The attacks

RELRO

Implementation

Recap & countermeasures

RELocation ReadOnly

• RELRO is a binary hardening technique
• It aims to prevent attacks as those just described
• It’s available in two flavors: partial and full

Partial RELRO

• Some fields of .dynamic must be initialized at run-time
• This is the reason it’s not marked as read-only in the ELF
• With partial RELRO2 it is marked R/O after initialization

2gcc -Wl,-z,relro

The previous attack doesn’t work anymore

Another idea

Relocation table

.rel.plt

Symbol table

.dynsym

String table

.dynstr

...

r offset

r info
...

r offset

r info
...

E
l
f
R
e
l

E
l
f
R
e
l

...

st name

st info
...

...

st name

st info
...

...

E
l
f
S
y
m

E
l
f
S
y
m

...

read\0
...

printf\0
...

dl runtime resolve(elf info, printf index)

What’s after the relocation table?

$ r e a d e l f −S / b in / echo
Sect ion Headers :
[Nr] Name Addr Flg
[5] . dynsym 08048484 A [symbol t ab l e]
[6] . dyns t r 080487 f4 A [s t r i n g tab l e]
[1 0] . r e l . p l t 08048b5c A [r e l o c a t i o n tab l e]
[2 1] . dynamic 0804 f e f c WA [dynamic sec t ion]
[2 3] . got . p l t 0804 f f f 4 WA [GOT]
[2 5] . bss 08050120 WA [we can w r i t e here]

Relocation table

.rel.plt
Writeable area

.bss

...

r info

r offset
...

E
l
f
R
e
l

r info

r offset

st name

st info
...

execve\0
...

E
l
f
R
e
l

E
l
f
S
y
m

dl runtime resolve(elf info, printf index)

This approach does not always work

• If the dynamic loader checks the boundaries
• If symbol versioning and huge pages are enabled3

3More details on the paper

This approach does not always work

• If the dynamic loader checks the boundaries
• If symbol versioning and huge pages are enabled3

3More details on the paper

Another option

_dl_runtime_resolve(elf_info, printf_index);

• We tried to abuse printf_index

• What about elf_info?
• Points to a link_map data structure
• It’s available in a reserved entry in the GOT

Another option

link_map keeps a pointer to the dynamic string table

Another option

If we tamper with it we get back to the first attack

GOT

.plt.got

[heap]

String table

.dynstr

Writeable area

.bss

got[0]

got[1]

got[2]

...

...
...

l info[DT HASH]

l info[DT STRTAB]

l info[DT SYMTAB]
...

...

l
i
n
k
m
a
p

...

read\0
printf\0
...

...

read\0
execve\0

...

The full RELRO situation

• Full RELRO4 basically disables lazy loading
• All the functions are resolved at startup
• Some pointers are not initialized
• We lose the references to:

• _dl_runtime_resolve
• elf_info, i.e. the link_map data structure

4gcc -Wl,-z,relro,-z,now

DT_DEBUG to the rescue

• The .dynamic section has a DT_DEBUG entry
• Points to a debug data structure
• It’s used by gdb to track the loading of new libraries

It holds a pointer to link_map!

What about _dl_runtime_resolve?

• Full RELRO is typically applied to the main binary only
• Libraries’ GOT still has a pointer to _dl_runtime_resolve

• How can we get to the memory area of a library?

Traversing link_map

• link_map is part of a linked-list
• If we go to the next entry we can reach libraries’ link_map
• From there we can get to their GOT

Dynamic section

.dynamic [heap]
GOT

.plt.got

String table

.dynstr

Writeable area

.bss

Symbol table

.dynsym

...

d tag: DT DEBUG

d val
...

d tag: DT STRTAB

d val
...

E
l
f
D
y
n

E
l
f
D
y
n

...

r version

r map

...
...

...

l info[DT STRTAB]
...

l next
...

...
...

l info[DT PLTGOT]
...

...

r
d
e
b
u
g

l
i
n
k
m
a
p

l
i
n
k
m
a
p

E
l
f
D
y
n

GOT[0]

GOT[1]

GOT[2]
...

...

read\0
execve\0

...

...

read\0
printf\0

...

dl runtime resolve(l info, reloc index)

...

st name

st info
...

...

E
l
f
S
y
m

Index

The exploit

The dynamic loader

The attacks

RELRO

Implementation

Recap & countermeasures

leakless

• leakless implements all these techniques
• Automatically detects which is the best approach
• Outputs:

• Instructions on where to write what
• If provided with gadgets, the ROP chain for the attack

• Check it out at

https://github.com/ucsb-seclab/leakless

https://github.com/ucsb-seclab/leakless

Gadgets

Attack
Gadget 1 2 3 4

?(destination) = value X X X X

?(?(pointer)+offset) = value X X

?(destination) = ?(?(pointer)+offset) X

?(stack_pointer +offset) = ?(source) X

What loaders are vulnerable?

We deem vulnerable:
• The GNU C Standard Library (glibc)
• dietlibc, uClibc and newlib
• OpenBSD’s and NetBSD’s loader

Not vulnerable:
• Bionic (PIE-only)
• musl (no lazy loading)
• (FreeBSD’s loader)

Index

The exploit

The dynamic loader

The attacks

RELRO

Implementation

Recap & countermeasures

What are the advantages of leakless?

1. Single stage

• It doesn’t require a memory leak vulnerability
• It doesn’t require interaction with the victim
• “Offline” attacks are now feasible!

2. Reliable and portable

• If feasible, the attack is deterministic
• A copy of the target library is not required
• Since it mostly relies on ELF features it’s portable
• Exception: link_map, but it’s just minor fixes

3. Short

• One could implement the loader in ROP
• longer ROP chains
• increased complexity

4. Code reuse and stealthiness

• Everything is doable with syscalls
• But it’s usually more invasive
• With leakless you can do this:

Pidgin example

vo id *p , *a ;
p = purple_proxy_get_setup (0) ;
purp le_proxy_ in fo_se t_hos t (p , " l e g i t . com ") ;
pu rp le_proxy_ in fo_se t_por t (p , 8080) ;
purp le_proxy_ in fo_se t_ type (p , PURPLE_PROXY_HTTP) ;

a = purp le_accounts_ f ind (" usr@xmpp" , " p rp l−xmpp ") ;
purp le_account_disconnect (a) ;
purple_account_connect (a) ;

5. Automated

• leakless automates most of the process
• The user only needs to provide gadgets

Countermeasures

• Use PIE
• Use full RELRO everywhere
• Disable DT_DEBUG if not necessary
• Make loader’s data less accessible
• Isolate the dynamic loader

Conclusion

Binary formats and core system components
should be designed, and implemented,

with security in mind

Thanks

License

This work is licensed under the Creative Commons
Attribution-ShareAlike 3.0 Unported License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-sa/3.0/
or send a letter to Creative Commons, 444 Castro Street, Suite
900, Mountain View, California, 94041, USA.

http://creativecommons.org/licenses/by-sa/3.0/

	The exploit
	The dynamic loader
	The attacks
	RELRO
	Implementation
	Recap & countermeasures

