
Automatic Heap Layout
Manipulation for Exploitation

Sean Heelan, Tom Melham, Daniel Kroening

University of Oxford

Problem

2

CVE-2013-2110

3

What Gets Corrupted?

4

Finding a Corruption Target

5

Finding a Corruption Target

6

Finding a Corruption Target

7

Finding the Correct Layout

8

Finding the Correct Layout

9

Finding the Correct Layout

10

Finding Heap Manipulating Functions

11

Finding Heap Manipulating Functions

12

Finding Heap Manipulating Functions

13

Using Heap Manipulating Functions

14

Complete Exploit

15

Steps to Exploitation

1. Discover a vulnerability

2. Learn how to allocate sensitive data on the heap (e.g. a pointer)

3. Learn how to interact with the allocator via the program’s API

4. Achieve required heap layout

5. Complete exploit using resulting read/write primitives

16

Our Contributions

1. Discover a vulnerability

2. Learn how to allocate sensitive data on the heap
• Dynamic analysis of regression tests

3. Learn how to interact with the allocator via the program’s API
• Dynamic analysis + fuzzing of regression tests

4. Achieve required heap layout
• Random search over the discovered interaction sequences

5. Complete exploit using resulting read/write primitives
• A template-based approach to exploit writing

17

Allocator Design

18

Allocator Design Choices

• Goal
• Service runtime requests for memory via the heap or memory mapped pages

• Objectives – differ based on the allocator, e.g.
• Minimise fragmentation

• Maximise speed of allocation

• Maximise resilience to accidental errors

• Maximise resilience to purposeful attacks

19

Segregated Free Lists

20

Segregated Storage

21

Heap Layout Manipulation
A Brief Introduction

22

Problem: sizeof(S)=8, sizeof(D)=32

23

Attempt #1 – Just Allocate

24

Solution – Hole Filling

25

Noisy Interaction Sequences

• A significant complicating factor
can be ‘noise’ in the available
allocation sequences

void allocDestination(…)

{

n = malloc(32);

d = malloc(dst);

…

}

26

Attempt #1 – Just Allocate

27

Solution – Hole Creation, Step #1

28

Solution – Hole Creation, Step #2

29

Solution – Hole Creation, Step #3

30

Solution – Hole Creation, Step #4

31

Automating Heap Layout
Manipulation

32

Problem Statement

• Objective
• Place source and destination buffer adjacent to each other

• Mechanism
• Hole filling and creation

• Complicating factors
• Diversity of allocator implementations, indirect allocator interaction, noise,

layout constraints imposed by the allocator (e.g. segregated storage)

33

Problem Statement

• Objective
• Place source and destination buffer adjacent to each other

• Mechanism
• Hole filling and creation

• Complicating factors
• Diversity of allocator implementations, indirect allocator interaction, noise,

layout constraints imposed by the allocator (e.g. segregated storage)

• Out of scope
• Non-deterministic allocators, unknown heap starting state

34

Random Search

• Random combination of the available interaction sequences
• Parameters: Maximum solution length, ratio of allocations to frees

• Could this work?

35

Evaluation – Benchmark Configuration (SIEVE)

• Allocators
• tcmalloc (v2.6.1), dlmalloc (v2.8.6), avrlibc (v2.0)

• Starting states
• Ruby, Python, PHPx2

• Source and destination sizes
• The cross product of 8, 64, 512, 4096, 16384, 65536

• 2592 benchmarks

• Search allowed 500,000 candidates per benchmark

36

Evaluation - Random Search

37

Evaluation - Random Search

38

Evaluation - Random Search

39

Evaluation - Random Search

40

Evaluation - Random Search

41

Summary

• Random search performs very well when there is no noise, and no
segregated storage

• If all runs of the benchmarks are considered, 78% are solved at least
once

• With appropriate computational resources random search can be
pretty effective

42

End-to-End Automation of Heap
Layout Manipulation

43

Working with Real Programs

• For evaluation we chose the PHP language interpreter
• Open bug tracker, interpreter and language are featureful but easy to work

with

• Hypothetical threat model: hardened interpreter in which we can run
arbitrary PHP code but want to execute native code

44

High Level Algorithm

1. Discover how to interact with the allocator via the program’s API

2. Randomly combine API calls to manipulate the heap

3. Check if source and destination are adjacent, if not go to step 2, if
yes then end

45

Fragmentation

<?php

$image = imagecreatetruecolor(180, 30);

imagestring($image, 5, 10, 8, ‘Text', 0x00ff00);

$gaussian = array(

array(1.0, 2.0, 1.0),

array(2.0, 4.0, 2.0)

);

var_dump(imageconvolution(
$image, $gaussian, 16, 0));

?>

46

Fragmentation

<?php

$image = imagecreatetruecolor(180, 30);

imagestring($image, 5, 10, 8, ‘Text', 0x00ff00);

$gaussian = array(

array(1.0, 2.0, 1.0),

array(2.0, 4.0, 2.0)

);

var_dump(imageconvolution(
$image, $gaussian, 16, 0));

?>

47

imagecreatetruecolor(180, 30)
imagestring($image, 5, 10, 8, ‘Text’, 0x00ff00)
array(array(1.0, 2.0, 1.0), array(2.0, 4.0, 2.0))
array(1.0, 2.0, 1.0)
array(2.0, 4.0, 2.0)
var_dump(imageconvolution($image, $gaussian, 16, 0))

Fragmentation + Fuzzing

<?php

$image = imagecreatetruecolor(180, 30);

imagestring($image, 5, 10, 8, ‘Text', 0x00ff00);

$gaussian = array(

array(1.0, 2.0, 1.0),

array(2.0, 4.0, 2.0)

);

var_dump(imageconvolution(
$image, $gaussian, 16, 0));

?>

48

imagecreatetruecolor(180, 30)
imagestring($image, 5, 10, 8, ‘Text’, 0x00ff00)
array(array(1.0, 2.0, 1.0), array(2.0, 4.0, 2.0))
array(1.0, 2.0, 1.0)
array(2.0, 4.0, 2.0)
var_dump(imageconvolution($image, $gaussian, 16, 0))

imagecreatetruecolor(1, 1)
imagecreatetruecolor(1, 2)
imagecreatetruecolor(1, 3)
imagecreatetruecolor(1, 4)

High Level Algorithm

1. Discover how to interact with the allocator via the program’s API

2. Randomly combine API calls to manipulate the heap

3. Check if source and destination are adjacent, if not go to step 2, if
yes then end

49

Randomly Produced Sequence

50

High Level Algorithm

1. Discover how to interact with the allocator via the program’s API

2. Randomly combine API calls to manipulate the heap

3. Check if source and destination are adjacent, if not go to step 2, if
yes then end

51

Evaluation

• 3 vulnerabilities x 10 target data structures = 30 experiments
• Max run time: 12 hours

• 40 concurrent analysis processes

• 21/30 (70%) success rate
• Average time: 9m30s, Min. time: < 1s, Max. time: 1h10m

• Average number of candidates before success: 720k

52

Exploit Templates

53

Exploit Templates

54

Completed Template

55

Demo

• CVE-2013-2110

• Exploit developer provides template
• Partial exploit with holes

• SHRIKE completes the exploit by solving the layout problems

56

Automatically Completing a Partial Exploit

57

https://www.youtube.com/watch?v=MOOvhckRoww

https://www.youtube.com/watch?v=MOOvhckRoww

Takeaways

• Heap layout manipulation can be automated, end-to-end
• Future work: New types of software, improved discovery and use of

interaction sequences, other heap-based vulnerability types

58

Takeaways

• Heap layout manipulation can be automated, end-to-end
• Future work: New types of software, improved discovery and use of

interaction sequences, other heap-based vulnerability types

• Random search is an effective mechanism for automatic heap layout
manipulation
• Future work: Better search, relaxing constraints on non-determinism and

starting state

59

Takeaways

• Heap layout manipulation can be automated, end-to-end
• Future work: New types of software, improved discovery and use of

interaction sequences, other heap-based vulnerability types

• Random search is an effective mechanism for automatic heap layout
manipulation
• Future work: Better search, relaxing constraints on non-determinism and

starting state

• Exploit templates allow us to combine the creativity of an exploit
developer with the power of a machine
• Future work: Automating other aspects and integration with template-based

exploit development

60

Takeaways

• Heap layout manipulation can be automated, end-to-end
• Future work: New types of software, improved discovery and use of interaction

sequences, other heap-based vulnerability types

• Random search is an effective mechanism for automatic heap layout
manipulation
• Future work: Better search, relaxing constraints on non-determinism and starting

state

• Exploit templates allow us to combine the creativity of an exploit developer
with the power of a machine
• Future work: Automating other aspects and integration with template-based exploit

development

• SHRIKE is a PoC system implementing end-to-end heap layout manipulation
and integrating with exploit development via a template system. Code
available!

61

Thanks / Questions?
Code+Paper: https://sean.heelan.io/heaplayout

@seanhn / sean.heelan@cs.ox.ac.uk

https://sean.heelan.io/heaplayout

