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Introduction



Background and Motivation
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• Attackers are in a constant race with end-users/enterprises.

• It is estimated that on median, only 14% of vulnerable hosts are
patched when exploits are made available.

• Recent examples: WannaCry, NotPetya, Equifax.
• Only a small portion of vulnerabilities are ultimately exploited.
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Background and Motivation

Rank ordering vulnerabilities by severity enables prioritization of
patch deployment.

Current state of exploit detection

• Intrinsic (a priori) attributes: Not strong predictors.
• Crawling social media sites: Only a few days of lead time.

Our contribution

• Automated detection using statistical evidence of exploitation
from real-world measurements.

• We achieve a 90% true positive rate, with a 10% positive rate
using 10 days of post-disclosure observations.

• The current median time for detection is 35 days.
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Overview of Concept

Symptom pattern Risk behavior 1 Risk behavior 2

• One can infer the main the cause of infection by comparing
symptoms of infection with risk (vulnerability) patterns.

• We combine this idea with community detection and compare
symptoms of similar individuals (ISPs) with their risk behavior.
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Overview of Concept

ISPs with similar symptom signals (i.e, number of infected hosts).

• One can infer the main the cause of infection by comparing
symptoms of infection with risk (vulnerability) patterns.

• We combine this idea with community detection and compare
symptoms of similar individuals (ISPs) with their risk behavior.
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Datasets and Processing



Datasets

Symptoms

• Spam blacklists: CBL, SBL, SpamCop, UCEPROTECT, and WPBL
(Jan 2013 - Present).

Risk behavior

• Patching data for 7 applications from WINE (Feb 2008 - Jul 2014).
• Chrome, Firefox, Thunderbird, Safari, Opera, Acrobat Reader, Flash.

• Publicly available vulnerabilities (CVEs) from NVD.

Ground-truth

• Real-world exploits from SecurityFocus, Symantec, and Intrusion
Protection Signatures (IPS).

• 56 exploited-in-the-wild (EIW) and 300 not-exploited-in-the-wild
(NEIW) vulnerabilities.
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Data Processing

Symptoms/
Risk behavior Aggregation Pairwise

Similarity

hosts × days ISPs × days ISPs × ISPs

• Reduce the number of nodes by aggregating at the ISP level.
• Compute pairwise similarity matrices for the aggregated signals.

• For each CVE, this results in two weighted graphs (one for
symptoms and one for risk behavior).

5



Data Processing
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• Reduce the number of nodes by aggregating at the ISP level.
• Compute pairwise similarity matrices for the aggregated signals.
• For each CVE, this results in two weighted graphs (one for
symptoms and one for risk behavior).
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Methodology



Community Detection Over Symptom Similarity

• Use community detection (BigClam) to identify groups of ISPs
exhibiting similar symptoms for the 10-day period following
each vulnerability disclosure.

• We investigate whether the same community structure also
applies to risk behavior signals.
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Measuring the Association between Risk and Symptoms

Inter­cluster

Intra­cluster
Intra­cluster

Cluster A Cluster B

Intra- and inter-cluster similarities. Each node represents an ISP.

• Using the community structure obtained from symptoms, we
compute the intra-cluster and inter-cluster similarities of risk
behavior signals for each CVE.
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Uncovering active exploitation
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Distribution of intra- and inter-cluster risk similarities for a NEIW (left) and a
EIW (right) vulnerability.

• We observe a statistically significant distinction between EIW
and NEIW vulnerabilities.

• Conjecture: A higher intra-cluster similarity is an indication of
active exploitation.
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Evaluation



Feature Sets

Post-disclosure

• Community: 20-bin histogram of the difference in distribution
between intra-cluster and inter-cluster similarities.

• Raw: Risk and symptom similarity matrices.
• Direct: 20-bin histogram of row-by-row correlation between the
two similarity matrices.

Intrinsic

• Tokens extracted from vulnerability descriptions, e.g., remote.
• CVSS scores summarizing the severity of each vulnerability.
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Classifying EIW Vulnerabilities

Training

• Train Random Forests on
different feature sets.

• Use 5-fold cross validation
and average performance
over 20 rounds.

Accuracy of trained models

• Using all features we observe a 96% AUC.

• Community+Intrinsic features achieve a 95% AUC.
• Performance is greatly improved using both intrinsic (a priori)
and post-disclosure (a posteriori) features.
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Case Studies

The proposed technique can also be applied sooner/retrospectively.

CVE-2013-0640

• Disclosed on 02/13/2013, affecting Adobe Acrobat Reader.
• We detect exploitation for this CVE on the disclosure date.
• We were also able to find proof of zero-day exploits for this CVE.

CVE-2013-5330

• Disclosed on 11/12/2013, affecting Adobe Flash Player.
• The earliest exploit report date for this CVE is 01/28/2014.
• However, our system detected this vulnerability on the
disclosure date, indicating a possible zero-day exploit.

11



Case Studies

The proposed technique can also be applied sooner/retrospectively.

CVE-2013-0640

• Disclosed on 02/13/2013, affecting Adobe Acrobat Reader.
• We detect exploitation for this CVE on the disclosure date.
• We were also able to find proof of zero-day exploits for this CVE.

CVE-2013-5330

• Disclosed on 11/12/2013, affecting Adobe Flash Player.
• The earliest exploit report date for this CVE is 01/28/2014.
• However, our system detected this vulnerability on the
disclosure date, indicating a possible zero-day exploit.

11



Case Studies

The proposed technique can also be applied sooner/retrospectively.

CVE-2013-0640

• Disclosed on 02/13/2013, affecting Adobe Acrobat Reader.
• We detect exploitation for this CVE on the disclosure date.
• We were also able to find proof of zero-day exploits for this CVE.

CVE-2013-5330

• Disclosed on 11/12/2013, affecting Adobe Flash Player.
• The earliest exploit report date for this CVE is 01/28/2014.
• However, our system detected this vulnerability on the
disclosure date, indicating a possible zero-day exploit.

11



Discussion and Conclusion



Discussion

Practical utility

• Enterprises: Prioritizing patch deployment, risk assessment.
• Software vendors: Development of patches for critical CVEs.
• ISPs: Identify at-risk populations to encourage prompt action.

Data imperfections

• Malicious activities from multiple sources, e.g., different CVEs,
pay-per-install, etc.

• Infections that do not generate spam.
• Aggregation at a coarse level can lead to only observing the
averages of behavior.
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Conclusion

Early exploit detection

• We can achieve a true positive rate of 90%, and a false positive
rate of 10% using 10 days of post-disclosure data.

• The current median time for detection is 35 days, and 80% of
reported exploits are detected beyond 10 days.

• Combining intrinsic and post-disclosure (community) features
results in a robust classifier.

Future directions

• Appending additional datasets of symptomatic data to build a
more robust system.

• Using Internet scans to identify at-risk servers/networks.
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Thank You

Questions?
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