
Vitess
Scaling MySQL with Go

{mike|sougou}@youtube

code.google.com/p/vitess

Briefly

● motivation & vision
● implementation strategy
● state of the system
● Go experience
● questions, answers?

Begin at the end

● MySQL-esque*
● Self-managing without magic**
● Increased efficiency***

○ memory usage, throughput
● External replication

Labor vs Management

● Automated reparenting
● Online schema apply*

○ alters, rebuilds
● Auto-sharding

○ incremental provisioning

Assumptions/Constraints

● keyspaces / keyspace_id
● range-based shards
● "shards x replicas" structure
● no cross-shard transactions*
● eventual consistency

The Tao of
Vitess*

"choose the simplest
solution with the

loosest guarantees that
are practical"

Implementation Strategy

● minimal changes to MySQL
● external query shaper
● external tablet manager
● coordinate in Zookeeper*

One Cluster

Zookeeper

● local vs global
○ sparing use of global

● zkocc (insulation)
○ cell hiccups
○ zk protocol

One Machine

vttablet

vttablet

● Full query service
○ +streaming

● Tablet management
○ Stored directly in zookeeper

● Update stream

Tablet Mgmt

● Actions
○ reliably queued
○ communicated via zookeeper
○ performed by vtaction*

● "manholes"

Update Stream

● primary key change notifications
● derived from binlog*
● eventual consistency

○ out-of-order

Query Server (vtocc)

● RPC front-end to MySQL
● QoS Connection pooling
● Transaction management
● DML annotations
● SQL parser

In production

● Serves all of YouTube's MySQL
queries

● Months of crash-free & leak-free
operation

● Zero downtime restarts
● Configuration, Logging &

Statistics

Fail-safes

● Query consolidation
● Row count limit
● Transaction limit
● Query and transaction timeouts
● Easy to add more

Row Cache

● vs Buffer Cache
● CPU usage
● Primary Key fetches
● Results merging using subqueries
● Benchmarks

Upcoming Features

● Online Resharding
● Schema Management
● Joins for rowcache
● Query Router
● Configurable QRewriter*

Go Experience

● Highlights
● Lowlights
● Deploy

General Productivity

● Falls between C and Python
● Fast compile/test cycle
● Batteries included and fully

charged

Expressive

● auto-rotating logfile: 105 lines
● connection pooler: 227 lines
● memcache client: 250 lines*

Language Features
● interfaces
● first class concurrency
● defers and closures
● CGO
● channels* (select)

Lowlights

● []byte vs string
● error vs panic
● GC for large footprints
● scheduler overhead

Pitfalls - nil interface

func x() error {
 var err *MyError
 return err
}

Is x() == nil?

Pitfalls - range vars

for _, url := range urls {
go func() {

fmt.Println(url)
}()

}

How many urls get printed?

Deploying

● statically linked
○ until you use CGO
○ handy for prod debugging

● debug web server / profiling
● SIGABRT
● relatively strace friendly

New Committers

●Alain Jobart
●Shruti Patil
●Ric Szopa

We're hiring!

Questions?

● Vitess: http://code.google.com/p/vitess
● Go: http://golang.org

