
Case Study: Implementing SLOs for a new service

Arnaud Lawson
@arnolawson

Who am i?

● Arnaud Lawson, Sr Site Reliability Engineer @Squarespace

○ Twitter: @arnolawson

○ Email: alawson@squarespace.com

mailto:alawson@squarespace.com

Outline

● What is this service?

● Why SLOs?

● Our approach for defining & measuring SLOs

● Benefits gained & lessons learned

Ceph Object Storage (COS)

● Ceph Object Storage (COS) service
○ S3-compatible
○ Geo-distributed

What is this service?

Ceph Object Storage (COS)

● Apps
○ Internal webapps
○ Production data pipelines
○ Performance monitoring systems

● Backups
○ Production data stores

How do we use it?

Why SLOs?

● Service level objectives
○ set performance & reliability targets for a service

as seen by its users over a period of time
● Service level indicator

○ performance metrics that inform SLOs

What are SLOs?

Why SLOs?

● API availability SLO: 99.9% of API

requests will not fail over n weeks

● API availability SLI: the percentage of

API requests that do not fail

Example

● COS usage grew

● Define performance & reliability targets

● Measuring & meeting SLOs guarantees

users’ happiness

● Better prioritize our work around the

life of this service

Why are SLOs important for COS?

Why SLOs?

SLO implementation process

1- Determine SLI types that best capture our users’ experience

2- Define SLIs - the things to measure

3- Choose how to measure these SLIs

4- Collect SLIs for a few weeks & estimate initial SLOs

5- Infer error budgets from the initial SLOs

6- Publish SLOs

SLO implementation

a- Understand how users most
often interact with COS
● User actions in server logs:

○ Create & delete bucket
○ Upload, download &

delete object

1- Determine SLI types that best capture users’ experience

b- Understand COS components & choose
SLI types that best reflect users’
experience
● request-driven RESTful interface

○ availability & latency SLIs
● distributed storage backend

○ durability SLI

SLO implementation

● Request-driven HTTP server

○ Availability SLI: percentage of http requests that do not fail

○ Latency SLI: percentage of http requests that successfully complete in less than x

milliseconds

● Storage backend

○ Durability SLI: percentage of objects written to COS that can be successfully re-read

without corruption even after a failure

2- Define SLIs

SLO implementation

● Collect SLIs from COS load balancer logs

● Instrument COS S3 client programs

● Deploy probers which perform common user actions

3- Choose how to measure these SLIs and capture the user experience

SLO implementation

● Deployed probers

● Record success & latency metrics

per request type and across all http

requests

4- Collect SLIs & set SLOs

SLO implementation

● p90 & p99 Latency SLI
over 4 weeks for all
HTTP requests issued
by probers

4- Collect SLIs & set SLOs

SLO implementation

● Latency per request type

● We can drill down and
identify requests that
negatively impact our overall
latency SLO

4- Collect SLIs & set SLOs

SLO implementation

● Availability SLO: 99.9% of requests will complete successfully over 4 weeks

● Latency SLOs:

○ a) 90% of requests will complete successfully in < 300 ms over 4 weeks

○ b) 99% of requests will complete successfully in < 2000 ms over 4 weeks

● Durability SLO: 99.999999% of objects written to COS will not be lost or

compromised in the event of a failure over 1 year

4- Collect SLIs & set SLOs

SLO implementation

● Error budget

○ Amount of headroom there is above an SLO

○ Degree to which we can afford to not be within SLO and not frustrate users

significantly

5- Infer error budgets from initial SLOs

SLO implementation

● 99.9% availability over 4 weeks → 0.1% requests could fail over 4 weeks
● 90% requests will complete successfully in < 300 ms over 4 weeks → ~10%

requests are allowed to complete in >= 300 ms over 4 weeks
● 99% requests will complete successfully in < 2000 ms over 4 weeks → ~1% of

requests are allowed to complete >= 2000 ms or longer over 4 weeks
● 99.999999% durability of objects per year → a loss of ~0.000001% of objects

is allowed per year

5- Infer error budgets from initial SLOs

SLO implementation

● Produced documentation that outlines
○ What COS does
○ How it is actually used
○ Types of SLIs being measured
○ A definition of the actual SLIs - what is being measured
○ A definition of the SLOs that are being informed by the SLIs
○ A rationale for why these SLOs & SLIs were chosen

6- Publish SLOs

Conclusion

● SLIs inform decisions for prioritizing reliability
projects, doing capacity planning, etc

● SLI graphs help identify service issues
● Users easily determine whether our service is

appropriate for a particular use case based on
SLOs

● Use SLIs for monitoring & don’t have to page
engineers if we are within SLOs

Benefits

Conclusion

Lessons learned

● Choose a metrics collection service
with a powerful query language

● Data durability SLO implementation
for storage systems can be tricky

SLO guidelines

● Never strive for 100% reliability
● Understand the components of the system
● Know how users interact with the system
● Collect SLIs that measure the aspects of the

system that matter to users
● Use SLO results to prioritize work on

reliability engineering projects

Tips for defining & measuring SLOs

Merci

Arnaud Lawson
@arnolawson

