Case Study: Implementing SLOs for a new service

Arnaud Lawson
@arnolawson

Who am i?

e Arnaud Lawson, Sr Site Reliability Engineer @Squarespace
o Twitter: @arnolawson

o Email: alawson@sqguarespace.com

mailto:alawson@squarespace.com

Outline

e What is this service?
e Why SLOs?
e Our approach for defining & measuring SLOs

e Benefits gained & lessons learned

Ceph Object Storage (COS)

What is this service?

e Ceph Object Storage (COS) service
o S3-compatible
o Geo-distributed

Ceph Object Storage (COS)

How do we use it?

e Apps

©)

©)

©)

Internal webapps
Production data pipelines
Performance monitoring systems

Backups

O

Production data stores

APP
SERVER
+

CEPH OBJECT
GATEWAY
RGW

CEPH STORAGE
CLUSTER

(US-EAST)

APP
SERVER

CEPH OBJECT

GATEWAY
RGW

CEPH STORAGE
CLUSTER

(EU-WEST)

Why SLOs?

What are SLOs?

e Service level objectives
o set performance & reliability targets for a service
as seen by its users over a period of time

e Service level indicator
o performance metrics that inform SLOs

Why SLOs?

Example
e APl availability SLO: 99.9% of API

requests will not fail over n weeks

e API availability SLI: the percentage of

API requests that do not fail

Application Uptime Monitor

Why SLOs?

Why are SLOs important for COS?
e (COS usage grew

e Define performance & reliability targets

Measuring & meeting SLOs guarantees
users’ happiness
Better prioritize our work around the

life of this service

SLO implementation process

1- Determine SLI types that best capture our users’ experience
2- Define SLlIs - the things to measure

3- Choose how to measure these SLlIs

4- Collect SLlIs for a few weeks & estimate initial SLOs

5- Infer error budgets from the initial SLOs

6- Publish SLOs

SLO implementation

1- Determine SLI types that best capture users’ experience

a- Understand how users most

b- Understand COS components & choose
often interact with COS

SLI types that best reflect users’

e User actions in server logs: experience
o Create & delete bucket e request-driven RESTful interface
o Upload, download & o availability & latency SLIs
delete object e distributed storage backend

o durability SLI

SLO implementation

2- Define SLls
e Request-driven HTTP server
o Availability SLI: percentage of http requests that do not fail
o Latency SLI: percentage of http requests that successfully complete in less than x
milliseconds

e Storage backend

o Durability SLI: percentage of objects written to COS that can be successfully re-read

without corruption even after a failure

SLO implementation

3- Choose how to measure these SLIs and capture the user experience

e Collect SLIs from COS load balancer logs

e Instrument COS S3 client programs

e Deploy probers which perform common user actions

SLO implementation

4- Collect SLIs & set SLOs

Deployed probers

Record success & latency metrics

per request type and across all http

requests

ceph_object_store_slis.go x ! ceph_object_store_slis.yaml

c collectSlis() {

start := time.Now()
createBucketFunctionVal := createBucket()
duration := time.Since(start)

slicollector.PushCounter(
createBucketSuccess,
"create_bucket_success_job",
fmt.Sprintf("%f", createBucketFunctionVal),
0s.Getenv("ENVIRONMENT"),

)

slicollector.PushHistogram(
createBucketDuration,
duration.Seconds(),
"create_bucket_duration_job",
0s.Getenv("ENVIRONMENT"),

)

I alerts.yami

SLO implementation

+ Overall Object Store Latency

4- Collect SLIs & set SLOs

Object Store Latency (seconds) ~
25

P90 & p99 Latency SLI &

over 4 weeks for all w

2019-01-27 22:00:00

= p90 latency (all request types): 0.197
= p99 latency (all request types): 1.856

HTTP requests issued
by pro bers = p99 SLO target: 2.000

= p90 SLO target: 0.300

0.5

0
1/4 /7 1/10 113 1/16 119 1/22 1/25 1/28

== p90 latency (all request types) Min: 0.188 Max: 0.198 Current: 0.197 == p99 latency (all request types) Min: 1.484 Max: 1.862 Current: 1.852
== p99 SLO target Min:2.000 Max: 2.000 Current: 2.000 == p90 SLO target Min: 0.300 Max: 0.300 Current: 0.300

SLO implementation

Create Bucket Latency (seconds) Upload 400kb Object Latency (seconds) +
4- Collect SLIs & set SLOs

25 20
o i e e - QT
— —— 7 15 o
e Latency per request type s
15 —p90 latency upload object: 0.195
10 — p99 latency upload object: 1.770
10 = p99 SLO target: 2.000
= p90 SLO target: 0.300
05
05 | SR | E— —
. 0 0
We Can d rl I I d Own an d 12 1/5 18 m 114 117 1/20 1/23 1/26 1/29 12 15 18 m 114 117 1/20 1/23 1/26 1/29
— P90 latency create bucket Min: 0.350 Max: 0.445 Current: 0.442 — p90 latency upload object Min: 0.192 Max: 0.221 Current: 0.192
= p99 latency create bucket Min:1.814 Max: 2.649 Current: 2.627 = p99 latency upload object Min: 1.646 Max: 1.830 Current: 1.820
. . f = P90 SLO target Min: 0.300 Max: 0.300 Current:0.300 == p99 SLO target Min: 2.000 Max: 2.000 Current: 2.000 = P99 SLO target Min:2.000 Max:2.000 Current: 2.000 == p90 SLO target Min:0.300 Max:0.300 Current: 0.300
I d e nt I y req u eStS t h at Delete Bucket Latency (seconds) Download 400kb Object Latency (seconds)
25 25

negatively impact our overall | .
latency SLO . Siuenshin sl .

1.0 10
0.5 05
0 0
1/2 1/5 1/8 /M 114 117 1/20 1/23 1/26 1/29 1/2 1/5 1/8 171 114 117 1/20 1/23 1/26 1/29
== p90 latency delete bucket Min: 0.099 Max: 0.099 Current: 0.099 == p90 latency download object Min: 0.092 Max: 0.092 Current: 0.092

= p99 latency delete bucket Min:
= P99 SLO target Mil

.250 Max: 1.809 Current: 1.808 == p99 latency download object Min: 0.199 Max: 0.330 Current: 0.318
300 Max: 0.300 Current: 0.300 == p99 SLO target Min: 2.000 Max:2.000 Current: 2.000 == p90 SLO target Min:

.300 Max: 0.300 Curres

SLO implementation

4- Collect SLIs & set SLOs
e Availability SLO: 99.9% of requests will complete successfully over 4 weeks
e Latency SLOs:
o a) 90% of requests will complete successfully in < 300 ms over 4 weeks
o b)99% of requests will complete successfully in < 2000 ms over 4 weeks
e Durability SLO: 99.999999% of objects written to COS will not be lost or

compromised in the event of a failure over 1 year

SLO implementation

5- Infer error budgets from initial SLOs

e Error budget
o Amount of headroom there is above an SLO
o Degree to which we can afford to not be within SLO and not frustrate users

significantly

SLO implementation

5- Infer error budgets from initial SLOs

99.9% availability over 4 weeks — 0.1% requests could fail over 4 weeks
90% requests will complete successfully in < 300 ms over 4 weeks — ~10%
requests are allowed to complete in >= 300 ms over 4 weeks

e 99% requests will complete successfully in < 2000 ms over 4 weeks — ~1% of
requests are allowed to complete >= 2000 ms or longer over 4 weeks

e 99.999999% durability of objects per year — a loss of ~0.000001% of objects
is allowed per year

SLO implementation

6- Publish SLOs

e Produced documentation that outlines

What COS does

How it is actually used

Types of SLIs being measured

A definition of the actual SLIs - what is being measured

A definition of the SLOs that are being informed by the SLlIs
A rationale for why these SLOs & SLIs were chosen

O O O O O O

Conclusion

Benefits

e SlLlis inform decisions for prioritizing reliability EFH{'ENEY

projects, doing capacity planning, etc ‘
SLI graphs help identify service issues
Users easily determine whether our service is

appropriate for a particular use case based on
SLOs

Use SLlIs for monitoring & don’t have to page

engineers if we are within SLOs SPEED QUALITY CO3TS

Conclusion

Lessons learned

e Choose a metrics collection service
with a powerful query language
Data durability SLO implementation

for storage systems can be tricky

L7 T e -
TRY FAIL SUCCESS

SLO guidelines

Tips for defining & measuring SLOs

Never strive for 100% reliability
Understand the components of the system
Know how users interact with the system
Collect SLIs that measure the aspects of the
system that matter to users

e Use SLO results to prioritize work on
reliability engineering projects

Merci

Arnaud Lawson
@arnolawson

