
Latency SLOs Done Right
SREcon19 Americas

#SREcon@phredmoyer

#SREcon

Fred Moyer

Latency

Is it important?

#SREcon@phredmoyer

Latency
For any of your
services, how many
requests were served
within 500 ms over
the last month?

@phredmoyer #SREcon

500
MS

?

Latency
For any of your
services, how many
requests were served
within 250 ms over
the last month?

@phredmoyer #SREcon

250
MS

?

Latency

How would you answer that
question for your services?

@phredmoyer #SREcon

Latency

How accurate
would your
answer be?

@phredmoyer #SREcon

?
10% 20%

50% 200%

I’m Fred and I like SLOs
- Developer Evangelist @Circonus

- Engineer who talks to people

- Writing code and breaking prod
for 20 years

- @phredmoyer

- Likes C, Go, Perl, PostgreSQL

@phredmoyer 100% UPTIME

Talk Agenda
● SLO Refresher
● A Common Mistake
● Computing SLOs with log data
● Computing SLOs by counting

requests
● Computing SLOs with histograms

@phredmoyer #SREcon

Service Level Objectives

SLI - Service Level Indicator

SLO - Service Level Objectives

SLA - Service Level Agreement

@phredmoyer #SREcon

@phredmoyer

Service Level Objectives

#SREcon

“99th percentile latency
of homepage requests
over the past 5 minutes
< 300ms”

“SLIs drive
SLOs which
inform SLAs”

SLI - Service Level Indicator
Measure of the service that
can be quantified

Excerpted from:
“SLIs, SLOs, SLAs, oh my!”
@sethvargo @lizthegrey

https://youtu.be/tEylFyxbDLE

“99th percentile
homepage SLI will
succeed 99.9% over
trailing year”

“SLIs drive
SLOs which
inform SLAs”

SLO - Service Level
Objective, a target for Service
Level Indicators

Excerpted from:
“SLIs, SLOs, SLAs, oh my!”
@sethvargo @lizthegrey

https://youtu.be/tEylFyxbDLE

“99th percentile
homepage SLI will
succeed 99% over
trailing year”

“SLIs drive
SLOs which
inform SLAs”

SLA - Service Level
Agreement, a legal
agreement

Excerpted from:
“SLIs, SLOs, SLAs, oh my!”
@sethvargo @lizthegrey

https://youtu.be/tEylFyxbDLE

Talk Agenda

● SLO Refresher
● A Common Mistake
● Computing SLOs with log data
● Computing SLOs by counting

requests
● Computing SLOs with histograms

@phredmoyer #SREcon

A Common Mistake

@phredmoyer

Averaging Percentiles

p95(W1 ∪ W2) != (p95(W1)+ p95(W2))/2
Works fine when node workload is symmetric

Hides problems when workloads are asymmetric

#SREcon

A Common Mistake

@phredmoyer #SREcon

A Common Mistake

@phredmoyer

99% of requests
served here

#SREcon

@phredmoyer

Averaging Percentiles

A Common Mistake

#SREcon

@phredmoyer

p95(W1) = 220ms
p95(W2) = 650ms

p95(W1 ∪ W2) = 230ms

(p95(W1)+p95(W2))/2 = 430ms

~200% difference

A Common Mistake

#SREcon

@phredmoyer

Averaging Percentiles

A Common Mistake
p95 actual (230ms)

p95 average (430ms)

ERROR

#SREcon

A Common Mistake

@phredmoyer

Log parser => Metrics (mtail)

What metrics are you storing?

Averages?

p50, p90, p95, p99, p99.9, p99.9?

#SREcon

Talk Agenda
● SLO Refresher
● A Common Mistake
● Computing SLOs with log data
● Computing SLOs by counting

requests
● Computing SLOs with

histograms

@phredmoyer #SREcon

Computing SLOs with log data

@phredmoyer

"%{%d/%b/%Y %T}t.%{msec}t %{%z}t"

#SREcon

~100 bytes per log line

~1GB for 10M requests

@phredmoyer

Logs => HDFS

Logs => ElasticSearch/Splunk

ssh -- `grep ... | awk ... > 550 ... | wc -l`

#SREcon

Computing SLOs with log data

@phredmoyer

1. Extract samples for time window

2. Sort the samples by value

3. Find the sample 5% count from largest

4. That’s your p95

#SREcon

Computing SLOs with log data

@phredmoyer

“95th percentile SLI will succeed 99.9% trailing year”

1. Divide 1 year samples into 1,000 slices

2. For each slice, calculate SLI

3. Was p95 SLI met for 999 slices? Met SLO if so

#SREcon

Computing SLOs with log data

Computing SLOs with log data

@phredmoyer

Pros:

1. Easy to configure logs to
capture latency

2. Easy to roll your own
processing code, some open
source options out there

3. Accurate results

#SREcon

Cons:

1. Expensive (see log analysis
solution pricing)

2. Sampling possible but skews
accuracy

3. Slow
4. Difficult to scale

Talk Agenda
● SLO Refresher
● A Common Mistake
● Computing SLOs with log data
● Computing SLOs by counting

requests
● Computing SLOs with histograms

@phredmoyer #SREcon

@phredmoyer

1. Count # of requests that violate SLI threshold

2. Count total number of requests

3. % success = 100 - (#failed_reqs/#total_reqs)*100

Similar to Prometheus cumulative ‘<=’ histogram

#SREcon

Computing SLOs by counting requests

Computing SLOs by counting requests

@phredmoyer #SREcon

Computing SLOs by counting requests

@phredmoyer

SLO = 90% of reqs < 30ms

bad requests = 2,262
total requests = 60,124

100-(2262/60124)*100=96.2%

SLO was met

#SREcon

@phredmoyer

Pros:
1. Simple to implement

2. Performant

3. Scalable

4. Accurate

Computing SLOs by counting
requests

#SREcon

Pros:

1. Simple to implement
2. Performant
3. Scalable
4. Accurate

Cons:

1. Fixed SLO threshold -
must reconfigure

2. Look back impossible for
other thresholds

Talk Agenda
● SLO Refresher
● A Common Mistake
● Computing SLOs with log data
● Computing SLOs by counting

requests
● Computing SLOs with histograms

@phredmoyer #SREcon

Computing SLOs
with histograms
AKA distributions

Sample counts in
bins/buckets

Gil Tene’s
hdrhistogram.org

Sample value

Samples

Median q(0.5)

Mode
q(0.9)

q(1)Mean

@phredmoyer

Some histogram types:

1. Linear
2. Approximate
3. Fixed bin
4. Cumulative
5. Log Linear

Computing SLOs by counting requests

#SREcon

@phredmoyer

Log Linear Histogram

github.com/circonus-labs/libcircllhist
github.com/circonus-labs/circonusllhist

#SREcon

@phredmoyer

Log Linear Histogram

#SREcon

@phredmoyer

h(A ∪ B) = h(A) ∪ h(B)

A & B must have identical bin boundaries
Can be aggregated both in space and time

Mergeability

#SREcon

@phredmoyer

How many requests are faster than 330ms?

1. Walk the bins lowest to highest until you reach 330ms

2. Sum the counts in those bins

3. Done

Computing SLOs with histograms

#SREcon

@phredmoyer #SREcon

@phredmoyer

For the libcircllhist implementation we have bins at:

... 320, 330, 340, ...

.... And: 10,11,12,13...

.... And: 0.0000010, 0.0000011, 0.0000012,

For every decimal floating point number, with 2 significant
digits, we have a bin (within 10^{+/-128}).

So ... where are the bin boundaries?

#SREcon

@phredmoyer

Pros:

1. Space Efficient (HH: ~ 300bytes / histogram in practice, 10x more
efficient than logs)

2. Full Flexibility:
- Thresholds can be chosen as needed and analyzed
- Statistical methods applicable, IQR, count_below, q(1), etc.

3. Mergability (HH: Aggregate data across nodes)
4. Performance (ns insertions, μs percentile calculations)
5. Bounded error (half the bin size)
6. Several open source libraries available

Computing SLOs with histograms

#SREcon

@phredmoyer

Computing SLOs with histograms

#SREcon

Cons:

1. Math is more complex than other methods

2. Some loss of accuracy (<<5%) in worst cases

@phredmoyer

github.com/circonus-labs/libcircllhist
(autoconf && ./configure && make install)

github.com/circonus-labs/libcircllhist/tree/master/src/python
(pip install circllhist)

Log Linear histograms with Python

#SREcon

@phredmoyer

h = Circllhist() # make a new histogram
h.insert(123) # insert value 123
h.insert(456) # insert value 456
h.insert(789) # insert value 789
print(h.count()) # prints 3
print(h.sum()) # prints 1,368
print(h.quantile(0.5)) # prints 456

#SREcon

Log Linear histograms with Python

@phredmoyer

from matplotlib import pyplot as plt
from circllhist import Circllhist
H = Circllhist()
… # add latency data to H via insert()
H.plot()
plt.axvline(x=H.quantile(0.95), color=red)

#SREcon

Log Linear histograms with Python

@phredmoyer

Averaging Percentiles

#SREcon

Log Linear histograms with Python

@phredmoyer

Conclusions

1. Averaging Percentiles is tempting, but misleading

2. Use counters or histograms to calculate SLOs correctly

3. Histograms give the most flexibility in choosing latency
thresholds, but only a couple libraries implement them
(libcircllhist, hdrhistogram)

4. Full support for (sparsely encoded-, HDR-) histograms in
TSDBs still lacking (except IRONdb).

#SREcon

#SREcon

Fred Moyer

Thank you!

slideshare.net/redhotpenguin

