
Ruslan Nigmatullin

SWE, Dropbox

Service Discovery
Challenges at Scale

Susanin
Dropbox Service Discovery

● Multiple datacenters
● Tens of thousands of hosts per datacenter
● Tens of millions of service discovery clients
● Tens of thousands of state changes per

second

Scale

● Dynamic
● Eventually consistent
● Highly available

Service Discovery

● Operational expertise
● Decent performance
● Read-only mode support

ZooKeeper Backend

Scalability

host X

service-a.1

service-a.2

host Y

client

/service-a/1.pb

register

zk_cli.create(“/service-a/1.pb”, zk.EPHEMERAL)

host X

service-a.1

service-a.2

host Y

client

/service-a/1.pb

/service-a/2.pb

register

zk_cli.create(“/service-a/1.pb”, zk.EPHEMERAL)

zk_cli.create(“/service-a/2.pb”, zk.EPHEMERAL)

host X

service-a.1

service-a.2

host Y

client

/service-a/1.pb

/service-a/2.pb

register

zk_cli.create(“/service-a/1.pb”, zk.EPHEMERAL)

zk_cli.create(“/service-a/2.pb”, zk.EPHEMERAL)

resolve

addresses = [

zk_cli.get(“/service-a/” + child).addr

for child in zk_cli.children(“/service-a/”)

]

host X

service-a.1

service-a.2

host Y

client

Benefits:
● Simple

Common approach

Downsides:
● Load scales up with number of clients
● Thundering herd
● Positive feedback loop
● Susceptible to network outages

Common approach

● Session creation/termination is a write
operation

● Positive feedback loop in case of overload

Scaling number of clients

/service-a/1.pb

/service-a/2.pb

host X

service-a.1

service-a.2

host Y

client

/service-a/1.pb

/service-a/2.pb

host X

service-a.1

service-a.2

host Y

client

daemon daemon

/service-a/1.pb

/service-a/2.pb

host X

service-a.1

service-a.2

host Y

client

daemon daemon

Improvements:
● Reduced number of connections
● Per-host local read cache

Summary

Remaining issues:
● Positive feedback loop
● Write cost depends on number of backend

instances
● Read cost depends on write cost multiplied

by number of clients

Summary

host X

daemon

service-a.1

host Y

daemon

service-a.2

client

/hosts/X.pb

host X

daemon

service-a.1

host Y

daemon

service-a.2

client

● Ephemeral files are owned by the session
● Session does not survive process restart
● Health should be indicated by another file

Scaling number of instances

/hosts/X.pb

/health/X.$uuid.pb

host X

daemon

service-a.1

host Y

daemon

service-a.2

client

/hosts/X.pb

/health/X.$uuid.pb

host X

daemon

service-a.1

host Y

daemon/services/service-a.pb

service-a.2

client

/hosts/X.pb

/health/X.$uuid.pb

host X

daemon

service-a.1

host Y

daemon/services/service-a.pb

service-a.2

client

aggregator

● Separate control and data planes
● Runtime complexity: O(1)

○ Load scales up with number of hosts
○ Load does not scale up with number of

clients or rate of updates
● Writes and reads coalescing

Summary

API

backend

entry = susanin.register(“foo/bar/grpc”, port=5001)

entry.deregister()

client

addresses = susanin.resolve(“foo/bar/grpc”)

for addresses in susanin.resolve_w(“foo/bar/grpc”):

pass

Inspired by DNS

backend

server = Server(“service-a”)

server.serve()

client

client = Client(“service-a”)

Integration with gRPC

● Integration with Susanin
● Mutual TLS
● Circuit breaking
● Metrics and tracing

More in our tech blog
https://blogs.dropbox.com/tech

Courier: Dropbox migration to gRPC

Monitoring
and
Operations

Health is defined on per-datacenter basis
● Write availability
● Read availability
● Propagation latency, p95

Key metrics

Does the system solve user needs?
Service Discovery:
● Endless register and resolve loop
● Measures latency and availability

ZooKeeper:
● Endless loop of ephemeral writes and reads

Blackbox monitoring

Is the system correct?
● Introspection API
● Consistency checker

Whitebox monitoring

Is the system correct?
● Introspection API
● Consistency checker

Found consistency bug in sync protocol in
ZooKeeper 3.5
Found bug in leader election implementation

Whitebox monitoring

● Regular leader restart
● Abnormal leader restart
● Leader network shutdown
● Majority network shutdown

Disaster Recovery Testing

● Regular leader restart
● Abnormal leader restart
● Leader network shutdown
● Majority network shutdown

Found lack of timeouts in ZooKeeper in certain
corner cases

Disaster Recovery Testing

Conclusion

● Coalescing helps eliminate feedback loops
● Runtime complexity matters
● Separation of data and control planes allows

more design choices
● Verifiable consistency can be used as

end-to-end test

Lessons learned

Sophisticated load balancing:
● Cross-datacenter balancing
● Feedback-driven balancing within datacenter

Future work

Thank you

