Service Discovery
Challenges at Scale

-t

<

Ruslan Nigmatullin
SWE, Dropbox

Dropbox Service Discovery

Scale

Multiple datacenters

Tens of thousands of hosts per datacenter
Tens of millions of service discovery clients
Tens of thousands of state changes per
second

Service Discovery

e Dynamic
e Eventually consistent
e Highly available

ZooKeeper Backend

e Operational expertise
e Decent performance
e Read-only mode support

Scalability

host X

service-a.1

service-a.2

hostY

client

host X

service-a.1

service-a.2

register

e - - - e o e e o e O e e S e DS D e B e Ea B e B

zk_cli.create("“/service-a/1.pb”, zk.EPHEMERAL)

hostY

client

host X

service-a.1

service-a.2

register

|
|
: — [service-a/l1.pb
|
|

> [service-a/2.pb

e - - - e o e e o e O e e S e DS D e B e Ea B e B

zk_cli.create("“/service-a/1.pb”, zk.EPHEMERAL)
zk_cli.create("“/service-a/2.pb”, zk.EPHEMERAL)

hostY

client

host X

service-a.2

> [service-a/2.pb

|
|
service-a.1 | —> /service-a/l1.pb
I
i

e - - - e o e e o e O e e S e DS D e B e Ea B e B

register
zk_cli.create("“/service-a/1.pb”, zk.EPHEMERAL)
zk_cli.create("“/service-a/2.pb", zk.EPHEMERAL)
resolve
addresses = |

zk_cli.get(“/service-a/” + child) .addr

for child in zk_cli.children(“/service-a/")

hostY

client

Common approach

Benefits:
e Simple

Common approach

Downsides:

Load scales up with number of clients
Thundering herd

Positive feedback loop

Susceptible to network outages

Scaling number of clients

e Session creation/termination is a write
operation
e Positive feedback loop in case of overload

host X

service-a.1

service-a.2

—> [service-a/l.pb

> [service-a/2.pb

hostY

client

host X

daemon

service-a.1

service-a.2

—> [service-a/l.pb

> [service-a/2.pb

hostY

daemon

client

host X

daemon

service-a.1

service-a.2

/service-a/l.pb
/service-a/2.pb

host Y

daemon

client

Summary

Improvements:

e Reduced number of connections
e Per-host local read cache

Summary

Remaining issues:

e Positive feedback loop

e Write cost depends on number of backend
Instances

e Read cost depends on write cost multiplied
by number of clients

host X

daemon

service-a.l

service-a.2

hostY

daemon

client

host X

daemon

service-a.l

service-a.2

-

—» /hosts/X.pb

hostY

daemon

client

Scaling number of instances

e Ephemeral files are owned by the session
e Session does not survive process restart
e Health should be indicated by another file

host X

daemon

service-a.l

service-a.2

—:—> /hosts/X.pb
"NA Jhealth/X. $uuid.pb

-

hostY

daemon

client

host X

daemon

service-a.l

service-a.2

—:—> /hosts/X.pb [services/service-a.pb ——

"NA Jhealth/X. $uuid.pb

-

hostY

daemon

client

aggregator

host X

daemon

service-a.l

service-a.2

_—» /hosts/X.pb

/services/service-a.pb ——

"NA Jhealth/X. $uuid.pb

-

hostY

daemon

client

Summary

e Separate control and data planes
e Runtime complexity: O(1)
o Load scales up with number of hosts
o Load does not scale up with number of
clients or rate of updates
e Writes and reads coalescing

Inspired by DNS

backend
entry = susanin.register(“foo/bar/grpc”, port=5001)

entry.deregister()

client
addresses = susanin.resolve(“foo/bar/grpc”)
for addresses in susanin.resolve_w(“foo/bar/grpc”):

pass

Integration with gRPC

backend
server = Server(“service-a”)

server.serve()

client

client = Client(“service-a”)

Courier: Dropbox migration to gRPC

Integration with Susanin
Mutual TLS

Circuit breaking

Metrics and tracing

More In our tech blog
https://blogs.dropbox.com/tech

Monitoring
and
Operations

Key metrics

Health is defined on per-datacenter basis

e Write availability
e Read availabllity
e Propagation latency, p95

Blackbox monitoring

Does the system solve user needs?
Service Discovery:

e Endless register and resolve loop
e Measures latency and availabllity

Z0oKeeper:
e Endless loop of ephemeral writes and reads

Whitebox monitoring

Is the system correct?

e Introspection API
e Consistency checker

Whitebox monitoring

Is the system correct?

e Introspection API
e Consistency checker

Found consistency bug in sync protocol in
Z00oKeeper 3.5

Found bug In leader election implementation

Disaster Recovery Testing

Regular leader restart
Abnormal leader restart
Leader network shutdown
Majority network shutdown

Disaster Recovery Testing

Regular leader restart
Abnormal leader restart
Leader network shutdown
Majority network shutdown

Found lack of timeouts in ZooKeeper in certain
corner cases

Conclusion

Lessons learned

e Coalescing helps eliminate feedback loops

e Runtime complexity matters

e Separation of data and control planes allows
more design choices

e Verifiable consistency can be used as
end-to-end test

Future work

Sophisticated load balancing:

e Cross-datacenter balancing
e Feedback-driven balancing within datacenter

Thank you

