Distributed Consensus Algorithms

for extreme reliability

Laura Nolan (Google)



© igorzoid on Flickr CC BY2.0



CONSENSUS

The road to true and lasting bliss

Image: Eirik Newth, CC BY 2.0







Server A
(master)

y

Server B
(master)




‘‘‘‘‘‘‘‘

Image: Allan Alfio, CCBY20













-

Nammit Jim!

'm a Sysadmin not a Babysitte:

Image: Drew from Zhodague, CC BY 2.0




The distributed consensus problem deals with
reaching agreement among a group of
processes connected by an unreliable

communications network.



Distributed Consensus: a brief history

1985: FLP impossibility paper

Late 1980s: Leslie Lamport invents Paxos on a dare
1990s: everyone™ ignores Paxos (confused)

2001: 1985 FLP impossibility paper wins Dijkstra prize
Distributed systems become pretty important

2006: Chubby paper published

2009: Zookeeper released

2010s: explosion of research; etcd and doozer released



Phase 1: Proposer sends Prepare - Phase 2: Proposer sends Accept

message: with a new View number : message with view and transaction
and a transaction number . numbers as well as the value proposed
Proposer i
Acceplors v . W
Acceptors respond with a Promise . Acceptors respond by sending Accepted
message: this means that the new view . messages to all other members of the
is accepted and proposals will not be . group (unless they have Promised a higher
accepted with a lower view number or transaction number in the interim)

transaction number



NORWEGIAN
SEA

~ Faroe-lceland
oM.

Re, "\]aVll\ o R}d

Porcupine  iscay
Plain - Plain.°

feat Meteor
ablemount

©

. — Longitude 7906 W e :
Image: Daily Sublime, CC BY 2.0 e 66:51 N




Other consensus algorithms

Viewstamped Replication

RAFT

ZAB

Mencius

Many variants of Paxos (Fast Paxos,
Egalitarian Paxos etc)



Executes replicated state
machine protocol with
other processes in group
to maintain a consistent
view of the sequence of

operations
- Replicated state machine:
executes state modifying operations

according to the global ordering

Executes consensus
protocol with other

processes in group Consensus algodlhm:
- agrees on sequencing
of operations

' !

Durable log used by Durable log and
consensus algorithm checkpoints used by
RSM







Tasks are added to the queue
(by one or more processes)

A RSM with several replicas implementing a
reliable distributed queue

|

_I_l

Worker processes: lease
and remove tasks from the
queue

Worker processes: lease
and remove tasks from the
queue

Worker processes: lease
and remove tasks from the




Barrier: processes wait
until all processes have
entered the barrier

Worker processes
» >
~
> >
>
» >
End of Map phase End of Reduce

phase



Image: lamantin at flickr, CC L .



Distinguished
leader process

Nearby
processes

Distant
process

Shorter perceived
latencies

Larger perceived latencies



Two replicas in a
single datacenter:
leaves only a
quorum with no
redundancy if failure
occurs here

. .
. .
. .
. .
. .
.
° -‘-0
. .
. .
. . . .
. ° s .
. » .
. .
. .
.
. .
R R I I R
-
.
. . .
’ . -
. . . v
. . . .
* . - .
. .
.
T . e
. ’ . -
- ® . . . .
. . . .
. . .. " . .
.
. ¢ . 0'. . .
.
® . ¢ LY . .
. . ..
. .
- ‘- . . .
. . . * .
. .
. . .
. .
. . . .
. .
. . —
. . .
.

.
L L AL AL AL N
PRI
PP
et




A highly-sharded consensus system
running with replicas for each
consensus group in three datacenters

Replica

Sharded consensus clusters

Leader

Sharded consensus clusters

Outgoing data from the
datacenter with the
leader processes is
much greater,

Replica

Sharded consensus clusters




A highly-sharded consensus system
running with replicas for each
consensus group in three datacenter:
one fails

Leader

Sharded consensus clusters

A I

Leaders fail over en-masse to another,
untried datacenter: insufficient
bandwidth is available there for their
outgoing traffic,

Replica

Sharded consensus clusters




SRsseen




SRsssaen

Sassens

.
b
4

2
4 4
e

.
LLJ




Dt




Image: uwdigitalcollections at flickr, CC BY 2.0



>

Process 1 sends Prepare message
with a new View number and a
transaction number. Process 2
responds with a Promise message.

Process 1 sends Accept for its
proposal but Process 2 and 3
cannot accept its proposal because
Process 3 has Proposed in the
intenim and Process 2 has
promised.

—o-o-o-o->

Process 1 makes another attempt,
with a higher transaction and view
number. Process 2 promises, which
means that Process 3's proposal
can not be accepted. The cycle can
repeat indefinitely.

Processes in
the consensus

group

Process 3 sends a conflicting Prepare
message, to which Process 2 responds
with a Promise message. Process 1
does not receive the message (or it is
delayed).



Monitoring

Number of instances up

Health/status - healthy, lagging/catching up, unhealthy
Mastership changes

Transaction ID - is it increasing

Plus usual things such as errors, request latency
distributions



Further Reading

How to build a highly-available system using Distributed Consensus, Butler
Lampson [http://goo.gl/pPp1TZ]

The Consensus Protocols series by Henry Robinson:
e Two-phase commit [hitp://go0.gl/xobNF6]
e Three-phase commit [http://goo.gl/wMI4ig]
e Paxos [http://goo.gl/jPpwHT]

Paxos Made Live, Tushar Chandra et al [http://goo.gl/Vaps3V]



http://research.microsoft.com/en-us/um/people/blampson/58-Consensus/Acrobat.pdf
http://goo.gl/pPp1Tz
http://goo.gl/xobNF6
http://goo.gl/xobNF6
http://goo.gl/xobNF6
http://goo.gl/wMl4ig
http://goo.gl/wMl4ig
http://goo.gl/wMl4ig
http://goo.gl/jPpwHf
http://goo.gl/jPpwHf
http://goo.gl/jPpwHf
http://goo.gl/Vaps3V
http://goo.gl/Vaps3V
http://goo.gl/Vaps3V

