Testing for DR Failover Testing

Zehua Liu
Zendesk Singapore

SRECon Asia / Australia 2017
23 May 2017

e Zehua Liu
o With Zendesk Singapore since 2015
o Worked at startups at various stages

(Atlassian, mig33, Circos Brand Karma)
o Leads the tooling team at Zendesk SG

* chat

Disaster Recovery
Failover Testing

Failing over from

the production data centre
to

the DR data centre

* chat

e A type of DIRT (Disaster Recovery Testing)
e Part of the BCDR project
o Business Continuity and Disaster Recovery
e Our focus here
o Testing lost of the data centre
o Testing only customer facing features
m Internal tools are excluded

* chat

Compliance - SOC2 Testing twice a year
Customer Agreements: Advanced Security Add-On
o Recovery Time Objective - 8 hours

o Recovery Point Objective - 0 hours

Test and verify the procedures and documentation
|dentify gaps

Improve the overall DR process

Training for Responding Parties

* chat

e Two DR failover testing exercises
o Four DR failover tests
e Encountered various issues
o Infrastructure, e.g., database, network
o Configuration
o Application, couldn’t handle failure in infrastructure
e Examples of issues
o Double billing customers
o i0S app did not work
o DB replication back to original production was too slow

* chat

Can we Increase
our confidence In
DR Failover Testing?

* chat

Test the DR environment
before failing over

e |deal: automated testing while DR is still in standby mode
o Run the exact same tests that we run for production
o Automatically triggered after a change to DR
e |[ssues:
o Most tests inevitably write data about the test accounts
to the DBs in DR
o Run just the read only tests?
e The big question:
o Should we allow direct write into data stores in DR??

* chat

Should we allow direct write
into data stores in DR?

e The big question:
o Should we allow direct write into data stores in DR??

e A trade-off between risk of production failure and risk of
failed DR failover
o writing to DR DB => risk of production failure
o test coverage => risk of failed DR failover

* chat

Zendesk Chat Technical Architecture

Static eee | Dashboard Widget Mobile Apps Mobile SDK ooe
Assets | | | [

Data
Centre

|
!
!
!
!
!
!
|

DR Failover

Static
Assets

Dashboard

Mobile Apps

Mobile SDK

o= mm mm mm omm e o o - .

I Production

Zendesk Chat Technical Architecture

Services

- o o e e e e e e e -
- s s e e - e e e e e e

MySQL

o master = slave replication (DR DB as read only slave)

o Least confident, might cause data corruption, stop
replication, etc

Riak

o Commercial license with multi-dc sync support

ElasticSearch

o Could be rebuilt from source of truth

Redis: ephemeral data

Memcached: cold start?

* chat

e Good news
o The applications mostly partition data by accounts!
o We could use a dedicated set of test accounts that
would never get used on prod
m In theory, these test data is isolated from other
customer account data in data stores
m Good to replicate back and forth between DR and
production MySQL DBs

* chat

Alternatives

e Avoid writing to the real DR DBs?
e Allow writing to only less risky DBs?
e Allow writing to all DBs

4* chat

Alternatives - Avoid writing to the real DR DBs?

e Setup a different set of test data store servers
o Configure the apps to use them only during test
o Switch back before the actual failover
o Does not test the physical connection

I Core
I Services

l
l
!
\

________________ W Chot T T T T T T T T TS

e Setup the different set of DBs on the same physical
servers as the real ones
o Naming tricks:
m test account db to mirror account database
m test chat history for ES indices, etc
o Covers the physical connection

* chat

Alternatives - Avoid writing to the real DR DBs?

e Setup the different set of DBs on the same physical
servers as the real ones

Core
Services

Test DBs

m

I
!
!
!
!
!
!
!
|

~

Alternatives - Allow partial writes

e Use the real ones for all DBs, except MySQL
o Use a test DB for MySQL
m MySQL is the most risky one to allow writes

¢ Setup the test DB as a writable slave of the DR DB?

- SN SN EEE EEE EEE EEE EEE BN SN BEE BEE BEE BEE BEE SN BEE BEE BEE BEE BEE BN BEE BEE BEE BEE BEE BEm BEm BEm EEm Emm o my,

|

|

|

| DR DBs

‘. R

________________ e e

I Core
I Services

Alternatives - Writing to real DR DBs!

e Use all real ones!
o Data in DR DB will have to be eventually replicated
back to production DB
o Risks of test data in DR causing conflicts when
replicated back to production DB

NN EEE BN S B S B B B B S B S B B S B S B B B B S B B S B S B B e B B B Ea oy,

I Core
I Services

|
\ V4

---------------- T chat— - - T T T T T T T

g - s s
-_—ee e - e e -

e The big question:
o Should we allow direct write into data stores in DR??

e A trade-off between risk of production failure and risk of
failed DR failover
o writing to DR DB => risk of production failure
m Yes, let's doit!

o test strategy/coverage => risk of failed DR failover
m ?

* chat

More issues:
o Some tables use auto-increment column as primary
key
o Insertion into those tables in DR = replication conflicts
Solutions:
o Play with auto_increment_increment and offset
o Avoid insertion into those tables
m |dentify those tables and avoid running tests that
create new data in them
m Luckily there are only a few non-critical ones

* chat

More issues:

o Someone might run the excluded tests and create new
rows in the auto-increment tables in DRI

Solution:

o Use a different user with restricted permission

o Switch back to a full access user before failover

* chat

DR apps use real DR DBs

o No test DBs in DR

o Same configuration as production

MySQL master-master replication between prod and DR
Avoid doing insertion in tables with auto-increment pkey
o Exclude integration tests that do such insertions

o Setup a MySQL user with restricted access

We could run end-to-end browser tests against DR while
it's in standby mode!

* chat

e The trade-off between risk of production failure and risk
of failed DR failover
o writing to DR DB => low risk of production failure
m Replication might fail, but we would know it early
o test strategy/coverage => low risk of failed DR failover
m Application on DR might fail in the excluded test
cases, but not critical

* chat

e Does not cover all aspects of DR failover readiness
o Only functional tests
o A bit of network link testing via MySQL replication
e Adds to the complexity of DR failover
o More steps to be performed during the failover

* chat

It is possible to test the DR env in standby mode
It is a trade-off between risk of production failure and risk

of failed DR failover
Avoid using auto-increment keys if multi-DC support is

needed

* chat

Questions?

