
Testing for DR Failover Testing
Zehua Liu

Zendesk Singapore

SRECon Asia / Australia 2017

23 May 2017



● Zehua Liu
○ With Zendesk Singapore since 2015
○ Worked at startups at various stages 

(Atlassian, mig33, Circos Brand Karma)
○ Leads the tooling team at Zendesk SG

About Me



Disaster Recovery 
Failover Testing

The Parent Problem

Failing over from
the production data centre

to
the DR data centre



● A type of DiRT (Disaster Recovery Testing)
● Part of the BCDR project

○ Business Continuity and Disaster Recovery
● Our focus here

○ Testing lost of the data centre
○ Testing only customer facing features

■ Internal tools are excluded

The Parent Problem



● Compliance - SOC2 Testing twice a year
● Customer Agreements: Advanced Security Add-On

○ Recovery Time Objective - 8 hours
○ Recovery Point Objective - 0 hours

● Test and verify the procedures and documentation
● Identify gaps
● Improve the overall DR process
● Training for Responding Parties

Why conduct DR failover testing



● Two DR failover testing exercises
○ Four DR failover tests

● Encountered various issues
○ Infrastructure, e.g., database, network
○ Configuration
○ Application, couldn’t handle failure in infrastructure

● Examples of issues
○ Double billing customers
○ iOS app did not work
○ DB replication back to original production was too slow

Past attempts of DR failover testing



Can we increase
our confidence in 

DR Failover Testing?

The Problem



Test the DR environment 
before failing over

The Answer



Testing the DR environment

● Ideal: automated testing while DR is still in standby mode
○ Run the exact same tests that we run for production
○ Automatically triggered after a change to DR

● Issues:
○ Most tests inevitably write data about the test accounts 

to the DBs in DR
○ Run just the read only tests?

● The big question:
○ Should we allow direct write into data stores in DR??



Should we allow direct write 
into data stores in DR?

The Big Question



Testing the DR environment

● The big question:
○ Should we allow direct write into data stores in DR??

● A trade-off between risk of production failure and risk of 
failed DR failover
○ writing to DR DB => risk of production failure
○ test coverage => risk of failed DR failover



Zendesk Chat Technical Architecture

WidgetDashboard Mobile Apps

Mediator (US)

Data API 
Service

Live Chat 
Service

Data 
Centre

Mediator (DE) Mediator (SG)

Mobile SDK

ElasticSearch Memcached MySQL RedisRiak Cluster

Account 
Service

......

Mediators

Static 
Assets

Web Servers

Cloudflare

Consul

...



DR Failover

WidgetDashboard Mobile Apps

Mediator (US)

APILC
Production 
Data Centre

Mediator (DE) Mediator (SG)

Mobile SDK

ES MC MyS
QL RedisRiak

Acct

......

Mediators

Static 
Assets

Web

...

APILCDR Data Centre

ES MC MyS
QL RedisRiak

AcctWeb

Cloudflare



Zendesk Chat Technical Architecture

Data API 
Service

Live Chat 
Service

Core 
Services

ElasticSearch Memcached MySQL RedisRiak Cluster

Account 
ServiceWeb Servers

Consul



Data Stores

● MySQL
○ master ⇒ slave replication (DR DB as read only slave)
○ Least confident, might cause data corruption, stop 

replication, etc
● Riak

○ Commercial license with multi-dc sync support
● ElasticSearch

○ Could be rebuilt from source of truth
● Redis: ephemeral data
● Memcached: cold start?



The Approach

● Good news
○ The applications mostly partition data by accounts! 
○ We could use a dedicated set of test accounts that 

would never get used on prod
■ In theory, these test data is isolated from other 

customer account data in data stores
■ Good to replicate back and forth between DR and 

production MySQL DBs



● Avoid writing to the real DR DBs?
● Allow writing to only less risky DBs?
● Allow writing to all DBs

Alternatives



● Setup a different set of test data store servers
○ Configure the apps to use them only during test
○ Switch back before the actual failover
○ Does not test the physical connection

ElasticSearch Memcached MySQL RedisRiak 
Cluster

Alternatives - Avoid writing to the real DR DBs?

Data API 
Service

Live Chat 
Service

Core 
Services

ElasticSearch Memcached MySQL RedisRiak 
Cluster

Account 
Service

Consul

Test DBs

DR DBs



● Setup the different set of DBs on the same physical 
servers as the real ones
○ Naming tricks:

■ test_account_db to mirror account database
■ test_chat_history for ES indices, etc

○ Covers the physical connection

Alternatives - Avoid writing to the real DR DBs?



● Setup the different set of DBs on the same physical 
servers as the real ones

Alternatives - Avoid writing to the real DR DBs?

ElasticSearch Memcached MySQL RedisRiak 
Cluster

Data API 
Service

Live Chat 
Service

Core 
Services

ElasticSearch Memcached MySQL RedisRiak 
Cluster

Account 
Service

Consul

Test DBs

DR DBs



● Use the real ones for all DBs, except MySQL
○ Use a test DB for MySQL

■ MySQL is the most risky one to allow writes
○ Setup the test DB as a writable slave of the DR DB?

Alternatives - Allow partial writes

MySQL

Data API 
Service

Live Chat 
Service

Core 
Services

ElasticSearch Memcached MySQL RedisRiak 
Cluster

Account 
Service

Consul

Test DB

DR DBs



● Use all real ones!
○ Data in DR DB will have to be eventually replicated 

back to production DB
○ Risks of test data in DR causing conflicts when 

replicated back to production DB

Alternatives - Writing to real DR DBs!

Data API 
Service

Live Chat 
Service

Core 
Services

ElasticSearch Memcached MySQL RedisRiak 
Cluster

Account 
Service

ConsulDR DBs



Testing the DR environment

● The big question:
○ Should we allow direct write into data stores in DR??

● A trade-off between risk of production failure and risk of 
failed DR failover
○ writing to DR DB => risk of production failure

■ Yes, let’s do it!
○ test strategy/coverage => risk of failed DR failover

■ ?



The Final Proposal

● More issues:
○ Some tables use auto-increment column as primary 

key
○ Insertion into those tables in DR ⇒ replication conflicts

● Solutions:
○ Play with auto_increment_increment and offset
○ Avoid insertion into those tables

■ Identify those tables and avoid running tests that 
create new data in them

■ Luckily there are only a few non-critical ones



The Final Proposal

● More issues:
○ Someone might run the excluded tests and create new 

rows in the auto-increment tables in DR!
● Solution:

○ Use a different user with restricted permission
○ Switch back to a full access user before failover



The Final Proposal

● DR apps use real DR DBs
○ No test DBs in DR
○ Same configuration as production

● MySQL master-master replication between prod and DR
● Avoid doing insertion in tables with auto-increment pkey

○ Exclude integration tests that do such insertions
○ Setup a MySQL user with restricted access

● We could run end-to-end browser tests against DR while 
it’s in standby mode!



The Final Proposal

● The trade-off between risk of production failure and risk 
of failed DR failover
○ writing to DR DB => low risk of production failure

■ Replication might fail, but we would know it early
○ test strategy/coverage => low risk of failed DR failover

■ Application on DR might fail in the excluded test 
cases, but not critical



The Final Proposal - Caveats

● Does not cover all aspects of DR failover readiness
○ Only functional tests
○ A bit of network link testing via MySQL replication

● Adds to the complexity of DR failover
○ More steps to be performed during the failover



Conclusion

● It is possible to test the DR env in standby mode
● It is a trade-off between risk of production failure and risk 

of failed DR failover
● Avoid using auto-increment keys if multi-DC support is 

needed



Questions?


