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e Zehua Liu
o With Zendesk Singapore since 2015
o Worked at startups at various stages

(Atlassian, mig33, Circos Brand Karma)
o Leads the tooling team at Zendesk SG
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Disaster Recovery
Failover Testing

Failing over from

the production data centre
to

the DR data centre

* chat



e A type of DIRT (Disaster Recovery Testing)
e Part of the BCDR project
o Business Continuity and Disaster Recovery
e Our focus here
o Testing lost of the data centre
o Testing only customer facing features
m Internal tools are excluded
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Compliance - SOC2 Testing twice a year
Customer Agreements: Advanced Security Add-On
o Recovery Time Objective - 8 hours

o Recovery Point Objective - 0 hours

Test and verify the procedures and documentation
|dentify gaps

Improve the overall DR process

Training for Responding Parties
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e Two DR failover testing exercises
o Four DR failover tests
e Encountered various issues
o Infrastructure, e.g., database, network
o Configuration
o Application, couldn’t handle failure in infrastructure
e Examples of issues
o Double billing customers
o i0S app did not work
o DB replication back to original production was too slow
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Can we Increase
our confidence In
DR Failover Testing?
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Test the DR environment
before failing over



e |deal: automated testing while DR is still in standby mode
o Run the exact same tests that we run for production
o Automatically triggered after a change to DR
e |[ssues:
o Most tests inevitably write data about the test accounts
to the DBs in DR
o Run just the read only tests?
e The big question:
o Should we allow direct write into data stores in DR??
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Should we allow direct write
into data stores in DR?



e The big question:
o Should we allow direct write into data stores in DR??

e A trade-off between risk of production failure and risk of
failed DR failover
o writing to DR DB => risk of production failure
o test coverage => risk of failed DR failover
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Zendesk Chat Technical Architecture
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MySQL

o master = slave replication (DR DB as read only slave)

o Least confident, might cause data corruption, stop
replication, etc

Riak

o Commercial license with multi-dc sync support

ElasticSearch

o Could be rebuilt from source of truth

Redis: ephemeral data

Memcached: cold start?
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e Good news
o The applications mostly partition data by accounts!
o We could use a dedicated set of test accounts that
would never get used on prod
m In theory, these test data is isolated from other
customer account data in data stores
m Good to replicate back and forth between DR and
production MySQL DBs
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Alternatives

e Avoid writing to the real DR DBs?
e Allow writing to only less risky DBs?
e Allow writing to all DBs
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Alternatives - Avoid writing to the real DR DBs?

e Setup a different set of test data store servers
o Configure the apps to use them only during test
o Switch back before the actual failover
o Does not test the physical connection
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e Setup the different set of DBs on the same physical
servers as the real ones
o Naming tricks:
m test account db to mirror account database
m test chat history for ES indices, etc
o Covers the physical connection
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Alternatives - Avoid writing to the real DR DBs?

e Setup the different set of DBs on the same physical
servers as the real ones
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Alternatives - Allow partial writes

e Use the real ones for all DBs, except MySQL
o Use a test DB for MySQL
m MySQL is the most risky one to allow writes

¢ Setup the test DB as a writable slave of the DR DB?
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Alternatives - Writing to real DR DBs!

e Use all real ones!
o Data in DR DB will have to be eventually replicated
back to production DB
o Risks of test data in DR causing conflicts when
replicated back to production DB
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e The big question:
o Should we allow direct write into data stores in DR??

e A trade-off between risk of production failure and risk of
failed DR failover
o writing to DR DB => risk of production failure
m Yes, let's doit!

o test strategy/coverage => risk of failed DR failover
m ?
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More issues:
o Some tables use auto-increment column as primary
key
o Insertion into those tables in DR = replication conflicts
Solutions:
o Play with auto_increment_increment and offset
o Avoid insertion into those tables
m |dentify those tables and avoid running tests that
create new data in them
m Luckily there are only a few non-critical ones
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More issues:

o Someone might run the excluded tests and create new
rows in the auto-increment tables in DRI

Solution:

o Use a different user with restricted permission

o Switch back to a full access user before failover
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DR apps use real DR DBs

o No test DBs in DR

o Same configuration as production

MySQL master-master replication between prod and DR
Avoid doing insertion in tables with auto-increment pkey
o Exclude integration tests that do such insertions

o Setup a MySQL user with restricted access

We could run end-to-end browser tests against DR while
it's in standby mode!
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e The trade-off between risk of production failure and risk
of failed DR failover
o writing to DR DB => low risk of production failure
m Replication might fail, but we would know it early
o test strategy/coverage => low risk of failed DR failover
m Application on DR might fail in the excluded test
cases, but not critical
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e Does not cover all aspects of DR failover readiness
o Only functional tests
o A bit of network link testing via MySQL replication
e Adds to the complexity of DR failover
o More steps to be performed during the failover
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It is possible to test the DR env in standby mode
It is a trade-off between risk of production failure and risk

of failed DR failover
Avoid using auto-increment keys if multi-DC support is

needed
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Questions?



