
Golang’s Garbage

Andrey Sibiryov, Uber

Claim of Credibility

In Uber, we run over 1700 microservices in production, written in different
languages. At this scale and fanout, performance of each one of them matters.

• The team I work with runs a few CPU and memory intensive Go services
processing a ton of requests from all around the infrastructure.

• Tens of millions datapoints ingested per second.

• Seventy five years of time series data queried per second.

2

«Go is building a garbage collector not only for 2015 but for 2025
and beyond <…> Go 1.5’s GC ushers in a future where stop-the-
world pauses are no longer a barrier to moving to a safe and
secure language. It is a future where applications scale effortlessly
along with hardware and as hardware becomes more powerful the
GC will not be an impediment to better, more scalable software».

3

GC scales effortlessly
4

GC scales even more effortlessly
5

Modern GC
• Generational – memory is divided into regions based on certain

tenuring policies: no need to scan everything every time.

• Compacting – during each GC phase memory is defragmented:
data locality improves, allocations become free.

• Exact – GC knows exactly what each byte of memory is: a pointer or
a typed value. GC can move things around and update references.

• Goal-based – GC aims to keep a certain metric in user-specified
bounds, e.g. pause time, heap size, etc.

6

Golang GC
• Generational – memory is divided into regions based on certain

tenuring policies: no need to scan everything every time.

• Compacting – during each GC phase memory is defragmented:
data locality improves, allocations become free.

• Exact – GC knows exactly what each byte of memory is: a pointer or
a typed value. GC can move things around and update references.

• Goal-based – GC aims to keep a certain metric in user-specified
bounds, e.g. pause time, heap size, etc.

7

8

WTF

• Reducing stop-the-world pause times with each Go release has a
cost which Google’s marketing people don’t like to talk about.

• Background GC CPU usage is linear with the number of pointers
on the heap.

• On a ~96GB heap populated with simple structures and interfaces,
Go spends up to 75% of total program runtime inside GC.

9

GODEBUG=gctrace=1
STF BGMSF MTF ASST BG IDLE START END LIVE CPUs

1.4+17949+5.8 ms clock, 17+60052/53289/3364+69 ms cpu, 38334->39982->31776 MB, <...> 12 P

2.5+21556+3.7 ms clock, 30+5929/64643/53115+45 ms cpu, 38339->40397->32694 MB, <...> 12 P

1.8+17143+7.5 ms clock, 22+58984/50885/5663+90 ms cpu, 39817->41613->32402 MB, <...> 12 P

4.7+21064+4.3 ms clock, 57+28487/62624/21636+52 ms cpu, 38882->41093->33218 MB, <...> 12 P

1.3+18280+4.4 ms clock, 16+8069/54668/49076+53 ms cpu, 39878->41529->32903 MB, <...> 12 P

1.3+15909+3.5 ms clock, 9.2+6840/47614/53832+24 ms cpu, 40200->41653->32746 MB, <...> 12 P

1.4+16361+4.2 ms clock, 17+36463/48581/34116+50 ms cpu, 40462->41596->32379 MB, <...> 12 P

27+16683+3.9 ms clock, 223+1433/49757/63019+31 ms cpu, 39572->40527->32266 MB, <...> 12 P

10

Heap Bitmap
• Heap bitmap is a data structure that Go runtime uses to keep track

of the memory's underlying type information. It's pre-generated by
the compiler.

• For each word in memory, it keeps two bits of metadata — in most
cases, whether it's a pointer or not and a debug bit.

• GC uses this bitmap to populate its working set for each cycle by
recursively adding all pointers starting from those found in root
objects — globals and stacks.

11

12

More Pointers = Slower Code

13

Easy Tricks
• Channels of pointerless structures or plain values are allocated as a

single block and marked as non-scannable.

• Maps where both keys and values are pointerless structures are
marked as non-scannable.

• Pointers can be stored as uintptrs and casted to actual types via
unsafe.Pointer to also be marked as non-scannable.

• Closures force all stack variables of the enclosing function to
escape to the heap. Don’t use closures – use functors.

14

Pooling
sync.Pool ObjectPool

unbounded bounded

separate per-P pools one shared pool

purged on GC retained on GC

lazily populated eagerly populated

15

Uneasy Tricks
How can we dramatically reduce the number of pointers on the heap?

16

17

Native Heap

• Step 1: Allocate a huge block of memory via mmap(2).

• Step 2: Slice it into chunks of the specified type’s size and a little bit
extra for the header.

• Step 3: ???

• Step 4: Profit!

18

19

Native Heap
• The native heap is invisible to the Go runtime, so GC ignores it

even if it sees a pointer into it. This also means that free(3) is back.

• For the same reason, native heap pointers cannot keep objects
on the GC heap alive (think weak pointers).

• It means all pointers in objects on the native heap must point to
the native heap, unless there’s another root somewhere.

• Since the internal structure of builtin types is not available to the user
code, maps, channels and other builtins won’t work.

20

21

Native Slices
// Make a heap of 1024 16-byte blocks.
h := heap.New(1024,
 reflect.ArrayOf(16, reflect.TypeOf((byte)(0))

// Allocate a ninja slice.
v := *(*[]byte)(unsafe.Pointer(&reflect.SliceHeader{
 Data: reflect.ValueOf(h.get()).Pointer(),
 Len: 0,
 Cap: 16,
}))

22

Native Slices
// Make a heap of 1024 16-byte blocks.
h := heap.New(1024,
 reflect.ArrayOf(16, reflect.TypeOf((byte)(0))

// Allocate a ninja slice.
v := *(*[]byte)(unsafe.Pointer(&reflect.SliceHeader{
 Data: reflect.ValueOf(h.get()).Pointer(),
 Len: 0,
 Cap: 16,
}))

23

Native Slices

 type SliceHeader struct {
 Data uintptr
 Len int
 Cap int
 }

24

Native Slices
// Make a heap of 1024 16-byte blocks.
h := heap.New(1024,
 reflect.ArrayOf(16, reflect.TypeOf((byte)(0))

// Allocate a ninja slice.
v := *(*[]byte)(unsafe.Pointer(&reflect.SliceHeader{
 Data: reflect.ValueOf(h.get()).Pointer(),
 Len: 0,
 Cap: 16,
}))

25

3-4x
improvements in

end-to-end
latency and query

response times
26

What’s Next?
• Figuring out more ways to have less objects or move more objects

to the Native Heap.

• ROC – Request Oriented Collector. It’s a generational CMS with a
special tenuring policy based on request-response hypothesis. It’s
nineties all over again!

• Porting performance-critical code paths to C++ or Rust and calling
into it via CGo or local IPC.

27

Andrey Sibiryov, SRE, Uber New York

kobolog@uber.com @kobolog

Thank you!

mailto:kobolog@uber.com

