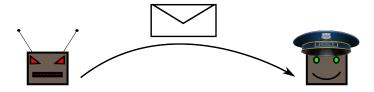
B@BEL: Leveraging Email Delivery for Spam Mitigation

Gianluca Stringhini, Manuel Egele, Apostolis Zarras, Thorsten Holz, Christopher Kruegel, and Giovanni Vigna

USENIX Security Symposium

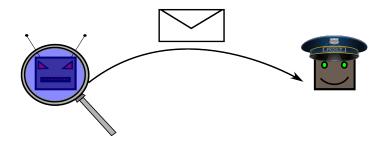
August 8, 2012


Spam is a big problem

- Wealthy economy behind spam
- ▶ 77% of emails are spam
- ▶ Botnets responsible for 85% of spam

Traditional spam detection

Traditional spam detection

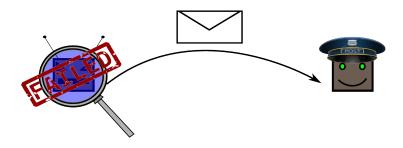


Content analysis (What?)

Traditional spam detection

Origin analysis (Who?)

Existing methods have problems


Existing methods have problems

Existing methods have problems

Our approach

The way clients interact with SMTP servers (How?)

B@BEL

Two instances of our approach

- SMTP dialects
- Feedback manipulation

Outline of the talk

Techniques overview ←

System design

Evaluation

Limitations

First technique: SMTP dialects

The SMTP protocol

Server: 220 server

Client: HELO example.com

Server: 250 OK

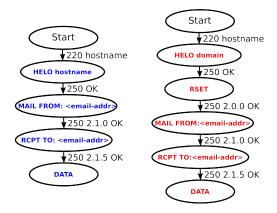
Client: MAIL FROM:<me@example.com>

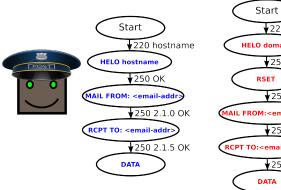
Server: 250 2.1.0 OK

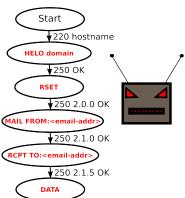
Client: RCPT TO:<you@example.com>

Server: 250 2.1.5 OK

Client: DATA


"Be conservative in what you send, but liberal in what you accept" (Postel's Law)

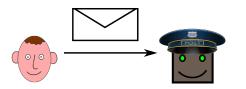


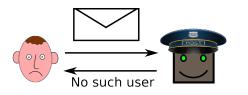


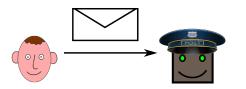
What can we use dialects for?

- Spam detection
- Malware classification

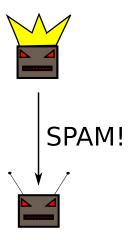
Second technique: feedback manipulation

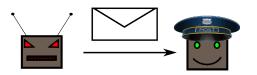


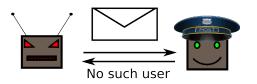


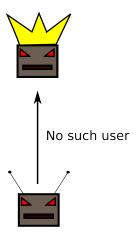


Feedback is important









How important is feedback?

Previous research

- Successful botnets are using bot feedback
- ► Cutwail: 35% of the email addresses were nonexistent

What if we gave wrong feedback?

What should the botmaster do?

Lose-lose situation

- Accept feedback
- Discard feedback

Outline of the talk

Techniques overview

System design \leftarrow

Evaluation

Limitations

A typical SMTP conversation

Server: 220 server

Client: HELO example.com

Server: 250 OK

Client: MAIL FROM:<me@example.com>

Server: 250 2.1.0 OK

Client: RCPT TO:<you@example.com>

Server: 250 2.1.5 OK

Client: DATA

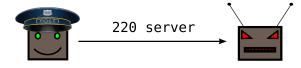
Dialects as state machines

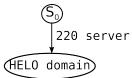
$$\mathbf{D} = <\Sigma, S, s_0, T, F_g, F_b>$$

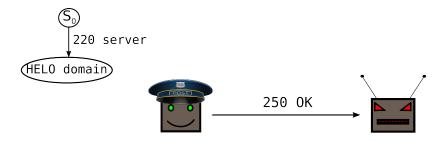
- Σ: input alphabet
- ▶ S: set of states
- ▶ *s*₀: initial state
- ▶ T: transitions
- $ightharpoonup F_g$: "good" final states
- ▶ F_b: "bad" final states

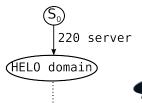
Three phases

- Learning SMTP dialects
- Building a decision model
- Making a decision



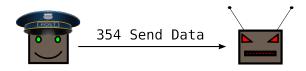






Collecting SMTP conversations

Passive observation


Two dialects might look the same!

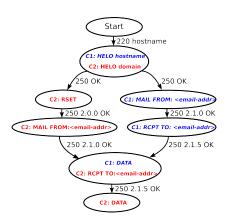
Active probing

Send incorrect replies, error messages, ...

Active probing

Out-of-order replies

Active probing


Incorrect replies

Building a decision model

Building a decision model

Making a decision

Passive matching

Detect dialects by observing conversations

Active probing

Send specific replies to "expose" differences

Outline of the talk

Techniques overview

System design

Evaluation \leftarrow

Limitations

Dialects for classification

Our experiment

- ▶ 13 legitimate MUAs and MTAs
- ▶ 91 distinct malware samples
- We performed active probing (228 variations)

Results

- Legitimate and malicious dialects are distinct
- Malware families all speak different dialects
- Better classification than AV labels

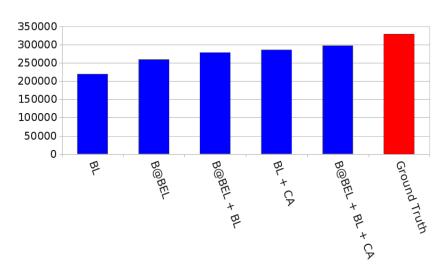
Dialects for spam mitigation

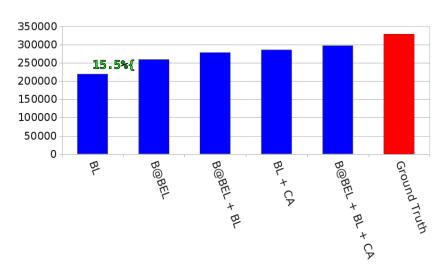
Our experiment

621,919 SMTP conversations

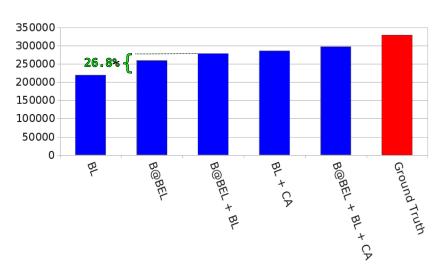
Results

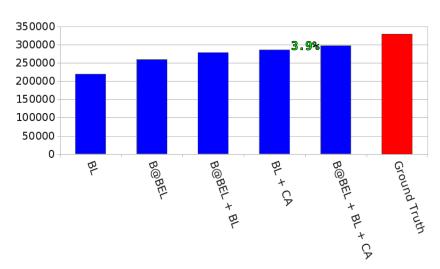
- 260,074 as bots
- 218,675 as legitimate clients
- 143,170 no decision

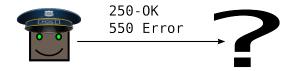

How accurate is B@BEL?

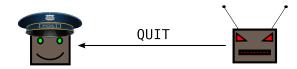

- ▶ 0.67% false positives
- ▶ 21% false negatives

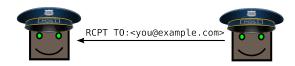
B@BEL detects email engines, not content!

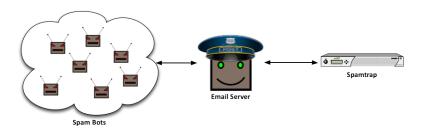












Giving wrong feedback - Evaluation

Our experiment

- ▶ 32 malware samples
- Sinkholed the emails sent by the bots
- Looked at the effect on our spam trap

Giving wrong feedback – Evaluation

Results

- ▶ Sent feedback to 29 campaigns 2.8M emails
- For 5 of them the technique worked
- ▶ 19% of the total number of emails!

Outline of the talk

Techniques overview

System design

Evaluation

 $Limitations \leftarrow$

Limitations

Evading dialects detection

▶ Implement a "faithful" SMTP engine

Performance penalty!

Force spammers to look like client X

Easier to detect by previous work

Limitations

Evading feedback manipulation

Lose-lose situation for the botmaster

Conclusions

- ▶ B@BEL looks at how SMTP engines interact with mailservers
 - SMTP dialects
 - Feedback manipulation
- Valuable tool to aid spam mitigation
- Raises the bar for botmasters

Questions?

email: gianluca@cs.ucsb.edu

twitter: @gianlucaSB