
How I Learned to Stop Worrying
and Love Push-On-Submit
Sam Mussmann, Google SRE
November 13, 2015
USENIX Release Engineering Summit

Push-on-Submit?

Push-on-submit automation
ensures that:

When a runtime configuration
change is submitted to source
control, it is then automatically
applied to production

Push-on-submit automation
ensures that:

When a runtime configuration
change is submitted to source
control, it is then automatically
applied to production

Push-on-Submit?

E.g:
● Command line flags
● Binary version
● Replica count

Push-on-submit automation
ensures that:

When a runtime configuration
change is submitted to source
control, it is then automatically
applied to production

Push-on-Submit?

Humans are not in the loop

[at least in the general case]

Push-on-submit automation
ensures that:

When a runtime configuration
change is submitted to source
control, it is then automatically
applied to production

Push-on-Submit?

As much as possible,
production looks the same as HEAD

Proprietary + Confidential

This sounds AWESOME!

This sounds SCARY!

Motivation -- We Weren't Sure We Wanted It Either

We faced unknowns:

How will our job change?

How will our [other] automation change?

Will this even work?

Motivation -- We Weren't Sure We Wanted It Either

We faced obstacles:

Nay-sayers

Complicated Push Process

Good Old-Fashioned Work

Motivation -- We Did It Anyway, and You Can Too!

Now:

Our team members are no longer in the experimental loop

Our push process no longer blocks the experimental loop

What's in the experimental loop?

Refactoring and new features and config pushes [oh my]

Motivation -- We Did It Anyway, and You Can Too!

Now:

Our team members are no longer in the experimental loop

Our push process no longer blocks the experimental loop

EVERYTHING IS AWESOME

Proprietary + Confidential

Agenda

Introduction what is push on submit?

Motivation why this talk?

Background where my team was,
what our systems look like

Solution a brief sketch

Changes to our process, our environment, and our roles

Benefits why we're glad we did it

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Background -- System Purpose

This system does machine learning to predict ad click-through rates.

Goal: Make users happy (show relevant ads) and

 publishers happy (ads get clicked more)

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Background -- System Stakeholders

This system does machine learning to predict ad click-through rates.

There are three teams that interact with this system:

● Model developers are customers -- create and test new models

● Infrastructure developers are product developers -- add new features

● SRE (my team) are operators -- run service and increase robustness

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Background -- Our Team Scale

This system does machine learning to predict ad click-through rates.

SRE runs the system and increases robustness

The system includes about 200 services (~single purpose collection of jobs)

Each service has about 20 jobs (single binary + configuration, replicated)

Some jobs are replicated to > 1,000 tasks (replicated instance)

Degrees of Freedom

We can change configuration by:

● submitting to source control
● pushing to production

Degrees of Freedom

We can change configuration by:

● submitting to source control
● pushing to production

In ideal world they are rarely different

Production Source Control

Commit
Change

Push
Change

No diff

No diff

Degrees of Freedom

We can change configuration by:

● submitting to source control
● pushing to production

But if no one pushes the change,
the diff will hang

Production Source Control

Commit
Change

Degrees of Freedom

We can change configuration by:

● submitting to source control
● pushing to production

But if no one pushes the change,
the diff will hang until someone
else tries to push

And then they have figure it out

Production Source Control

Commit
Change

Not the
Committed

Change!

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Degrees of Freedom -- Impact

This process doesn't scale to, for example,

 pushing a new binary version to 180 services

Solution -- Take 1

Called Clapper for ChangeListAPPliER

Can you spot the failure modes?

Get HEAD

Push Configs
at HEAD

Sleep for 10
minutes

Future

Solution -- Take 2

We called it Treadmill

Two major changes:

● Check what configuration

is live before pushing

● Figure out which changes

to source control actually

caused the diff

What change
is live?

Push Config
at change

Get change
with diff

Unknown

Past

Proprietary + Confidential

Changes

Environment

Process

Roles

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Changes -- Our Environment

PREREQUISITE: Reproducible pushes

Given a revision/commit in source control,

pushing from that revision is always the same.

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Changes -- Our Environment

PREREQUISITE*: Reproducible pushes

Given a revision/commit in source control,

pushing from that revision is always the same.

*Possible to work around by polling the diff between HEAD and prod,

if you know what the non-reproducibility looks like.

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Changes -- Our Environment

PREREQUISITE: Safe configuration

Submit accepted only if test suite passes

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Changes -- Our Environment

PREREQUISITE: Safe configuration

Submit accepted only if test suite passes

This was always true, but we drastically increased test coverage

"Write a test" is a common post-mortem action item

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Changes -- Our Environment

EFFECT: Other automation manipulates source control rather than prod

This actually made our job easier by centralizing the problem of dealing

with all the failure conditions involved in pushing to production

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Changes -- Our Process

PREREQUISITE: Push process has to be machine-executable

If it needs human interaction, it should fail

If it fails a lot, it's not reducing operational load

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Changes -- Our Process

EFFECT: Rollback is a roll-forward to previous configuration version

It's faster than doing it by hand

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Changes -- Our Roles

EFFECT: Instead of controlling the process by pushing new configuration,

we control by reviewing configuration changes and adding tests

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Changes -- Our Roles

EFFECT: We spend more time thinking about the configuration's

organization and purpose

Benefits -- A Summary

We see all of the mentioned changes as benefits.

We really appreciate not being in the experimental loop

This directly benefits us!

THANK YOU

