REM: Resource Efficient Mining for Blockchains

Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, Robbert van Renesse

Vancouver, Canada

The Cryptocurrency Vision Originally

- Satoshi Nakamoto's Bitcoin ('08-'09)
- Decentralized currency

The Cryptocurrency Vision Originally

- Satoshi Nakamoto's Bitcoin ('08-'09)
- Decentralized currency

Fintech Blockchain / DLT Vision

- Bank to bank transactions (money, securities)
- Smart contracts infrastructure
- Security structuring
- Insurance
- Provenance (supply chain, art, fair trade)
- IoT micropayments

Towards a Fintech blockchain

Reality

Probabilistic guarantees

Handful tx/sec

Minutes/hours for confirmation

Problematic resource consumption

Fintech

Hard requirements

Thousands tx/sec

Seconds for confirmation

No "waste"

PoW: Proof of Waste?

Block proves (statistically)

real-world

- Capital e
- Operatio

Attacker m

https://digiconomist.net/bitcoin-energy-consumption

Environment-Friendly Alternatives in other settings

Permissioned system (BFT)

Centralized

Proof of Stake

needs a good solution for "nothing-at-stake"

Proof of Storage (Space)

consumes storage instead of computation

Software Guard eXtension

"Enclave"

Integrity

Other software and even OS cannot tamper with control flow.

Confidentiality

Other sofware and even OS can learn nothing about the interal state*.

SGX: remote attestation

Untrusted Application Code

Untrusted Operating System & Hypervisor

Trusted Processor

Untrusted Hardware

SGX-backed blockchain: A new security model

- Permissionless
 - Anyone can join
- Partially decentralized
 - SGX works as advertised
 - Intel manages the group signature

Related: Proof of Elapsed Time (PoET)

- •Simulate PoW by sleeping 😌.
- Consensus in partially decentralized model
- (ideally) low mining cost + offhand mining

Unaddressed challenges in PoET

Mining power not proportional to CPU value

The **Stale Chips Problem**:

- The equilibrium is to mine using old, useless devices
- Build dedicated farms

<u>High mining cost</u> (contrary to the original intent)

Intel's PoET

Individual CPUs can be compromised

The **Broken Chips Problem**

Intel proposes a simple statistical test. But

- 1. What is the adversary's advantage?
- 2. What is the cost of this test?

Proof of Useful Work

- Replace the <u>hash calculation</u> in PoW with <u>"useful" mining work</u>
- Each unit of useful work grants a Bernoulli test
- Similar exponential block time

Meter the useful work

- Count CPU instructions
- Why?
 - A representative (although not perfect) metric
 - Can be done in a trustworthy way (i.e. w/o trusting OS etc.)
 - Switching to better options (if any) doesn't change REM.

Secure Instruction Counting

- Arbitrary (malicious) programs
- Publicly verifiable
- Enforcing W⊕X code permission
- Enforcing single-threaded enclaves
- Details in the paper

Self-metering instrumentation

Dynamic + static program analysis

Dynamic analysis

13 September 2017

USENIX Security 2017

18

Public Verifiability

Two things to verify:

Validity of PoUW

- Compliance
 - i.e. P' is correctly instrumented
 - Requires the code of P'

- X Put code on chain
- X Predefined P'
- Arbitrary P'

Hierarchical Attestation

SGX might not be perfect!

- Individual CPU might be broken
- -> Can forge PoUW at will
- "Broken chip problem"

Picture source: https://www.forbes.com/sites/susanadams/2015/12/02/how-to-get-paid-to-do-nothing-5/#3fbbe0b14eaa

Implicit PKI in SGX

Intel manages the signature group

Broken SGX CPUs cannot forge identities

Tolerating Compromised SGX CPUs

- Adversarial Model:
 - may forge PoUW at will
 - can not forge identities
- Mitigation: statistical test
 - "If a miner is way too lucky, her block shall not be accepted."
 - Devised rigorous framework

Advantage: adv revenue / honest revenue

Cost: probability of false rejection

26

Performance of REM

Conclusion

- PoUW: a <u>proof of useful work</u> scheme that avoids waste
- REM: a PoUW-based blockchain
 - Efficient: up to 15% overhead relative to native linux programs
- **Broken chip problem**: rigorous framework and effective policies.

The Initiative For CryptoCurrencies & Contracts