
Locally Differentially Private
Protocols for Frequency

Estimation
Tianhao Wang, Jeremiah Blocki, Ninghui Li, Somesh Jha

Differential Privacy

Differential Privacy

Classical setting

Differential Privacy

DataDataData Data Data

Classical setting

+Noise

Differential Privacy

DataDataData Data Data

Classical setting

Database

+Noise

Differential Privacy

DataDataData Data Data

Classical setting

Data mining
Statistical queriesDatabase

+Noise

Differential Privacy

DataDataData Data Data

Classical setting

Data mining
Statistical queriesDatabase

+Noise

Differential Privacy

DataDataData Data Data

Classical setting

Differential Privacy Interpretation:
The decision to include/exclude

individual’s record has minimal (𝜀)
influence on the outcome.

Smaller 𝜀 Stronger Privacy

Data mining
Statistical queriesDatabase

+Noise

Differential Privacy

Trusted

DataDataData Data Data

Local Differential Privacy

Data mining
Statistical queriesDatabase

Data+Noise Data+Noise Data+Noise

Local Differential Privacy

Data mining
Statistical queriesDatabase

No worry about untrusted server

Data+Noise Data+Noise Data+Noise

Local Differential Privacy

Data mining
Statistical queriesDatabase

No worry about untrusted server

Data+Noise Data+Noise Data+Noise

Local Differential Privacy

Data mining
Statistical queriesDatabase

No worry about untrusted server

Data+Noise Data+Noise Data+Noise

The Warner Model (1965)

• Survey technique for private questions

• Survey people:
• “Are you communist party?”

• Each person:
• Flip a secret coin
• Answer truth if head (w/p 0.5)
• Answer randomly if tail
• E.g., a communist will answer “yes” w/p 75%, and “no” w/p 25%

• To get unbiased estimation of the distribution:
• If 𝑛𝑣 out of 𝑛 people are communist, we expect to see 𝐸[𝐼𝑣] = 0.75𝑛𝑣 + 0.25(𝑛 −
𝑛𝑣) “yes” answers

• 𝑐(𝑛𝑣) =
𝐼𝑣−0.25𝑛

0.5
is the unbiased estimation of number of communists

• Since 𝐸[𝑐(𝑛𝑣)] =
𝐸[𝐼𝑣]−0.25𝑛

0.5
= 𝑛𝑣

Provide deniability:
Seeing answer, not certain about the secret.

The Warner Model (1965)

• Survey technique for private questions

• Survey people:
• “Are you communist party?”

• Each person:
• Flip a secret coin
• Answer truth if head (w/p 0.5)
• Answer randomly if tail
• E.g., a communist will answer “yes” w/p 75%, and “no” w/p 25%

• To get unbiased estimation of the distribution:
• If 𝑛𝑣 out of 𝑛 people are communist, we expect to see 𝐸[𝐼𝑣] = 0.75𝑛𝑣 + 0.25(𝑛 −
𝑛𝑣) “yes” answers

• 𝑐(𝑛𝑣) =
𝐼𝑣−0.25𝑛

0.5
is the unbiased estimation of number of communists

• Since 𝐸[𝑐(𝑛𝑣)] =
𝐸[𝐼𝑣]−0.25𝑛

0.5
= 𝑛𝑣

Provide deniability:
Seeing answer, not certain about the secret.

This only handles binary attribute.
We want to handle the more general

setting.

We say the protocol is 𝜀 -LDP iff
for any 𝒗 and 𝒗′ from “yes” and “no”,

Pr 𝑃 𝒗 = 𝒗

Pr 𝑃 𝒗′ = 𝒗
≤ 𝑒𝜀

Abstract LDP Protocol

• 𝑥 ≔ 𝐸(𝑣)
takes input value 𝑣 from
domain 𝐷 and outputs an
encoded value 𝑥
• 𝑦 ≔ 𝑃(𝑥)
takes an encoded value
𝑥 and outputs 𝑦.

𝑦

• 𝑐 ≔ 𝐸𝑠𝑡(𝑦)
takes reports {𝑦} from all
users and outputs
estimations 𝑐(𝑣) for any
value 𝑣 in domain 𝐷

𝑃 satisfies 𝜀-LDP We focus on
frequency estimation

Frequency Estimation Protocols

• Direct Encoding (Generalized Random Response) [Warner’65]
• Generalize binary attribute to arbitrary domain

• Unary Encoding (Basic One-time RAPPOR) [Erlingsson et al’14]
• Encode into a bit-vector and perturb each bit

• Binary Local Hash [Bassily and Smith’15]
• Encode by hashing and then perturb

Direct Encoding (Random Response)

• User:
• Encode 𝑥 = 𝑣 (suppose 𝑣 from 𝐷 = {1,2,… , 𝑑})

• Toss a coin with bias 𝑝

• If it is head, report the true value 𝑦 = 𝑥

• Otherwise, report any other value with probability 𝑞 =
1−𝑝

𝑑−1
(uniformly at random)

• 𝑝 =
𝑒𝜀

𝑒𝜀+𝑑−1
, 𝑞 =

1

𝑒𝜀+𝑑−1
⇒
Pr 𝑃 𝒗 =𝒗

Pr 𝑃 𝒗′ =𝒗
=
𝑝

𝑞
= 𝑒𝜀

• Aggregator:
• Suppose 𝑛𝑣 users possess value 𝑣, 𝐼𝑣 is the number of reports on 𝑣.

• 𝐸[𝐼𝑣] = 𝑛𝑣 ⋅ 𝑝 + 𝑛 − 𝑛𝑣 ⋅ 𝑞

• Unbiased Estimation: 𝑐(𝑣) =
𝐼𝑣−𝑛⋅𝑞

𝑝−𝑞

Direct Encoding (Random Response)

• User:
• Encode 𝑥 = 𝑣 (suppose 𝑣 from 𝐷 = {1,2,… , 𝑑})

• Toss a coin with bias 𝑝

• If it is head, report the true value 𝑦 = 𝑥

• Otherwise, report any other value with probability 𝑞 =
1−𝑝

𝑑−1
(uniformly at random)

• 𝑝 =
𝑒𝜀

𝑒𝜀+𝑑−1
, 𝑞 =

1

𝑒𝜀+𝑑−1
⇒
Pr 𝑃 𝒗 =𝒗

Pr 𝑃 𝒗′ =𝒗
=
𝑝

𝑞
= 𝑒𝜀

• Aggregator:
• Suppose 𝑛𝑣 users possess value 𝑣, 𝐼𝑣 is the number of reports on 𝑣.

• 𝐸[𝐼𝑣] = 𝑛𝑣 ⋅ 𝑝 + 𝑛 − 𝑛𝑣 ⋅ 𝑞

• Unbiased Estimation: 𝑐(𝑣) =
𝐼𝑣−𝑛⋅𝑞

𝑝−𝑞

Intuitively, the higher 𝑝, the more accurate

However, when 𝑑 is large, 𝑝 becomes small

Unary Encoding (Basic RAPPOR)

• Encode the value 𝑣 into a bit string 𝒙 ≔ 0, 𝒙 𝑣 ≔ 1
• e.g., 𝐷 = 1,2,3,4 , 𝑣 = 3, then 𝒙 = [0,0,1,0]

• Perturb each bit independently

• 𝑝 =
𝑒𝜀/2

𝑒𝜀/2+1
, 𝑞 =

1

𝑒𝜀/2+1
⇒
Pr 𝑃(𝐸 𝑣)=𝒙

Pr 𝑃(𝐸 𝑣′)=𝒙
=

𝑖

]Pr[𝒙[𝑖]|𝑣

𝑖

]Pr[𝒙[𝑖]|𝑣′
=
𝑝⋅(1−𝑞)

𝑞⋅(1−𝑝)
= 𝑒𝜀

• Since 𝒙 is unary encoding of 𝑣, 𝒙 and 𝒙′ differ in two locations

• Intuition:
• By unary encoding, each location can only be 0 or 1, effectively reducing 𝑑 in

each location to 2.
• When 𝑑 is large, UE is better.

• To estimate frequency of each value, do it for each bit.

• The protocol description itself is more complicated
• Now we describe a simpler equivalent
• Each user uses a random hash function from𝐷 to 0,1
• The user then perturbs the bit with probabilities

• 𝑝 =
𝑒𝜀

𝑒𝜀+𝑔−1
=

𝑒𝜀

𝑒𝜀+1
, 𝑞 =

1

𝑒𝜀+𝑔−1
=

1

𝑒𝜀+1
⇒
Pr 𝑃(𝐸 𝒗)=𝑏

Pr 𝑃(𝐸 𝒗′)=𝑏
=
𝑝

𝑞
= 𝑒𝜀

• The user then reports the bit and the hash function
• The aggregator increments the reported group

• 𝐸[𝐼𝑣] = 𝑛𝑣 ⋅ 𝑝 + 𝑛 − 𝑛𝑣 ⋅ (
1

2
𝑞 +

1

2
𝑝)

• Unbiased Estimation: 𝑐(𝑣) =
𝐼𝑣−𝑛⋅

1

2

𝑝−
1

2

Binary Local Hash

𝑫 = {𝟏, 𝟐, 𝟑, 𝟒}

Group 0

Group 1𝑣 = 2

[𝟎, 𝟎, 𝟎, 𝟎]
+ 1 + 1

Group 1={2,4}

Takeaway

• Key Question:
• Maximize utility of frequency estimation under LDP

• Key Idea:
• A framework to generalize and optimize these protocols

• Results:
• Optimized Unary Encoding and Local Hash

• By improving the frequency estimator, results in other more complicated
settings that use LDP can be improved, e.g., private learning, frequent itemset
mining, etc.

Method

• We measure utility of a mechanism by its variance

• E.g., in Random Response, 𝑉𝑎𝑟 𝑐 𝑣 = 𝑉𝑎𝑟
𝐼𝑣−𝑛⋅𝑞

𝑝−𝑞
=
𝑉𝑎𝑟[𝐼𝑣]

𝑝−𝑞 2
≈
𝑛⋅𝑞⋅(1−𝑞)

𝑝−𝑞 2

• We propose a framework called ‘pure’ and cast existing mechanisms
into the framework.

• For each output 𝑦, define a set of input 𝑣 called Support
• Intuition: each output votes for a set of input

• After perturbation, output 𝑦 will support input from Support 𝑦

• E.g., In BLH, Support(𝑦) = 𝑣 𝐻 𝑣 = 𝑦

• Define 𝑝′ and 𝑞′ such that 𝑃(𝐸 𝑣) support 𝑣w/p 𝑝′ and don’t w/p 𝑞′
• E.g., In Random Response, 𝑝′ = 𝑝, 𝑞′ = 𝑞

• Pure means this holds for all input-output pairs

Method

• We measure utility of a mechanism by its variance

• E.g., in Random Response, 𝑉𝑎𝑟 𝑐 𝑣 = 𝑉𝑎𝑟
𝐼𝑣−𝑛⋅𝑞

𝑝−𝑞
=
𝑉𝑎𝑟[𝐼𝑣]

𝑝−𝑞 2
≈
𝑛⋅𝑞⋅(1−𝑞)

𝑝−𝑞 2

• We propose a framework called ‘pure’ and cast existing mechanisms
into the framework.

• For each output 𝑦, define a set of input 𝑣 called Support
• Intuition: each output votes for a set of input

• After perturbation, output 𝑦 will support input from Support 𝑦

• E.g., In BLH, Support(𝑦) = 𝑣 𝐻 𝑣 = 𝑦

• Define 𝑝′ and 𝑞′ such that 𝑃(𝐸 𝑣) support 𝑣w/p 𝑝′ and don’t w/p 𝑞′
• E.g., In Random Response, 𝑝′ = 𝑝, 𝑞′ = 𝑞

• Pure means this holds for all input-output pairs

𝑚𝑖𝑛𝑞′𝑉𝑎𝑟 𝑐 𝑣

or𝑚𝑖𝑛𝑞′
𝑛⋅𝑞′⋅(1−𝑞′)

𝑝′−𝑞 ′2

where 𝑝′, 𝑞′ satisfy 𝜀-LDP

Optimized UE

• In the original UE, each bit is perturbed independently

• 𝑝 =
𝑒𝜀/2

𝑒𝜀/2+1
, 𝑞 =

1

𝑒𝜀/2+1

• We want to make 𝑝 higher.

• Key Insight: We perturb 0 and 1 differently!

• There are more 0, so we perturb with greater 𝑝; there is a single 1, so
we perturb with smaller 𝑝

• For bit 0: 𝑝0 =
𝑒𝜀

𝑒𝜀+1
, 𝑞0 =

1

𝑒𝜀+1

• For bit 1: 𝑝1 =
1

2
, 𝑞1 =

1

2

• ⇒
Pr 𝑃(𝐸 𝑣)=𝒙

Pr 𝑃(𝐸 𝑣′)=𝒙
=

𝑖

]Pr[𝒙[𝑖]|𝑣

𝑖

]Pr[𝒙[𝑖]|𝑣′
=
𝑝
0
⋅(1−𝑞

0
)

𝑞
0
⋅(1−𝑝

0
)
= 𝑒𝜀

Optimized Local Hash (OLH)

• In original BLH, secret is compressed into a bit, perturbed and
transmitted.

• 𝑝 =
𝑒𝜀

𝑒𝜀+𝑔−1
, 𝑞 =

1

𝑒𝜀+𝑔−1
⇒
Pr 𝑃(𝐸 𝑣)=𝒙

Pr 𝑃(𝐸 𝑣′)=𝒙
=
𝑝

𝑞
= 𝑒𝜀 (𝑔 = 2 groups)

• Two steps that cause information loss:
• Compressing: loses much
• Perturbation: pretty accurate

• Key Insight: We want to make a balance between the two steps:
• By compressing into more groups, the first step carries more information

• Variance is optimized when 𝑔 = 𝑒𝜀 + 1

• Read our paper for details!

Comparison of Different Mechanisms

OUE and OLH have the same variance
But OLH has smaller communication cost

Direct Encoding has greater variance with larger 𝑑

Limitations
• Variance is linear in 𝑛, which seems inevitable

• Therefore, requires large number of users

• Cannot handle large domains

Future Work
• Handling large domains

• Handling set-values

Conclusion
• We survey existing LDP protocols on frequency estimation

• We propose a pure framework and cast existing protocols into it

• We optimize UE and BLH and come up with OUE and OLH

Backup: Experiments Highlights

• Dataset: Kosarak dataset
• (also on Rockyou dataset and a Synthetic dataset)

• Competitors: RAPPOR, BLH, OLH
• Randomized Response is not compared because the domain is large

• Key Results:
• OLH performs magnitudes better, especially when 𝜀 is large

• This also confirms our analytical conclusion

Backup: Accuracy on Frequent Values

More Privacy

M
o

re
A

cc
u

ra
cy

RAPPOR2
𝜀 = 7.78

RAPPOR1
𝜀 = 4.39

Backup: On Information Quality

Backup: On answering multiple questions

• Previously works (including centralized DP) suggest splitting privacy
budget

• For example, when a user answers two questions, privacy budgets are
𝜀/2 and 𝜀/2 (assuming the two questions are of equal importance)

• In the centralized setting, there are sequential composition and
parallel composition

• By partitioning users, one uses to parallel composition

• By split privacy budget, one uses sequential composition

• The two can basically produce equivalent results

• What about the local setting?

Backup: On answering multiple questions

• Measure the frequency accuracy (normalize since two approach have
different number of users)

• Assuming OLH is used: 𝑉𝑎𝑟 𝑐 𝑣 /𝑛 =
𝑞⋅(1−𝑞)

𝑛⋅ 𝑝−𝑞 2
=

4𝑒𝜀

𝑛⋅ 𝑒𝜀−1 2

• Two settings:

• Split privacy budget: 𝑉𝑎𝑟 𝑐 𝑣 /𝑛 =
4𝑒𝜀/2

𝑛⋅ 𝑒𝜀/2−1
2

• Partition users: 𝑉𝑎𝑟 𝑐 𝑣 /
1

2
𝑛 =

8𝑒𝜀

𝑛⋅ 𝑒𝜀−1 2

• Algebra shows that it is better to partition users

// | ?

Thanks to my coauthors

