Locally Differentially Private Protocols for Frequency Estimation

Tianhao Wang, Jeremiah Blocki, Ninghui Li, Somesh Jha

Classical setting

Data mining Statistical queries

Data mining Statistical queries

Classical setting

Differential Privacy Interpretation: The decision to include/exclude individual's record has minimal (ε) influence on the outcome. Smaller $\varepsilon \rightarrow$ Stronger Privacy

Data mining Statistical queries

Local Differential Privacy

Data mining Statistical queries

Local Differential Privacy

Local Differential Privacy

RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response

Aleksandra Korolova University of Southern California korolova@usc.edu 3

r

Local Differential Privacy As Apple starts analyzing web browsing & health data, how comfortable are you with differential privacy?

Ben Lovejoy - Jul. 7th 2017 6:59 am PT 🔰 @benlovejoy

!r

The Warner Model (1965)

- Survey technique for private questions
- Survey people:
 - "Are you communist party?"
- Each person:
 - Flip a secret coin
 - Answer truth if head (w/p 0.5)
 - Answer randomly if tail

Provide deniability:

Seeing answer, not certain about the secret.

- E.g., a communist will answer "yes" w/p 75%, and "no" w/p 25%
- To get unbiased estimation of the distribution:
 - If n_v out of n people are communist, we expect to see $E[I_v] = 0.75n_v + 0.25(n n_v)$ "yes" answers
 - $c(n_v) = \frac{I_v 0.25n}{0.5}$ is the unbiased estimation of number of communists

• Since
$$E[c(n_v)] = \frac{E[I_v] - 0.25n}{0.5} = n_v$$

The Warner Model (1965)

- Survey technique for private questions
- Survey people:
 - "Are you comr
- Each person:
 - Flip a secret co
 - Answer truth i
 - Answer randomly if tail
 - E.g., a commu This only handles binary attribute.
- To get unbiased We want to handle the more general
 - If n_v out of n_v n_{v}) "yes" ans

• $c(n_v) = \frac{I_v - 0.25n}{0.5}$ is the unbiased estimation of number of communists

• Since
$$E[c(n_v)] = \frac{E[I_v] - 0.25n}{0.5} = n_v$$

tain about the secret.

$$.75n_v + 0.25(n -$$

 $\frac{\Pr[P(\boldsymbol{v}) = \boldsymbol{v}]}{\Pr[P(\boldsymbol{v}') = \boldsymbol{v}]} \le e^{\varepsilon}$

Abstract LDP Protocol

• $x \coloneqq E(v)$ takes input value v from domain D and outputs an encoded value x

• $y \coloneqq P(x)$ takes an encoded value x and outputs y.

P satisfies ε -LDP

Y

• $c \coloneqq Est(\{y\})$ takes reports $\{y\}$ from all users and outputs estimations c(v) for any value v in domain D

We focus on frequency estimation

Frequency Estimation Protocols

- Direct Encoding (Generalized Random Response) [Warner'65]
 - Generalize binary attribute to arbitrary domain
- Unary Encoding (Basic One-time RAPPOR) [Erlingsson et al'14]
 - Encode into a bit-vector and perturb each bit
- Binary Local Hash [Bassily and Smith'15]
 - Encode by hashing and then perturb

Direct Encoding (Random Response)

• User:

- Encode x = v (suppose v from $D = \{1, 2, \dots, d\}$)
- Toss a coin with bias p
- If it is head, report the true value y = x
- Otherwise, report any other value with probability $q = \frac{1-p}{d-1}$ (uniformly at random)

•
$$p = \frac{e^{\varepsilon}}{e^{\varepsilon} + d - 1}$$
, $q = \frac{1}{e^{\varepsilon} + d - 1} \Rightarrow \frac{\Pr[P(v) = v]}{\Pr[P(v') = v]} = \frac{p}{q} = e^{\varepsilon}$

- Aggregator:
 - Suppose n_v users possess value v, I_v is the number of reports on v.

•
$$E[I_v] = n_v \cdot p + (n - n_v) \cdot q$$

• Unbiased Estimation: $c(v) = \frac{I_v - n \cdot q}{p - q}$

Direct Encoding (Random Response)

• User:

- Encode x = v (suppose v from $D = \{1, 2, \dots, d\}$)
- Toss a coin with bias p
- If it is head, report the true value y = x
- Otherwise, Intuitively, the higher p, the more accurate y at random)

•
$$p = \frac{e^{\varepsilon}}{e^{\varepsilon} + d - 1}, q = \frac{1}{e^{\varepsilon} + d - 1} \Rightarrow \frac{\Pr[P(v) = v]}{\Pr[P(v') = v]} = \frac{p}{q} = e^{\varepsilon}$$

- Aggregator: However, when d is large, p becomes small
 - Suppose n_v users possess value r, r_v is the halfber of reports on r_v

•
$$E[I_v] = n_v \cdot p + (n - n_v) \cdot q$$

• Unbiased Estimation: $c(v) = \frac{I_v - n \cdot q}{p - q}$

Unary Encoding (Basic RAPPOR)

- Encode the value v into a bit string $x \coloneqq \vec{0}, x[v] \coloneqq 1$
 - e.g., $D = \{1,2,3,4\}, v = 3$, then x = [0,0,1,0]
- Perturb each bit independently

•
$$p = \frac{e^{\varepsilon/2}}{e^{\varepsilon/2}+1}$$
, $q = \frac{1}{e^{\varepsilon/2}+1} \Rightarrow \frac{\Pr[P(E(v))=x]}{\Pr[P(E(v'))=x]} = \frac{\prod_i \Pr[x[i]|v]}{\prod_i \Pr[x[i]|v']} = \frac{p \cdot (1-q)}{q \cdot (1-p)} = e^{\varepsilon}$

• Since x is unary encoding of v, x and x' differ in two locations

- Intuition:
 - By unary encoding, each location can only be 0 or 1, effectively reducing d in each location to 2.
 - When d is large, UE is better.
- To estimate frequency of each value, do it for each bit.

Binary Local Hash

- The protocol description itself is more complicated
- Now we describe a simpler equivalent
- Each user uses a random hash function from *D* to {0,1}
- The user then perturbs the bit with probabilities

•
$$p = \frac{e^{\varepsilon}}{e^{\varepsilon} + g - 1} = \frac{e^{\varepsilon}}{e^{\varepsilon} + 1}$$
, $q = \frac{1}{e^{\varepsilon} + g - 1} = \frac{1}{e^{\varepsilon} + 1}$ $\Rightarrow \frac{\Pr[P(E(v)) = b]}{\Pr[P(E(v')) = b]} = \frac{p}{q} = e^{\varepsilon}$

 $p - \frac{1}{2}$

- The user then reports the bit and the hash function
- The aggregator increments the reported group

•
$$E[I_v] = n_v \cdot p + (n - n_v) \cdot (\frac{1}{2}q + \frac{1}{2}p)$$

• Unbiased Estimation: $c(v) = \frac{I_v - n \cdot \frac{1}{2}}{n - \frac{1}{2}}$

$$f(x) = 2$$

$$f(x) = (1, 2, 3, 4)$$

Takeaway

- Key Question:
 - Maximize utility of frequency estimation under LDP
- Key Idea:
 - A framework to generalize and optimize these protocols
- Results:
 - Optimized Unary Encoding and Local Hash
 - By improving the frequency estimator, results in other more complicated settings that use LDP can be improved, e.g., private learning, frequent itemset mining, etc.

Method

- We measure utility of a mechanism by its variance
 - E.g., in Random Response, $Var[c(v)] = Var\left[\frac{I_v n \cdot q}{p-q}\right] = \frac{Var[I_v]}{(p-q)^2} \approx \frac{n \cdot q \cdot (1-q)}{(p-q)^2}$
- We propose a framework called 'pure' and cast existing mechanisms into the framework.
 - For each output y, define a set of input v called Support
 - Intuition: each output votes for a set of input
 - After perturbation, output y will support input from Support(y)
 - E.g., In BLH, Support(y) = $\{v|H(v) = y\}$
 - Define p' and q' such that P(E(v)) support v w/p p' and don't w/p q'
 - E.g., In Random Response, p' = p, q' = q
- Pure means this holds for all input-output pairs

Method

- We measure utility of a mechanism by its variance
 - E.g., in Random Response, $Var[c(v)] = Var\left[\frac{I_v n \cdot q}{n-q}\right] = \frac{Var[I_v]}{(n-q)^2} \approx \frac{n \cdot q \cdot (1-q)}{(n-q)^2}$

 $min_{q'}Var[c(v)]$

or $min_{q'} \frac{n \cdot q' \cdot (1-q')}{(p'-q)'^2}$

anisms

- We propose into the fra
 - For each (
 - Intuitio
 - After p where p', q' satisfy ε -LDP
 - Define p' and q' such that P(E(v)) support v w/p p' and don't w/p q'
 - E.g., In Random Response, p' = p, q' = q
- Pure means this holds for all input-output pairs

Optimized UE

• In the original UE, each bit is perturbed independently

•
$$p = \frac{e^{\varepsilon/2}}{e^{\varepsilon/2}+1}$$
, $q = \frac{1}{e^{\varepsilon/2}+1}$

- We want to make *p* higher.
- Key Insight: We perturb 0 and 1 differently!
- There are more 0, so we perturb with greater p; there is a single 1, so we perturb with smaller p

• For bit 0:
$$p_0 = \frac{e^{\varepsilon}}{e^{\varepsilon}+1}$$
, $q_0 = \frac{1}{e^{\varepsilon}+1}$

• For bit 1:
$$p_1 = \frac{1}{2}$$
, $q_1 = \frac{1}{2}$
• $\Rightarrow \frac{\Pr[P(E(v)) = x]}{\Pr[P(E(v')) = x]} = \frac{\prod_i \Pr[x[i]|v]}{\prod_i \Pr[x[i]|v']} = \frac{p_0 \cdot (1 - q_0)}{q_0 \cdot (1 - p_0)} = e^{\varepsilon}$

Optimized Local Hash (OLH)

 In original BLH, secret is compressed into a bit, perturbed and transmitted.

•
$$p = \frac{e^{\varepsilon}}{e^{\varepsilon} + g - 1}$$
, $q = \frac{1}{e^{\varepsilon} + g - 1} \Rightarrow \frac{\Pr[P(E(v)) = x]}{\Pr[P(E(v')) = x]} = \frac{p}{q} = e^{\varepsilon}$ ($g = 2$ groups)

- Two steps that cause information loss:
 - Compressing: loses much
 - Perturbation: pretty accurate
- Key Insight: We want to make a balance between the two steps:
 - By compressing into more groups, the first step carries more information
- Variance is optimized when $g = e^{\varepsilon} + 1$
- Read our paper for details!

Comparison of Different Mechanisms

	DE	SHE	THE ($\theta = 1$)	SUE	OUE	BLH	OLH
Communication Cost	$O(\log d)$	O(d)	O(d)	$O(\overline{d})$	O(d)	$O(\log n)$	$\overline{O}(\log n)$
$\operatorname{Var}[\tilde{c}(i)]/n$	$\frac{d-2+e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$	$\frac{8}{\varepsilon^2}$	$\frac{2e^{\varepsilon/2}-1}{(e^{\varepsilon/2}-1)^2}$	$\frac{e^{\varepsilon/2}}{(e^{\varepsilon/2}-1)^2}$	$\frac{4e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$	$\frac{(e^{\varepsilon}+1)^2}{(e^{\varepsilon}-1)^2}$	$\frac{4e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$

Table 1: Con different metho Direct Encoding has greater variance with larger d

d Variances for

OUE and OLH have the same variance But OLH has smaller communication cost

Conclusion

- We survey existing LDP protocols on frequency estimation
- We propose a pure framework and cast existing protocols into it
- We optimize UE and BLH and come up with OUE and OLH

Limitations

- Variance is linear in n, which seems inevitable
 - Therefore, requires large number of users
- Cannot handle large domains
- Future Work
- Handling large domains
- Handling set-values

Backup: Experiments Highlights

- Dataset: Kosarak dataset
 - (also on Rockyou dataset and a Synthetic dataset)
- Competitors: RAPPOR, BLH, OLH
 - Randomized Response is not compared because the domain is large
- Key Results:
 - OLH performs magnitudes better, especially when ε is large
 - This also confirms our analytical conclusion

Backup: Accuracy on Frequent Values

RAPPOR2 *ε* = 7.78

Backup: On Information Quality

Backup: On answering multiple questions

- Previously works (including centralized DP) suggest splitting privacy budget
- For example, when a user answers two questions, privacy budgets are $\epsilon/2$ and $\epsilon/2$ (assuming the two questions are of equal importance)
- In the centralized setting, there are sequential composition and parallel composition
 - By partitioning users, one uses to parallel composition
 - By split privacy budget, one uses sequential composition
 - The two can basically produce equivalent results
- What about the local setting?

Backup: On answering multiple questions

- Measure the frequency accuracy (normalize since two approach have different number of users)
 - Assuming OLH is used: $Var[c(v)/n] = \frac{q \cdot (1-q)}{n \cdot (p-q)^2} = \frac{4e^{\varepsilon}}{n \cdot (e^{\varepsilon}-1)^2}$
- Two settings:

• Split privacy budget:
$$Var[c(v)/n] = \frac{4e^{\varepsilon/2}}{n \cdot (e^{\varepsilon/2}-1)^2}$$

- Partition users: $Var\left[c(v)/\frac{1}{2}n\right] = \frac{8e^{\varepsilon}}{n \cdot (e^{\varepsilon}-1)^2}$
- Algebra shows that it is better to partition users

Thanks to my coauthors

// | ?