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Summary 

• Discuss the applicability of SMT (Satisfiability Modulo 
Theories) solvers for software security, in particular for: 
– Vulnerability checking 

– Exploit generation 

– Copy protection analysis 

• Overall workflow: abstract a program into a formula 
and check if the formula has the desired properties 

• Overall message: SMT solvers perform great once the 
problem domain has been defined. Solvers do not 
define the problem automatically. 



 

 

 

Part I: Finding vulnerabilities using SMT 



Work flow for static security checking 

(1) The security auditor formalizes what he thinks is 
the formal code contract into an annotation (directive 
to the checker) 

(2) The analyzed source code gets translated into an 
intermediate form. 

(3) The intermediate form is consumed by a theorem 
prover that creates a “verification condition” (VC, aka 
a safety formula) 

(4) The VC is passed to the SMT solver for resolution 
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Boogie program 
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 Example on Loop analysis 
Sendmail CrackAddr() buffer overflow 

 
• CVE-2002-1337: “A buffer overflow in sendmail 5.79 to 

8.12.7 allows remote attackers to execute arbitrary code 
via certain formatted address fields, related to sender 
and recipient header comments as processed by the 
crackaddr function of headers.c” 

• Published by Mark Dowd, Exploited by Last Stage of 
Delirium group in 4 hours (bugtraq posts). 

• Presented at Infiltrate 2011 by Thomas Dullien as an 
example of failure of static analysis tools based on state 
merging (e.g. path-insensitive analyzers) 

• We show how to check the absence of such 
vulnerabilities using loop invariants in Havoc/Boogie/Z3. 



 



 





 



 



 



 



 



We can feed this invariant to HAVOC in this syntax: 
 
__loop_assert( (upperlimit == globalbuf + 15 &&  quotation == FALSE && roundquote == FALSE)      ||  
                            (upperlimit == globalbuf + 14 &&  quotation == TRUE && roundquote == FALSE)       ||  
      (upperlimit == globalbuf + 14 &&  quotation == FALSE && roundquote == TRUE)       ||   
                            (upperlimit == globalbuf + 13 &&  quotation == TRUE && roundquote == TRUE) )  

An inductive invariant for crackaddr() 

Let us construct the finite state 
machine for this loop in domain 
(quotation,roundquote,offset) : 
 
• States correspond to memory 

values at the beginning of a 
loop iteration. 

 
• Transitions correspond to 

executing an iteration after 
reading a character in the 
input string. 



 

 

 

Part II: Assisting exploit generation using SMT 



Automatic Exploit Generation (AEG) 

• Loosely defined as “Given a program and a 
vulnerability, automatically craft an input that 
redirects control flow to malicious code” 

• Canonical example of a problem domain 
where there have been many successes but 
real world applicability is hindered by 
modeling/constraint generation rather than 
solver performance or features 



State of the Art 

• Based directly on techniques and platforms 
built for symbolic/concolic execution 

• Given a sequence of instructions, construct a 
path condition reflecting the modifications 
(e.g. arithmetic transformations) and 
constraints (e.g. conditional jumps) on 
attacker provided input 



Example: Constructing the Path Condition 

0: add al, al 

1: sub al, 0x0f 

2: test al, al 

3: jz 6 

4: ...  

5: jmp 7 

6: ...  

 

Path Condition at 6: 

    a1 = a0 + a0  

∧ a2 = a1 - 15 

∧ a2 = 0 

 

(a0 represents the initial 
input with an created on a 
register write) 

 



Restricted-Model Exploit Generation 

• The entirety of knowledge possessed by the AEG 
system is in the form of these path conditions  

• Lets represent this as a map K from 
registers/memory locations to logical formulae: 
K: M  F  

  Ex: M[eax] = (eax != 0 ^ Tainted(eax)) 

• No information on the relationship between user 
input and the heap state, thread execution, 
signals/events etc 

 



Restricted-Model Exploit Generation 

Heap Layout on Run / Input 1 

 

 

 

Heap Layout on Run / Input 2 

 

Overflow Chunk Data 

Overflow Chunk Data 

Function Pointer 

(1) What can K tell us about the 
data contained in the overflow 
chunk and other heap chunks? 

(2) What can K tell us about the 
effect of attacker input on the 
relative layout of the overflow 
chunk with respect to other heap 
chunks? 

Accurate exploit generation 
requires information from both 
categories but K only provides the 
first 



Restricted-Model Exploit Generation 

• K combined with a set of exploit templates to 
produce SMT formulae 
– A template is a static set of rules describing the 

constraints to generate when certain conditions are 
met (ex: “If the stored return address can be 
influenced then try to set it to address 0xABCD”) 

– Crucially, a template is restricted to the information 
present in K (no heap crafting or other external 
environment control strategies) 

• At present templates have only described basic, 
single-shot exploitation techniques (no 
vulnerability chaining, no information 
disclosures) 



Deconstructing the myth of fully 
automated exploit generation 

• The real execution environment is not 
accurately described by K 

• Modern operating systems have killed the 
majority of generic exploitation techniques  

– More often than not static templates are not a 
feasible solution (need domain specific language?) 

• Usually, modern exploits require application 
specific techniques, memory crafting and bug 
chaining: how to encode this in SMT? 

 

 

 



 

 

 

Part III: Analyze copy protection using SMT 



Copy protection analysis  

• SMT solvers for copy protection analysis have 
been used mostly in two scenarios: 

(1) Equivalence checking between obfuscated code 
generated out of a copy protection technology and 
the original non-obfuscated code. 

(2) Semi-automated cryptanalysis of serial number 
algorithms and bypassing them using key generation 
(“keygens”) 

• We give an example of (2) in next slide 

 



Ex: the main loop for a serial algorithm 

1. again: 

2.  lodsb     // al0,i = activation code[i] 

3.  sub al, bl        // ∧ al1,i = al0,i − ebxi[7 : 0] 

4.  xor al, dl         // ∧ al2,i = al1,i ⊕ edxi[7 : 0] 

5.  Stosb              // ∧ output[i] = al2,i 

6.  rol edx, 1       // ∧ edxi+1 = rotate_left(edxi, 1) 

7.  rol ebx, 1       // ∧ ebxi+1 = rotate_left(ebxi, 1) 

8.  loop again 



Conclusion 

• SMT solvers have demonstrated they can effectively 
resolve constraints generated by static security 
checkers, AEG systems, and copy protection analysts. 

• Improving the state of the art will require more 
effective modeling of the execution environment and 
more sophisticated methods for generating candidate 
formulae without user-interaction (automated 
constraint generation a.k.a. inference) 

• Interesting challenges remain in encoding more 
complex and informed strategies as SMT formula (ex: 
to model exploit mitigation bypass techniques) 

 


