
SMT solvers for software security

Tales of automation…

Usenix Security Workshop on Offensive Technologies (WOOT’12)

August 7th 2012, Bellevue, WA, USA

Julien Vanegue (Microsoft Security Science)

Sean Heelan (Immunity Inc.)

Rolf Rolles (Unaffiliated)

Summary

• Discuss the applicability of SMT (Satisfiability Modulo
Theories) solvers for software security, in particular for:
– Vulnerability checking

– Exploit generation

– Copy protection analysis

• Overall workflow: abstract a program into a formula
and check if the formula has the desired properties

• Overall message: SMT solvers perform great once the
problem domain has been defined. Solvers do not
define the problem automatically.

Part I: Finding vulnerabilities using SMT

Work flow for static security checking

(1) The security auditor formalizes what he thinks is
the formal code contract into an annotation (directive
to the checker)

(2) The analyzed source code gets translated into an
intermediate form.

(3) The intermediate form is consumed by a theorem
prover that creates a “verification condition” (VC, aka
a safety formula)

(4) The VC is passed to the SMT solver for resolution

 Boogie VCGen

Boogie program

HAVOC: Heap aware verifier
for C/C++ programs

SMT Solver (Z3)
Decision Procedures for

types, lists, arrays

Verification condition

Verified Warning

 C/C++  BoogiePL

C/C++ program

Memory model
[POPL’09]

Annotations

 Example on Loop analysis
Sendmail CrackAddr() buffer overflow

• CVE-2002-1337: “A buffer overflow in sendmail 5.79 to

8.12.7 allows remote attackers to execute arbitrary code
via certain formatted address fields, related to sender
and recipient header comments as processed by the
crackaddr function of headers.c”

• Published by Mark Dowd, Exploited by Last Stage of
Delirium group in 4 hours (bugtraq posts).

• Presented at Infiltrate 2011 by Thomas Dullien as an
example of failure of static analysis tools based on state
merging (e.g. path-insensitive analyzers)

• We show how to check the absence of such
vulnerabilities using loop invariants in Havoc/Boogie/Z3.

We can feed this invariant to HAVOC in this syntax:

__loop_assert((upperlimit == globalbuf + 15 && quotation == FALSE && roundquote == FALSE) ||
 (upperlimit == globalbuf + 14 && quotation == TRUE && roundquote == FALSE) ||
 (upperlimit == globalbuf + 14 && quotation == FALSE && roundquote == TRUE) ||
 (upperlimit == globalbuf + 13 && quotation == TRUE && roundquote == TRUE))

An inductive invariant for crackaddr()

Let us construct the finite state
machine for this loop in domain
(quotation,roundquote,offset) :

• States correspond to memory

values at the beginning of a
loop iteration.

• Transitions correspond to

executing an iteration after
reading a character in the
input string.

Part II: Assisting exploit generation using SMT

Automatic Exploit Generation (AEG)

• Loosely defined as “Given a program and a
vulnerability, automatically craft an input that
redirects control flow to malicious code”

• Canonical example of a problem domain
where there have been many successes but
real world applicability is hindered by
modeling/constraint generation rather than
solver performance or features

State of the Art

• Based directly on techniques and platforms
built for symbolic/concolic execution

• Given a sequence of instructions, construct a
path condition reflecting the modifications
(e.g. arithmetic transformations) and
constraints (e.g. conditional jumps) on
attacker provided input

Example: Constructing the Path Condition

0: add al, al

1: sub al, 0x0f

2: test al, al

3: jz 6

4: ...

5: jmp 7

6: ...

Path Condition at 6:

 a1 = a0 + a0

∧ a2 = a1 - 15

∧ a2 = 0

(a0 represents the initial
input with an created on a
register write)

Restricted-Model Exploit Generation

• The entirety of knowledge possessed by the AEG
system is in the form of these path conditions

• Lets represent this as a map K from
registers/memory locations to logical formulae:
K: M  F

 Ex: M[eax] = (eax != 0 ^ Tainted(eax))

• No information on the relationship between user
input and the heap state, thread execution,
signals/events etc

Restricted-Model Exploit Generation

Heap Layout on Run / Input 1

Heap Layout on Run / Input 2

Overflow Chunk Data

Overflow Chunk Data

Function Pointer

(1) What can K tell us about the
data contained in the overflow
chunk and other heap chunks?

(2) What can K tell us about the
effect of attacker input on the
relative layout of the overflow
chunk with respect to other heap
chunks?

Accurate exploit generation
requires information from both
categories but K only provides the
first

Restricted-Model Exploit Generation

• K combined with a set of exploit templates to
produce SMT formulae
– A template is a static set of rules describing the

constraints to generate when certain conditions are
met (ex: “If the stored return address can be
influenced then try to set it to address 0xABCD”)

– Crucially, a template is restricted to the information
present in K (no heap crafting or other external
environment control strategies)

• At present templates have only described basic,
single-shot exploitation techniques (no
vulnerability chaining, no information
disclosures)

Deconstructing the myth of fully
automated exploit generation

• The real execution environment is not
accurately described by K

• Modern operating systems have killed the
majority of generic exploitation techniques

– More often than not static templates are not a
feasible solution (need domain specific language?)

• Usually, modern exploits require application
specific techniques, memory crafting and bug
chaining: how to encode this in SMT?

Part III: Analyze copy protection using SMT

Copy protection analysis

• SMT solvers for copy protection analysis have
been used mostly in two scenarios:

(1) Equivalence checking between obfuscated code
generated out of a copy protection technology and
the original non-obfuscated code.

(2) Semi-automated cryptanalysis of serial number
algorithms and bypassing them using key generation
(“keygens”)

• We give an example of (2) in next slide

Ex: the main loop for a serial algorithm

1. again:

2. lodsb // al0,i = activation code[i]

3. sub al, bl // ∧ al1,i = al0,i − ebxi[7 : 0]

4. xor al, dl // ∧ al2,i = al1,i ⊕ edxi[7 : 0]

5. Stosb // ∧ output[i] = al2,i

6. rol edx, 1 // ∧ edxi+1 = rotate_left(edxi, 1)

7. rol ebx, 1 // ∧ ebxi+1 = rotate_left(ebxi, 1)

8. loop again

Conclusion

• SMT solvers have demonstrated they can effectively
resolve constraints generated by static security
checkers, AEG systems, and copy protection analysts.

• Improving the state of the art will require more
effective modeling of the execution environment and
more sophisticated methods for generating candidate
formulae without user-interaction (automated
constraint generation a.k.a. inference)

• Interesting challenges remain in encoding more
complex and informed strategies as SMT formula (ex:
to model exploit mitigation bypass techniques)

