
Asynchronous Directory
Operations in CephFS

Jeff Layton <jlayton@redhat.com>
Patrick Donnelly <pdonnell@redhat.com>

mailto:jlayton@redhat.com
mailto:pdonnell@redhat.com

WHO ARE THESE GUYS?
● Jeff

○ longtime kernel dev for RH, focusing on network filesystems (NFS and CIFS, mostly)
○ has done some recent work with userland ceph
○ recently took over upstream maintainership of kcephfs

● Patrick
○ Joined RH in 2016; CephFS team lead
○ Works on all aspects of CephFS but mostly shepherds projects now.

NETFS DIRECTORY OPERATIONS ARE SLOW
● open(..., O_CREAT), unlink(), etc.

● usually involve a synchronous round trip to server

● Affects many common workloads:
○ untar’ing files
○ rsync
○ removing directories recursively
○ compiling software

Observation: why are local file systems so fast?
● Obvious: no roundtrip latency with a remote file server.
● Local file systems buffer metadata mutations in memory until fsync on the

directory/file or sufficient time has elapsed. Consequences:
○ Mutations can be written in batch to the journal in more efficient writes.
○ Operations are not guaranteed to be durable if no fsync is called:

■ rename, unlink, create require fsync on the containing directory file descriptor!
■ chmod, chown, setxattr require fsync on inode’s file descriptor!

WHY ARE LOCAL FILESYSTEMS SO FAST?
● Obvious: no roundtrip latency with a remote file server.

● Most local file systems buffer metadata mutations in memory until fsync on
the directory/file or sufficient time has elapsed.

● Consequences:
○ Mutations can be written in batch to the journal in more efficient writes.
○ Operations are not guaranteed to be durable if no fsync is called:

■ rename, unlink, create require fsync on the containing directory file descriptor!
■ chmod, chown, setxattr require fsync on inode’s file descriptor!

What is CephFS?

Client Active
MDS

Journal

Metadata
Mutation
s

Standby
MDS

Active
MDS

Journal

RADOSData Pool Metadata
Pool

read
write Journal Flush

Metadata Exchange

open
mkdir
listdir

CEPHFS CAPABILITIES
● CephFS capabilities (aka caps) delegate parts of inode metadata to client
● Types: PIN, AUTH, FILE, LINK, XATTR
● All have a SHARED/EXCLUSIVE variety
● FILE caps have other bits (READ, WRITE, CACHE, BUFFER, LAZYIO)
● Shorthand notation: pAsxLsxFsxrwcbalXsx

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | p | _ |As x |Ls x |Xs x |Fs x c r w b a l |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

EXTENDING DIRECTORY CAPABILITIES
● FILE caps are largely unused on directories, (except Ds)
● Start handing them out on directories, and just interpret them differently
● So far:

○ CREATE requires Dc (aka Fc)
○ UNLINK requires Du (aka Fr)

● Work in conjunction with Fx caps
● Internally in MDS, done via a new lock caching facility
● Only handed out in response to first create or unlink in a directory

○ First call must be synchronous to establish the lock cache

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | p | _ |As x |Ls x |Xs x |Ds x c u |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

CEPHFS DENTRY CACHING
● Async dirops require reliable cached information about dentry

● Two mechanisms
○ individual positive or negative dentry lease
○ Fs caps on directory

● For latter, also track directory “completeness”
○ Basically whether we have a record of all dentries in a directory
○ Allows us to satisfy negative lookups w/o talking to the MDS

Asynchronous Metadata Mutations

SYNCHRONOUS UNLINKS (STATUS QUO)
● In CephFS, unlink is done synchronously by the client. The application does

not return from the syscall until the unlink is durable.
● This is particularly slow for recursive unlinks...

machine01

kernel

machine02

MDSapp

unlink(“dir/<1>”)...

= 0

open()

= fd

getdents(fd)

= 803

rmdir(“/dir”)

= 0

rmdir /dir

unlink /dir/...

caps /dir Fwrx

getattr /dir

caps /dir/... Fwrx

readdir /dir

SHOULD WE WAIT TO TRANSMIT ASYNC REQ’S?
● Namespace ops are fundamentally different from data writeback

● Normal Files:
○ Data is stored in kernel’s pagecache and later written to backing store
○ High probability that recently modified data will be changed again in future
○ Advantageous to delay write requests for a bit to allow writes to be batched

● Directories:
○ Workloads that rapidly create/unlink same dentry are fairly rare
○ Not much advantage to delaying transmission of any async request (exception: rsync)
○ Might change if we deem batched calls to be useful in future

ASYNCHRONOUS UNLINK
● Requirements:

○ Dx and Du (aka Fr) caps on parent directory
○ Known positive dentry

■ Positive dentry lease
■ Dx on the directory and a positive dentry
■ Primary dentry (hardlinked files do not apply)

● Fire off UNLINK call to MDS and then immediately delete the dentry locally
● When reply comes in, do only minimal processing (mostly error handling)
● rmdir() of parent has to wait for all child unlink replies to come back

○ Future work: support async rmdir!

UNLINK PERFORMANCE
Where the test-dirops directory has 10k files:

Without async dirops: With async dirops:

TIME SPENT IN ceph_unlink() (IN NS)
Without async dirops: With async dirops:

OPPORTUNITIES TO IMPROVE UNLINK
● Asynchronous rmdir

○ rmdir acts as an implicit fsync, preventing continuation until all child dirents are unlinked
○ rm -rf /mnt/cephfs/test-dirops/ behaves differently!

● Tuning in-flight asynchronous unlink operations
○ Find the proper balance between slowing down the application and performing the unlinks as

fast as possible. Too many operations in flight may disrupt other applications or other CephFS
clients!

● Batching unlink operations
○ Gather up unlink operations into single RPC so MDS can more efficiently acquire locks and

write journal segments.

ASYNCHRONOUS CREATE
● Requirements:

○ Dx and Dc (aka Fc) caps on parent directory
○ Known negative dentry

■ Negative dentry lease
■ Ds on parent directory + completeness

○ File layout (copied from first sync create in a directory)
○ Delegated inode number

● Fire off the create call immediately, set up new inode and return from open()
● Assume newly-created inode gets full caps from MDS (pAsxLsxFsxcbrwXxs)
● Always set O_EXCL in the call to MDS

INODE NUMBER DELEGATION
● Need to know in advance what the inode number will be

○ to hash inode properly in kernel
○ allow for writes before OPEN reply comes back

● MDS will now hand out ranges of inode numbers in CREATE responses
● new userland tunable: mds_client_delegate_inos_pct

○ “percentage of preallocated inos to delegate to client”
○ default == 50, so client usually has ~500 at a time

● Tied to MDS session
○ if session is reconnected, then (WIP) client should resend async creates with previously

delegated inodes

CREATE PERFORMANCE
Create 10k files in a directory:

Without async dirops: With async dirops:

TIME SPENT IN ceph_atomic_open() (IN NS)
Without async dirops: With async dirops:

??

Kernel Build (time make -j16 ; time make clean)

Without async dirops: With async dirops:

OPPORTUNITIES TO IMPROVE CREATE
● Optimize for rsync

○ In-place renames
● Batching creates similar to unlink
● Other operations: mkdir, symlink, in-place rename
● Error handling...

ERROR HANDLING
● If we return early from unlink() or open(), then what to do when the ops fail?

○ For creates, we may have already closed the file by the time reply comes in
○ Which failures are permitted by the protocol?

● From fsync(2) manpage:

Calling fsync() does not necessarily ensure that the entry in the directory
containing the file has also reached disk. For that, an explicit fsync() on a file
descriptor for the directory is also needed.

● Nobody really does this, and most modern local fs’ journal the create

ERROR HANDLING (CONT’D)
● Currently after failed unlink

○ mark directory non-complete
○ invalidate dentry
○ set writeback error on parent directory to show up on fsync(dirfd)

● After failed create
○ invalidate dentry
○ set writeback error on parent directory
○ set writeback error on created inode

● syncfs (patchset in progress to help enable this)
● We may need to consider new interfaces

Questions?
Jeff Layton <jlayton@redhat.com>

Patrick Donnelly <pdonnell@redhat.com>
https://ceph.io/

https://github.com/ceph/ceph.git/

mailto:jlayton@redhat.com
mailto:pdonnell@redhat.com
https://ceph.io/
https://github.com/ceph/ceph.git/

