Programming Emerging
Storage Interfaces

VAULT 2020 | Simon A. F. Lund | Samsung | SSDR

<simon.lund@samsung.com>

SANMSUNG THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: Why?

Command: 64byte Submission Queue Entry (sqe)

64 bytes to form an NVMe Command (Submission Entry)
~ Byta . Byez Byl
------------------T-------------
Opcode

Command Identifier PSD

EXPRESS

» The device media changed

« The device interface changed
’ Command Response PrOtOCC)l Response: (at least) 16byte Completion Queue Entry (cqe)

Atleast 16 bytes forming an NViMe Command Response (completion eniry)
o
QU eues  Bypes  Bye2 Byt
3130292827 2625242322212019 181716151413 1211109 8 7 6 6 4 3 2 1

- Submission Entries
- Completions Entries

Status Fleld Command Identifier

Q-Tuple

Submission Q Submission Q

[ NVMe Controller ]

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: Why?

* New devices doing old things faster
 The software storage-stack becomes the bottleneck
 Requires: efficiency

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: Why?

* New devices doing old things faster
 The software storage-stack becomes the bottleneck
 Requires: efficiency

* New devices doing old things in a new way
 Responsibilities trickle up the stack
« Host-awareness, the higher up, the higher the benefits
* Device = OS Kernel = Application
 Requires: control, as in, commands other than read/write

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: Why?

* New devices doing old things faster
 The software storage-stack becomes the bottleneck
 Requires: efficiency

* New devices doing old things in a new way
 Responsibilities trickle up the stack
« Host-awareness, the higher up, the higher the benefits
* Device = OS Kernel = Application
 Requires: control, as in, commands other than read/write

* New devices doing new things!
* New storage semantics such as Key-Value
* New hybrid semantics introducing compute on and near storage
 Requires: flexibility / adaptability, as in, ability to add new commands

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: Why?

* New devices doing old things faster
 The software storage-stack becomes the bottleneck
 Requires: efficiency

* New devices doing old things in a new way
 Responsibilities trickle up the stack
« Host-awareness, the higher up, the higher the benefits
* Device = OS Kernel = Application
 Requires: control, as in, commands other than read/write

* New devices doing new things!
* New storage semantics such as Key-Value
* New hybrid semantics introducing compute on and near storage
 Requires: flexibility / adaptability, as in, ability to add new commands

= Increased requirements on the host software stack

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: Using io_uring

« The newest Linux 10 interface: io_uring
A user space < kernel communication channel
* A transport mechanism for commands

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: Using io_uring

Command: 64byte Submission Queue Entry (sqe)

« The newest Linux 10 interface: io_uring
A user space < kernel communication channel
* A transport mechanism for commands

* Queue Based (ring mem. kernel < user space)
« Submission queue

- populated by user space, consumed by Kernel
« Completion queue

- populated by kernel, in-response
- consumed by user space

Response: 16byte Completion QUeue Entry (cqe)




Programming Emerging Storage Interfaces: Using io_uring

Command: 64byte Submission Queue Entry (sqe)

« The newest Linux 10 interface: io_uring
A user space < kernel communication channel
* A transport mechanism for commands

Queue Based (ring mem. kernel <& user space)
« Submission queue

- populated by user space, consumed by Kernel
« Completion queue

- populated by kernel, in-response

- consumed by user space
A syscall, io uring enter, for sub.+compl.

Response: 16byte Completion Queue Entry (cqe) w

A second for queue setup (io uring setup)

Resource registration (io uring register)



Programming Emerging Storage Interfaces: Using io_uring

* It is efficient* on a single core one can get
« 1.7M 10PS (polling) ~ 1.2M IOPS (interrupt driven)
* The Linux aio interface was at ~ 608K IOPS (interrupt driven)

* It is quite flexible
 Works with UNIX file abstraction

- Not just when it encapsulates block devices
« Growing command-set (opcodes)

* It Is adaptable
- Add a new opcode = implement handling of it in the Kernel

*Efficient 10 with io_uring, https://kernel.dk/io uring.pdf

Kernel Recipes 2019 - Faster 10 through io_uring, https://www.youtube.com/watch?v=-5T4Cjw46ys

THE NEXT CREATION STARTS HERE


https://kernel.dk/io_uring.pdf
https://www.youtube.com/watch?v=-5T4Cjw46ys

Programming Emerging Storage Interfaces: Using io_uring

« Advanced Features
* Register files (RF)
 Fixed buffers (FB)
* Polling 10 (IOP)
» SQ polling by Kernel Thread (SQT)

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: Using io_uring

« Advanced Features 4K Random Read IOPS | 10PS
i ‘ i o D1
- Register files (RF) nterrupt nsec) | Q QD16
» Fixed buffers (FB) 1200 741 K 749 K

* Polling 10 (IOP) io_uring 229 2l BEV K
« SQ polling by Kernel Thread (SQT)

« Efficiency revisited
* Null Block instance w/o block-layer | el €ie e o) HEEET IOPS | 1OPS
SQT Polling nsec QD1 | QD16

io_uring +SQT +RF 644 1.25 M 1.7 M

io_uring +RF +FB 807105M 1.02 M

lo_uring +SQT RF +FB 567 1.37 M 2.0 M

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: Using io_uring

e Advanced Features 4K Random Read I0PS I0PS
Interrupt nsec QD1 QD16

* Register files (RF)
« Fixed buffers (FB) 1200 741K
« Polling 10 (IOP) io_uring 926 922 K
* SQ polling by Kernel Thread (SQT)

.. .. io_uring +RF +FB 807 1.05 M
« Efficiency revisited °

749 K
927 K
1.02 M

* Null Block instance w/o block-layer | el €ie e o) HEEE T IOPS | 1OPS
SQT Polling nsec) | QD1 | QD16

« Efficiency vs Ease of Use
« Opcode restrictions when using FB io_uring +5QT +RF
* Do not use IOP + SQT io_uring +SQT RF +FB 567 1.37 M
« Know that register files is required for SQT
 Use buffer and file registration indexes instead of *iov and handles

644 1.25 M

THE NEXT CREATION STARTS HERE

1.7 M
20 M




Programming Emerging Storage Interfaces: Using io_uring
« Register files (RF) Interrupt nsec QD1 | QD16
* Fixed buffers (FB) 1200 741K 749K

* Polling 10 (IOP) io_uring 229 2l BEV K
« SQ polling by Kernel Thread (SQT)

« Efficiency revisited
» Null Block instance w/o block-layer
. SQT Polling nsec) | QD1 | QD16
e Efficiency vs Ease of Use
« Opcode restrictions when using FB io_uring +5QT +RF 644125M 1.7 M
* Do not use IOP + SQT io_uring +SQT RF +FB 567 137 M 2.0 M
« Know that register files is required for SQT
 Use buffer and file registration indexes instead of *iov and handles
2 rtfm, man pages, pdf, mailing-lists, github, and talks document it well
= liburing makes it, if not easy, then easrer

io_uring +RF +FB 807105M 1.02 M

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: Using Linux IOCTLs

* The oldest? Linux IO interface: IOCTL
* A kernel <> user space communication channel

* The interface is
* Not efficient
« Adaptable but not flexible
- Never break user space!
» Control oriented

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: Using Linux IOCTLs

Command: 80byte Submission + Completion

* The oldest? Linux IO interface: IOCTL
* A kernel & user space communication channel

* The interface is
* Not efficient
« Adaptable but not flexible
- Never break user space!
 Control oriented

« However, the NVMe driver IOCTLs are
* A transport mechanism for commands
* Very flexible — pass commands without changing the Kernel
* Rich control, but not 7u// control, of the NVMe command / sqe
 Can even be used for non-admin |0, however, not efficiently




Programming Emerging Storage Interfaces: Assisted by Linux sysfs

« The convenient Linux 1O interface: sysfs
* A kernel <> user space communication channel
* File system semantics to retrieve system, device, and driver information
- Great for retrieving device properties




Programming Emerging Storage Interfaces: On Linux

 Everything you need encapsulated in the file abstraction

* io_uring / liburing for efficiency

« sysfs for convenient device and driver information

* NVMe IOCTLs for control and flexibility

File-systems

io_uring:
read
write

io_uring:
cmd X

Block Device |4

syscalls()

Linux Kernel
NVMe Driver

®

G
—d N1

( storage Service) N\
]\"\\__,;\\\T//i_/’ ‘“"‘ - j‘
SAMBA FeRe
| NEXT |
CREATION

—_— — —

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using Intel SPDK

« The Storage Platform Development Kit
« Tools and libraries for high performance, scalable, user-mode storage

/ﬂ\,

applications
@ ‘Storage Servicell}

e It is efficient*
« 10M IOPS from one thread

SAMBA FeRe
| NEXT |
CREATION

—_— — —

« Thanks to a user space, polled-mode, ourb
asynchronous, lockless NVMe driver W
e zero-copy command payloads
o |t is erXibIe fsi)éf/flie attr, io_téring: ztnigeY
» Storage stack as an API e
. spdk_:_r:w_cmd
* |t is extremely adaptable Pk
- Full control over SQE construction |- £ =
Linux Kernel SPDK
NVMe Driver NVMe Driver

*10.39M Storage 1/O Per Second From One Thread, https://spdk.io/news/2019/05/06/nvme/

THE NEXT CREATION STARTS HERE


https://spdk.io/news/2019/05/06/nvme/

Programming Emerging Storage Interfaces using Intel SPDK

« The Storage Platform Development Kit
« Tools and libraries for high performance, scalable, user-mode storage

applications
@ .;‘\ Storage Service,l,}

* It is efficient* revisited
« 4K Random Read at QD1
« On physical locally attached NVMe device ...

read
write

SAMBA §FekRe
[ DiEXD )
CREATION

—_— — —

aio:
read

ioctl:
control
state

QD1: io_uring vs SPDK | IOPS

io_uring: cmd Y,
io uring +SQT +RF 117 K 479 MB/s cma X e
SPDK 150 K 587 MB/s  fL
Block Device |« syscalls() API
Linux Kernel SPDK
NVMe Driver NVMe Driver

*10.39M Storage 1/O Per Second From One Thread, https://spdk.io/news/2019/05/06/nvme/

THE NEXT CREATION STARTS HERE


https://spdk.io/news/2019/05/06/nvme/

Programming Emerging Storage Interfaces using Intel SPDK

« The Storage Platform Development Kit
« Tools and libraries for high performance, scalable, user-mode storage

/ﬂ\,

applications
@ .;‘\ Storage Serviceii

* It is efficient* e
AMBA SEiRe
*« T0M IOPS from one thread — R

» Thanks to a user space, polled-mode, -
asynchronous, lockless NVMe driver

e zero-copy command payloads

* It is flexible
» Storage stack as an API o e
* It is extremely adaptable ——
- Full control over SQE construction

API

SPDK
NVMe Driver

*10.39M Storage 1/O Per Second From One Thread, https://spdk.io/news/2019/05/06/nvme/

THE NEXT CREATION STARTS HERE


https://spdk.io/news/2019/05/06/nvme/

Programming Emerging Storage Interfaces using xNVMe

Y
xNVMe API xnvme_buf xnvme cmd | xnvme async | xnvme_dev
xNVMe backend
) 4 ) 4

File-systems v v v File-systems
Block Device |4 syscalls() API syscalls() » Block Device

Linux Kernel SPDK FreeBSD Kernel

NVMe Driver NVMe Driver NVMe Driver

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using xNVMe

CINVMe
N/

A unified API primarily for NVMe devices

x'/ﬁ_‘\"
,I/ﬁ\ H\:'
@ \ Storage Service\j}
"p\u/ Py % “;1? ‘ d?‘-‘
SAMBA FeRe
| cnemmion!
CREATION

—_— — —

Y
xNVMe API xnvme_buf xnvme_cmd xnvme_async | xnvme_dev
xNVMe backend
) 4 ) 4

File-systems v v v File-systems
Block Device |4 syscalls() API syscalls() » Block Device

Linux Kernel SPDK FreeBSD Kernel

NVMe Driver NVMe Driver NVMe Driver

THE NEXT CREATION STARTS HERE




Programming Emerging Storage Interfaces using xNVMe

S<NVM
N
« A unified API primarily for NVMe devices |
NEXT |

« A cross-platform transport mechanism for NVMe commands Hult [CREATION,
A user space < device communication channel

Y
XNVMe API xnvme_buf xnvme_cmd xnvme_async xnvme_dev
xNVMe backend
) 4 ) 4

File-systems v v v File-systems
Block Device |4 syscalls() API syscalls() » Block Device

Linux Kernel SPDK FreeBSD Kernel

NVMe Driver NVMe Driver NVMe Driver

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using xNVMe

CNVM

N\

A unified API primarily for NVMe devices c’& SAMBA r_’{.‘é?g 1
A cross-platform transport mechanism for NVMe commands z creaon

A user space < device communication channel

 Focus on being easy to use 2
o Reaping the benefits of the lower | ayers xNVMe API xnvme_buf xnvme_cmd Xxnvme_async xnvme_dev
« Without sacrificing efficiency! xNVMe backend
= High performance and high productivity v v
File-systems File-systems
Y Y A 4
Block Device |4 syscalls() API syscalls() » Block Device
Linux Kernel SPDK FreeBSD Kernel
NVMe Driver NVMe Driver NVMe Driver

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using xNVMe

CNVM

\'.
S
N

A unified API primarily for NVMe devices c’& SAMBA r_’{.‘é?g 1
A cross-platform transport mechanism for NVMe commands z creaon

A user space < device communication channel

 Focus on being easy to use 2
o Reaping the benefits of the lower | ayers xNVMe API xnvme_buf xnvme_cmd Xxnvme_async xnvme_dev
« Without sacrificing efficiency! xNVMe backend
= High performance and high productivity v v
File-systems File-systems
Y Y A 4
Block Device |4 syscalls() API syscalls() » Block Device
* TOO|S and Utl'lteS Linux Kernel SPDK FreeBSD Kernel
. Including tools to build tools NVMe Driver NVMe Driver NVMe Driver

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using the xNVMe API

* XNVMe Base API
e Lowest level interface

» Device Lo
| Storage Serwcej,}
* Handles L
* |dentifiers
: c’& SAMBA Pern
° NEXT
Enumeration b 7 caeamion!
» Geometry
 Memory Management
« Command payloads v
o V| I’tu aI mem Ol’y ;(:z::: 2:::kend xnvme_buf xnvme_cmd xnvme_async xnvme_dev
« Command Interface v v
* SynChronous :Iloec‘::'::: af sy‘s:alls() AP‘Ir sysca‘ll's() 3 ::i:t:::
* ASynChVOHOUS Linux Kernel SPDK FreeBSD Kernel
_ Requests and caIIbacks NVMe Driver NVMe Driver NVMe Driver

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using the xNVMe API

« XNVMe Base API
« Lowest level interface Two devices in the system

* Device One is attached to the user space NVMe driver (SPDK)
« Handles The other is attached to the Linux Kernel NVMe Driver
e |dentifiers
* Enumeration

» Geometry

CNVMe
N2

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using the xNVMe API

* XNVMe Base API
» Lowest level interface

* Device
« Handles
* Identifiers
* Enumeration
* Geometry

« Memory Management
« Command payloads
e Virtual memory

« Command Interface
 Synchronous
« Asynchronous
- Context and callback (;\NVME

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using the xNVMe API

* XNVMe Base API
» Lowest level interface

* Device
 Handles
* Identifiers
* Enumeration
» Geometry

« Memory Management
« Command payloads
e Virtual memory

« Command Interface
 Synchronous
« Asynchronous
- Context and callback

CNVMe

IE NEXT CRE TARTS HERE



Programming Emerging Storage Interfaces using the xNVMe API

* XNVMe Base API
e Lowest level interface

* Device
 Handles
* |[dentifiers
* Enumeration
» Geometry

* Memory Manageme
« Command payloads
* Virtual memory

« Command Interface
 Synchronous
« Asynchronous
- Context and callback

When possible: the buffer-allocators will allocate physical / DMA
transferable memory to achieve zero-copy payloads

nt I

CNVMe
N2

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using the xNVMe API

* XNVMe Base API
e Lowest level interface

* Device
 Handles
e |dentifiers

« Enumeration : : :
When possible: the buffer-allocators will allocate physical / DMA

* Geometry transferable memory to achieve zero-copy payloads
 Memory Management I

« Command payloads

A/ (VETI 1100 Te) gVER T hE Virtual memory allocators will by default use libe but

« Command Interface are mappable to other allocators such as TCMalloc

 Synchronous
« Asynchronous
- Context and callback

CNVMe
N2

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using the xNVMe API

XNVMe Base API
e Lowest level interface

Device
 Handles

* |[dentifiers

* Enumeration
» Geometry

Memory Management
« Command payloads
e Virtual memory

Command Interface
 Synchronous
« Asynchronous

- Context and callback

Command Passthrough
The user constructs the command

CNVMe
N2

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using the xNVMe API

* XNVMe Base API Command Passthrough
e Lowest level interface The user constructs the command

* Device
 Handles
* |[dentifiers
* Enumeration
» Geometry

« Memory Management
« Command payloads
e Virtual memory

« Command Interface
 Synchronous

« Asynchronous Command Encapsulation
; The library constructs the command P~
Context and callback y QQ’JVME

THE NEXT CREATION STARTS HERE




Programming Emerging Storage Interfaces using the xNVMe API

* XNVMe Base API
e Lowest level interface

* Device
 Handles
* |[dentifiers
* Enumeration
» Geometry

 Memory Management
« Command payloads
e Virtual memory

« Command Interface
 Synchronous
« Asynchronous

- Context and callback

Synchronous Command Execution

Set command-option XNVME_CMD_SYNC

Check err for submission status
Check req for completion status

CNVMe
N

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using the xNVMe API

* XNVMe Base API
e Lowest level interface

* Device
 Handles
* |[dentifiers
* Enumeration
» Geometry

« Memory Management Asynchronous Command Execution

* Command payloads Set command-option XNVME_CMD_ASYNC
* Virtual memory Check err for submission status

What about completions?
- Command Interface e bel

» Synchronous
« Asynchronous
- Context and callback Q\NVME
N

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using the xNVMe API

« XNVMe Base API Asynchronous Context
« Lowest level interface Opaque structure backed by an encapsulation of an

io_uring sqg/cq ring or an SPDK 10 queue-pair.
* Device

 Handles

* |dentifiers
 Enumeration
» Geometry

« Memory Management
« Command payloads
e Virtual memory

« Command Interface
 Synchronous
« Asynchronous
- Context and callback (;\QyME

Helper functions to retrieve maximum queue-depth and
the current number of commands in-flight / outstanding

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using the xNVMe API

* XNVMe Base API
e Lowest level interface

* Device
 Handles
* |[dentifiers
* Enumeration
» Geometry

 Memory Management
« Command payloads
e Virtual memory

« Command Interface
 Synchronous
« Asynchronous
- Context and callback

Callback function; called upon command completion

Wait, blocking, until there are no more commands
outstanding on the given asynchronous context

Reap / process, at most max, completions,
non-blocking

CNVMe
N

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using the xNVMe API

* XNVMe Base _API Command completion result; used by the synchronous
* Lowest level interface as well as the asynchronous command modes

* Device
 Handles
* |[dentifiers
* Enumeration
» Geometry

« Memory Management
« Command payloads
e Virtual memory

« Command Interface
 Synchronous
« Asynchronous
- Context and callback (’TQ&VME

Asynchronous fields: context, callback, and callback-argument

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using the xNVMe API

 XNVMe Asynchronous APl Example

User-defined callback argument and callback function

CNVMe
N

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces using the xNVMe API

User-defined callback argument and callback function

 XNVMe Asynchronous APl Example

Asynchronous context and request-pool initialization




Programming Emerging Storage Interfaces using the xNVMe API

User-defined callback argument and callback function

 XNVMe Asynchronous APl Example

Writing a payload to device

Asynchronous context and request-pool initialization




Programming Emerging Storage Interfaces: What does it cost?

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide XNVME
=2

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide XNVME
=2

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

* Evaluating potential efficiency* cost of using xNVMe
 Cost in terms of nanoseconds per command aka layer-overhead
* Benchmark using fio 4K Random Read at QD1
« Compare the regular (REGLR) interface to xNVMe

- Using a physical locally attached NVMe device
« Using a Linux Null Block instance without the block-layer

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide

CNVMe
N

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

* Evaluating potential efficiency* cost of using xNVMe
 Cost in terms of nanoseconds per command aka layer-overhead
* Benchmark using fio 4K Random Read at QD1
« Compare the regular (REGLR) interface to xNVMe

- Using a physical locally attached NVMe device

Latency (nse)

REGLR/io uring +SQT +RF 8336
xNVMe/io uring +SQT +RF 8373
Overhead ~36

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide XNVME
=
THE NEXT CREATION STARTS HERE




Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

* Evaluating potential efficiency* cost of using xNVMe
 Cost in terms of nanoseconds per command aka layer-overhead
* Benchmark using fio 4K Random Read at QD1
« Compare the regular (REGLR) interface to xNVMe

- Using a physical locally attached NVMe device

Latency (nse) Latency (nse)

REGLR/io uring +SQT +RF 8336 REGLR/SPDK 6471
xNVMe/io uring +SQT +RF 8373 xNVMe /SPDK 6510
Overhead ~36 Overhead ~39

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide XNVME
=2

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

* Evaluating potential efficiency* cost of using xNVMe
 Cost in terms of nanoseconds per command aka layer-overhead
* Benchmark using fio 4K Random Read at QD1
« Compare the regular (REGLR) interface to xNVMe

- Using a physical locally attached NVMe device

Latency (nse) Latency (nse)

REGLR/io uring +SQT +RF 8336 REGLR/SPDK 6471
xNVMe/io uring +SQT +RF 8373 xNVMe /SPDK 6510
Overhead ~36 Overhead ~39

=>» Overhead about 36-39 nsec

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide XNVME
=2

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

* Evaluating potential efficiency* cost of using xNVMe
 Cost in terms of nanoseconds per command aka layer-overhead
* Benchmark using fio 4K Random Read at QD1
« Compare the regular (REGLR) interface to xNVMe

« Using a physical locally attached NVMe device = 36-39 nsec
« Using a Linux Null Block instance without the block-layer

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide

CNVMe
N

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

* Evaluating potential efficiency* cost of using xNVMe
 Cost in terms of nanoseconds per command aka layer-overhead
* Benchmark using fio 4K Random Read at QD1
« Compare the regular (REGLR) interface to xNVMe

« Using a physical locally attached NVMe device = 36-39 nsec
« Using a Linux Null Block instance without the block-layer

Latency (nseq

REGLR/io uring +SQT +RF 644
xNVMe/io uring +SQT +RF 730
Overhead 86

=» Overhead about 86 nsec

(f\‘
*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide XNVME
=2

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

Evaluating potential efficiency* cost of using xNVMe

 Cost in terms of nanoseconds per command aka layer-overhead
* Benchmark using fio 4K Random Read at QD1

« Compare the regular (REGLR) interface to xNVMe

Using a physical locally attached NVMe device = 36-39 nsec
Using a Linux Null Block instance without the block-layer = 86 nsec

Where is time spent?

 Function wrapping and pointer indirection

« Popping + pushing requests from pool

« Callback invocation

 Pseudo io_vec is filled and consumes space (io_uring)
 Suboptimal request-struct layout

‘/\
*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide XNVME
=2

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

Evaluating potential efficiency* cost of using xNVMe

 Cost in terms of nanoseconds per command aka layer-overhead
* Benchmark using fio 4K Random Read at QD1

« Compare the regular (REGLR) interface to xNVMe

Using a physical locally attached NVMe device = 36-39 nsec
Using a Linux Null Block instance without the block-layer = 86 nsec

Where is time spent? Things an application it likely to require

 Function wrapping and pointer indirection when doing more than synthetically
re-submitting upon completion

« Popping + pushing requests from pool
« Callback invocation —~

 Pseudo io_vec is filled and consumes space (io_uring)
 Suboptimal request-struct layout

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide XNVME
=2

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

Evaluating potential efficiency* cost of using xNVMe

 Cost in terms of nanoseconds per command aka layer-overhead
* Benchmark using fio 4K Random Read at QD1

« Compare the regular (REGLR) interface to xNVMe

Using a physical locally attached NVMe device = 36-39 nsec
Using a Linux Null Block instance without the block-layer = 86 nsec

Where is time spent? Things an application it likely to require

 Function wrapping and pointer indirection when doing more than synthetically
re-submitting upon completion

« Popping + pushing requests from pool
—~

« Callback invocation . -
* Pseudo io_vec is filled and consumes space (io_uring) Tiningsithat need fixing
» Suboptimal request-struct layout P

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide XNVME
=2

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

 Current cost, about 40~90 nanoseconds per command
» About the same cost as a DRAM load
* Cost less than not enabling IORING REGISTER BUFFERS (~100nsec)
« Cost less than going through a PCle switch (~150nsec)
« Cost a fraction of going through the block layer (~1850nsec)
 Cost a lot less than a read from todays fast media (~8000nsec)

CNVMe
N

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

 Current cost, about 40~90 nanoseconds per command
» About the same cost as a DRAM load
* Cost less than not enabling IORING REGISTER BUFFERS (~100nsec)
« Cost less than going through a PCle switch (~150nsec)
« Cost a fraction of going through the block layer (~1850nsec)
 Cost a lot less than a read from todays fast media (~8000nsec)
= Cost will go down!

CNVMe
N

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

 Current cost, about 40~90 nanoseconds per command
» About the same cost as a DRAM load
* Cost less than not enabling IORING REGISTER BUFFERS (~100nsec)
« Cost less than going through a PCle switch (~150nsec)
« Cost a fraction of going through the block layer (~1850nsec)
 Cost a lot less than a read from todays fast media (~8000nsec)

w SO WeTo Mo [V I Re-target your application without changes | IOPS
« What do you get? ./your_app pci:0000:01.00?nsid=1 150 K 613
* An even easier AP ./your_app /dev/nvme0Onl 116 K 456
- High-level abstractions when you need them
- Peel of the layers and get low-level control when you do not
* Your applications, tools, and libraries will run on Linux, FreeBSD, and SPDK
CNVMe
N

THE NEXT CREATION STARTS HERE




Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

 Current cost, about 40~90 nanoseconds per command

= Cost will go down! [EEEI TRV aE S e 1l Rt O RN E [
 What do you get? ./your_app pci:0000:01.00?nsid=1 150 K 613
* An even easier API ./your app /dev/nvmeOnl 116 K 456
- High-level abstractions when you need them
- Peel of the layers and get low-level control when you do not
* Your applications, tools, and libraries will run on Linux, FreeBSD, and SPDK

e There is morel!

CNVMe
N

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

 Current cost, about 40~90 nanoseconds per command

= Cost will go down! [EEEI TRV aE S e 1l Rt O RN E [
 What do you get? ./your_app pci:0000:01.00?nsid=1 150 K 613
* An even easier API ./your_app /dev/nvmeOnl 116 K 456
- High-level abstractions when you need them
- Peel of the layers and get low-level control when you do not
* Your applications, tools, and libraries will run on Linux, FreeBSD, and SPDK

* There is more!
« On top of the Base APl: Command-set APIs e.g. Zoned Namespaces
* NVMe Meta File System — browse logs as files in binary and YAML
« Command-line tool builders (library and bash-completion generator)

CNVMe
N

THE NEXT CREATION STARTS HERE



Programming Emerging Storage Interfaces: What does it cost?

* It is free, as in, APACHE 2.0

 Current cost, about 40~90 nanoseconds per command

e SR W oW [V LI Re-target your application without changes | IOPS

 What do you get? ./your_app pci:0000:01.00?nsid=1 150 K 613
* An even easier API ./your_app /dev/nvmeOnl 116 K 456
- High-level abstractions when you need them
- Peel of the layers and get low-level control when you do not
* Your applications, tools, and libraries will run on Linux, FreeBSD, and SPDK

* There is more!
« On top of the Base APl: Command-set APIs e.g. Zoned Namespaces
* NVMe Meta File System — browse logs as files in binary and YAML
« Command-line tool builders (library and bash-completion generator)

* First release: https://xnvme.io Q1 2020

CNVMe
N

THE NEXT CREATION STARTS HERE


https://xnvme.io/

THE NEXT CREATION STARTS HERE

Placing memory at the forefront of future innovation and creative IT life




Programming Emerging Storage Interfaces: test rig

« Slides, logs and numbers will be made available on: https://xnvme.io

System Spec

« Supermicro X11SSH-F

* Intel Xeon E3-1240 v6 @ 3.7Ghz
« 2x 16GB DDR4 2667 Mhz

Software
« Debian Linux 5.4.13-1 / fio 3.17 / liburing Feb. 14. 2020
« xXNVMe 0.0.14 / SPDK v19.10.x / fio 3.3 (SPDK plugin)

NVMe Device Specs.
| llatency | 1OPS | BW |

Random Read 8 usec 190 K 900 MB/sec

Random Write 30 usec 35 K 150 MB/sec

Null Block Device Config (bio-based)

queue_mode=0 irgmode=0 nr devices=1 completion nsec=10 home node=0 gb=100 bs=512 submit queues=1

hw queue depth=64 use per node hctx=0 no sched=0 blocking=0 shared tags=0 zoned=0 zone size=256 zone nr conv=0

Null Block Device Config (mq)

queue _mode=1 irgmode=0 nr devices=1 completion nsec=10 home node=0 gb=100 bs=512 submit queues=1

hw _queue depth=64 use per node hctx=0 no sched=0 blocking=0 shared tags=0 zoned=0 zone size=256 zone nr conv=0

THE NEXT CREATION STARTS HERE


https://xnvme.io/

