
Programming Emerging
Storage Interfaces

VAULT 2020 | Simon A. F. Lund | Samsung | SSDR
<simon.lund@samsung.com>

1

Programming Emerging Storage Interfaces: Why?

• The device media changed

• The device interface changed
• Command Response Protocol

• Queues

- Submission Entries

- Completions Entries

Command: 64byte Submission Queue Entry (sqe)

Response: (at least) 16byte Completion Queue Entry (cqe)

2

Programming Emerging Storage Interfaces: Why?

• New devices doing old things faster
• The software storage-stack becomes the bottleneck

• Requires: efficiency

3

Programming Emerging Storage Interfaces: Why?

• New devices doing old things faster
• The software storage-stack becomes the bottleneck

• Requires: efficiency

• New devices doing old things in a new way
• Responsibilities trickle up the stack

• Host-awareness, the higher up, the higher the benefits

• Device ➔ OS Kernel ➔ Application

• Requires: control, as in, commands other than read/write

4

Programming Emerging Storage Interfaces: Why?

• New devices doing old things faster
• The software storage-stack becomes the bottleneck

• Requires: efficiency

• New devices doing old things in a new way
• Responsibilities trickle up the stack

• Host-awareness, the higher up, the higher the benefits

• Device ➔ OS Kernel ➔ Application

• Requires: control, as in, commands other than read/write

• New devices doing new things!
• New storage semantics such as Key-Value

• New hybrid semantics introducing compute on and near storage

• Requires: flexibility / adaptability, as in, ability to add new commands

5

Programming Emerging Storage Interfaces: Why?

• New devices doing old things faster
• The software storage-stack becomes the bottleneck

• Requires: efficiency

• New devices doing old things in a new way
• Responsibilities trickle up the stack

• Host-awareness, the higher up, the higher the benefits

• Device ➔ OS Kernel ➔ Application

• Requires: control, as in, commands other than read/write

• New devices doing new things!
• New storage semantics such as Key-Value

• New hybrid semantics introducing compute on and near storage

• Requires: flexibility / adaptability, as in, ability to add new commands

➔Increased requirements on the host software stack

6

Programming Emerging Storage Interfaces: Using io_uring

• The newest Linux IO interface: io_uring
• A user space  kernel communication channel

• A transport mechanism for commands

7

Programming Emerging Storage Interfaces: Using io_uring

• The newest Linux IO interface: io_uring
• A user space  kernel communication channel

• A transport mechanism for commands

• Queue Based (ring mem. kernel  user space)

• Submission queue

- populated by user space, consumed by Kernel

• Completion queue

- populated by kernel, in-response

- consumed by user space

Command: 64byte Submission Queue Entry (sqe)

Response: 16byte Completion Queue Entry (cqe)

8

Programming Emerging Storage Interfaces: Using io_uring

• The newest Linux IO interface: io_uring
• A user space  kernel communication channel

• A transport mechanism for commands

• Queue Based (ring mem. kernel  user space)

• Submission queue

- populated by user space, consumed by Kernel

• Completion queue

- populated by kernel, in-response

- consumed by user space

• A syscall, io_uring_enter, for sub.+compl.

• A second for queue setup (io_uring_setup)

• Resource registration (io_uring_register)

Command: 64byte Submission Queue Entry (sqe)

Response: 16byte Completion Queue Entry (cqe)

9

Programming Emerging Storage Interfaces: Using io_uring

• It is efficient* on a single core one can get
• 1.7M IOPS (polling) ~ 1.2M IOPS (interrupt driven)

• The Linux aio interface was at ~ 608K IOPS (interrupt driven)

• It is quite flexible
• Works with UNIX file abstraction

- Not just when it encapsulates block devices

• Growing command-set (opcodes)

• It is adaptable
- Add a new opcode ➔ implement handling of it in the Kernel

*Efficient IO with io_uring, https://kernel.dk/io_uring.pdf

Kernel Recipes 2019 - Faster IO through io_uring, https://www.youtube.com/watch?v=-5T4Cjw46ys

https://kernel.dk/io_uring.pdf
https://www.youtube.com/watch?v=-5T4Cjw46ys

10

Programming Emerging Storage Interfaces: Using io_uring

• Advanced Features
• Register files (RF)

• Fixed buffers (FB)

• Polling IO (IOP)

• SQ polling by Kernel Thread (SQT)

11

Programming Emerging Storage Interfaces: Using io_uring

• Advanced Features
• Register files (RF)

• Fixed buffers (FB)

• Polling IO (IOP)

• SQ polling by Kernel Thread (SQT)

• Efficiency revisited
• Null Block instance w/o block-layer

4K Random Read
(Interrupt)

Latency
(nsec)

IOPS
QD1

IOPS
QD16

aio 1200 741 K 749 K

io_uring 926 922 K 927 K

io_uring +RF +FB 807 1.05 M 1.02 M

4K Random Read
(SQT Polling)

Latency
(nsec)

IOPS
QD1

IOPS
QD16

io_uring +SQT +RF 644 1.25 M 1.7 M

io_uring +SQT RF +FB 567 1.37 M 2.0 M

12

Programming Emerging Storage Interfaces: Using io_uring

• Advanced Features
• Register files (RF)

• Fixed buffers (FB)

• Polling IO (IOP)

• SQ polling by Kernel Thread (SQT)

• Efficiency revisited
• Null Block instance w/o block-layer

• Efficiency vs Ease of Use
• Opcode restrictions when using FB

• Do not use IOP + SQT

• Know that register files is required for SQT

• Use buffer and file registration indexes instead of *iov and handles

4K Random Read
(Interrupt)

Latency
(nsec)

IOPS
QD1

IOPS
QD16

aio 1200 741 K 749 K

io_uring 926 922 K 927 K

io_uring +RF +FB 807 1.05 M 1.02 M

4K Random Read
(SQT Polling)

Latency
(nsec)

IOPS
QD1

IOPS
QD16

io_uring +SQT +RF 644 1.25 M 1.7 M

io_uring +SQT RF +FB 567 1.37 M 2.0 M

13

Programming Emerging Storage Interfaces: Using io_uring

• Advanced Features
• Register files (RF)

• Fixed buffers (FB)

• Polling IO (IOP)

• SQ polling by Kernel Thread (SQT)

• Efficiency revisited
• Null Block instance w/o block-layer

• Efficiency vs Ease of Use
• Opcode restrictions when using FB

• Do not use IOP + SQT

• Know that register files is required for SQT

• Use buffer and file registration indexes instead of *iov and handles

➔rtfm, man pages, pdf, mailing-lists, github, and talks document it well

➔liburing makes it, if not easy, then easier

4K Random Read
(Interrupt)

Latency
(nsec)

IOPS
QD1

IOPS
QD16

aio 1200 741 K 749 K

io_uring 926 922 K 927 K

io_uring +RF +FB 807 1.05 M 1.02 M

4K Random Read
(SQT Polling)

Latency
(nsec)

IOPS
QD1

IOPS
QD16

io_uring +SQT +RF 644 1.25 M 1.7 M

io_uring +SQT RF +FB 567 1.37 M 2.0 M

14

Programming Emerging Storage Interfaces: Using Linux IOCTLs

• The oldest? Linux IO interface: IOCTL
• A kernel  user space communication channel

• The interface is
• Not efficient

• Adaptable but not flexible

- Never break user space!

• Control oriented

15

Programming Emerging Storage Interfaces: Using Linux IOCTLs

• The oldest? Linux IO interface: IOCTL
• A kernel  user space communication channel

• The interface is
• Not efficient

• Adaptable but not flexible

- Never break user space!

• Control oriented

• However, the NVMe driver IOCTLs are
• A transport mechanism for commands

• Very flexible – pass commands without changing the Kernel

• Rich control, but not full control, of the NVMe command / sqe

• Can even be used for non-admin IO, however, not efficiently

Command: 80byte Submission + Completion

16

Programming Emerging Storage Interfaces: Assisted by Linux sysfs

• The convenient Linux IO interface: sysfs
• A kernel  user space communication channel

• File system semantics to retrieve system, device, and driver information

- Great for retrieving device properties

17

Programming Emerging Storage Interfaces: On Linux

• Everything you need encapsulated in the file abstraction

• io_uring / liburing for efficiency

• sysfs for convenient device and driver information

• NVMe IOCTLs for control and flexibility

18

Programming Emerging Storage Interfaces using Intel SPDK

*10.39M Storage I/O Per Second From One Thread, https://spdk.io/news/2019/05/06/nvme/

• The Storage Platform Development Kit
• Tools and libraries for high performance, scalable, user-mode storage
applications

• It is efficient*
• 10M IOPS from one thread

• Thanks to a user space, polled-mode,
asynchronous, lockless NVMe driver

• zero-copy command payloads

• It is flexible
• Storage stack as an API

• It is extremely adaptable

- Full control over SQE construction

https://spdk.io/news/2019/05/06/nvme/

19

Programming Emerging Storage Interfaces using Intel SPDK

*10.39M Storage I/O Per Second From One Thread, https://spdk.io/news/2019/05/06/nvme/

• The Storage Platform Development Kit
• Tools and libraries for high performance, scalable, user-mode storage
applications

• It is efficient* revisited
• 4K Random Read at QD1

• On physical locally attached NVMe device

QD1: io_uring vs SPDK IOPS BW

io_uring +SQT +RF 117 K 479 MB/s

SPDK 150 K 587 MB/s

https://spdk.io/news/2019/05/06/nvme/

20

• The Storage Platform Development Kit
• Tools and libraries for high performance, scalable, user-mode storage
applications

• It is efficient*
• 10M IOPS from one thread

• Thanks to a user space, polled-mode,
asynchronous, lockless NVMe driver

• zero-copy command payloads

• It is flexible
• Storage stack as an API

• It is extremely adaptable

- Full control over SQE construction

Programming Emerging Storage Interfaces using Intel SPDK

*10.39M Storage I/O Per Second From One Thread, https://spdk.io/news/2019/05/06/nvme/

https://spdk.io/news/2019/05/06/nvme/

21

Programming Emerging Storage Interfaces using xNVMe

22

Programming Emerging Storage Interfaces using xNVMe

• A unified API primarily for NVMe devices

23

Programming Emerging Storage Interfaces using xNVMe

• A unified API primarily for NVMe devices

• A cross-platform transport mechanism for NVMe commands
• A user space  device communication channel

24

Programming Emerging Storage Interfaces using xNVMe

• A unified API primarily for NVMe devices

• A cross-platform transport mechanism for NVMe commands
• A user space  device communication channel

• Focus on being easy to use
• Reaping the benefits of the lower layers
• Without sacrificing efficiency!
➔ High performance and high productivity

25

Programming Emerging Storage Interfaces using xNVMe

• A unified API primarily for NVMe devices

• A cross-platform transport mechanism for NVMe commands
• A user space  device communication channel

• Focus on being easy to use
• Reaping the benefits of the lower layers
• Without sacrificing efficiency!
➔ High performance and high productivity

• Tools and utilites
• Including tools to build tools

26

• xNVMe Base API
• Lowest level interface

• Device
• Handles

• Identifiers

• Enumeration

• Geometry

• Memory Management
• Command payloads

• Virtual memory

• Command Interface
• Synchronous

• Asynchronous

- Requests and callbacks

Programming Emerging Storage Interfaces using the xNVMe API

27

• xNVMe Base API
• Lowest level interface

• Device
• Handles

• Identifiers

• Enumeration

• Geometry

Programming Emerging Storage Interfaces using the xNVMe API

Two devices in the system

One is attached to the user space NVMe driver (SPDK)
The other is attached to the Linux Kernel NVMe Driver

28

• xNVMe Base API
• Lowest level interface

• Device
• Handles

• Identifiers

• Enumeration

• Geometry

• Memory Management
• Command payloads

• Virtual memory

• Command Interface
• Synchronous

• Asynchronous

- Context and callback

Programming Emerging Storage Interfaces using the xNVMe API

29

• xNVMe Base API
• Lowest level interface

• Device
• Handles

• Identifiers

• Enumeration

• Geometry

• Memory Management
• Command payloads

• Virtual memory

• Command Interface
• Synchronous

• Asynchronous

- Context and callback

Programming Emerging Storage Interfaces using the xNVMe API

30

• xNVMe Base API
• Lowest level interface

• Device
• Handles

• Identifiers

• Enumeration

• Geometry

• Memory Management
• Command payloads

• Virtual memory

• Command Interface
• Synchronous

• Asynchronous

- Context and callback

Programming Emerging Storage Interfaces using the xNVMe API

When possible: the buffer-allocators will allocate physical / DMA
transferable memory to achieve zero-copy payloads

31

• xNVMe Base API
• Lowest level interface

• Device
• Handles

• Identifiers

• Enumeration

• Geometry

• Memory Management
• Command payloads

• Virtual memory

• Command Interface
• Synchronous

• Asynchronous

- Context and callback

Programming Emerging Storage Interfaces using the xNVMe API

The virtual memory allocators will by default use libc but
are mappable to other allocators such as TCMalloc

When possible: the buffer-allocators will allocate physical / DMA
transferable memory to achieve zero-copy payloads

32

• xNVMe Base API
• Lowest level interface

• Device
• Handles

• Identifiers

• Enumeration

• Geometry

• Memory Management
• Command payloads

• Virtual memory

• Command Interface
• Synchronous

• Asynchronous

- Context and callback

Programming Emerging Storage Interfaces using the xNVMe API

Command Passthrough
The user constructs the command

33

• xNVMe Base API
• Lowest level interface

• Device
• Handles

• Identifiers

• Enumeration

• Geometry

• Memory Management
• Command payloads

• Virtual memory

• Command Interface
• Synchronous

• Asynchronous

- Context and callback

Programming Emerging Storage Interfaces using the xNVMe API

Command Passthrough
The user constructs the command

Command Encapsulation
The library constructs the command

34

• xNVMe Base API
• Lowest level interface

• Device
• Handles

• Identifiers

• Enumeration

• Geometry

• Memory Management
• Command payloads

• Virtual memory

• Command Interface
• Synchronous

• Asynchronous

- Context and callback

Programming Emerging Storage Interfaces using the xNVMe API

Synchronous Command Execution

Set command-option XNVME_CMD_SYNC
Check err for submission status
Check req for completion status

35

• xNVMe Base API
• Lowest level interface

• Device
• Handles

• Identifiers

• Enumeration

• Geometry

• Memory Management
• Command payloads

• Virtual memory

• Command Interface
• Synchronous

• Asynchronous

- Context and callback

Programming Emerging Storage Interfaces using the xNVMe API

Asynchronous Command Execution

Set command-option XNVME_CMD_ASYNC
Check err for submission status
What about completions?

36

• xNVMe Base API
• Lowest level interface

• Device
• Handles

• Identifiers

• Enumeration

• Geometry

• Memory Management
• Command payloads

• Virtual memory

• Command Interface
• Synchronous

• Asynchronous

- Context and callback

Programming Emerging Storage Interfaces using the xNVMe API

Asynchronous Context
Opaque structure backed by an encapsulation of an
io_uring sq/cq ring or an SPDK IO queue-pair.

Helper functions to retrieve maximum queue-depth and
the current number of commands in-flight / outstanding

37

• xNVMe Base API
• Lowest level interface

• Device
• Handles

• Identifiers

• Enumeration

• Geometry

• Memory Management
• Command payloads

• Virtual memory

• Command Interface
• Synchronous

• Asynchronous

- Context and callback

Programming Emerging Storage Interfaces using the xNVMe API

Callback function; called upon command completion

Wait, blocking, until there are no more commands
outstanding on the given asynchronous context

Reap / process, at most max, completions,
non-blocking

38

• xNVMe Base API
• Lowest level interface

• Device
• Handles

• Identifiers

• Enumeration

• Geometry

• Memory Management
• Command payloads

• Virtual memory

• Command Interface
• Synchronous

• Asynchronous

- Context and callback

Programming Emerging Storage Interfaces using the xNVMe API

Command completion result; used by the synchronous
as well as the asynchronous command modes

Asynchronous fields: context, callback, and callback-argument

39

• xNVMe Asynchronous API Example

Programming Emerging Storage Interfaces using the xNVMe API

User-defined callback argument and callback function

40

• xNVMe Asynchronous API Example

Programming Emerging Storage Interfaces using the xNVMe API

User-defined callback argument and callback function

Asynchronous context and request-pool initialization

41

• xNVMe Asynchronous API Example

Programming Emerging Storage Interfaces using the xNVMe API

User-defined callback argument and callback function

Asynchronous context and request-pool initialization

Writing a payload to device

42

Programming Emerging Storage Interfaces: What does it cost?

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide

43

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide

44

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Evaluating potential efficiency* cost of using xNVMe
• Cost in terms of nanoseconds per command aka layer-overhead

• Benchmark using fio 4K Random Read at QD1

• Compare the regular (REGLR) interface to xNVMe

• Using a physical locally attached NVMe device

• Using a Linux Null Block instance without the block-layer

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide

45

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Evaluating potential efficiency* cost of using xNVMe
• Cost in terms of nanoseconds per command aka layer-overhead

• Benchmark using fio 4K Random Read at QD1

• Compare the regular (REGLR) interface to xNVMe

• Using a physical locally attached NVMe device

• ➔30nsec

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide

Comparing to Latency (nsec)

REGLR/io_uring +SQT +RF 8336

xNVMe/io_uring +SQT +RF 8373

Overhead ~36

46

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Evaluating potential efficiency* cost of using xNVMe
• Cost in terms of nanoseconds per command aka layer-overhead

• Benchmark using fio 4K Random Read at QD1

• Compare the regular (REGLR) interface to xNVMe

• Using a physical locally attached NVMe device

• ➔30nsec

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide

Comparing to Latency (nsec)

REGLR/io_uring +SQT +RF 8336

xNVMe/io_uring +SQT +RF 8373

Overhead ~36

Comparing to Latency (nsec)

REGLR/SPDK 6471

xNVMe/SPDK 6510

Overhead ~39

47

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Evaluating potential efficiency* cost of using xNVMe
• Cost in terms of nanoseconds per command aka layer-overhead

• Benchmark using fio 4K Random Read at QD1

• Compare the regular (REGLR) interface to xNVMe

• Using a physical locally attached NVMe device

• ➔30nsec

➔ Overhead about 36-39 nsec

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide

Comparing to Latency (nsec)

REGLR/io_uring +SQT +RF 8336

xNVMe/io_uring +SQT +RF 8373

Overhead ~36

Comparing to Latency (nsec)

REGLR/SPDK 6471

xNVMe/SPDK 6510

Overhead ~39

48

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Evaluating potential efficiency* cost of using xNVMe
• Cost in terms of nanoseconds per command aka layer-overhead

• Benchmark using fio 4K Random Read at QD1

• Compare the regular (REGLR) interface to xNVMe

• Using a physical locally attached NVMe device ➔ 36-39 nsec

• Using a Linux Null Block instance without the block-layer

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide

49

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Evaluating potential efficiency* cost of using xNVMe
• Cost in terms of nanoseconds per command aka layer-overhead

• Benchmark using fio 4K Random Read at QD1

• Compare the regular (REGLR) interface to xNVMe

• Using a physical locally attached NVMe device ➔ 36-39 nsec

• Using a Linux Null Block instance without the block-layer

➔ Overhead about 86 nsec

Comparing to Latency (nsec)

REGLR/io_uring +SQT +RF 644

xNVMe/io_uring +SQT +RF 730

Overhead 86

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide

50

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Evaluating potential efficiency* cost of using xNVMe
• Cost in terms of nanoseconds per command aka layer-overhead

• Benchmark using fio 4K Random Read at QD1

• Compare the regular (REGLR) interface to xNVMe

• Using a physical locally attached NVMe device ➔ 36-39 nsec

• Using a Linux Null Block instance without the block-layer ➔ 86 nsec

• Where is time spent?
• Function wrapping and pointer indirection

• Popping + pushing requests from pool

• Callback invocation

• Pseudo io_vec is filled and consumes space (io_uring)

• Suboptimal request-struct layout

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide

51

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Evaluating potential efficiency* cost of using xNVMe
• Cost in terms of nanoseconds per command aka layer-overhead

• Benchmark using fio 4K Random Read at QD1

• Compare the regular (REGLR) interface to xNVMe

• Using a physical locally attached NVMe device ➔ 36-39 nsec

• Using a Linux Null Block instance without the block-layer ➔ 86 nsec

• Where is time spent?
• Function wrapping and pointer indirection

• Popping + pushing requests from pool

• Callback invocation

• Pseudo io_vec is filled and consumes space (io_uring)

• Suboptimal request-struct layout

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide

Things an application it likely to require
when doing more than synthetically
re-submitting upon completion

52

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Evaluating potential efficiency* cost of using xNVMe
• Cost in terms of nanoseconds per command aka layer-overhead

• Benchmark using fio 4K Random Read at QD1

• Compare the regular (REGLR) interface to xNVMe

• Using a physical locally attached NVMe device ➔ 36-39 nsec

• Using a Linux Null Block instance without the block-layer ➔ 86 nsec

• Where is time spent?
• Function wrapping and pointer indirection

• Popping + pushing requests from pool

• Callback invocation

• Pseudo io_vec is filled and consumes space (io_uring)

• Suboptimal request-struct layout

*NOTE: System hardware, Linux Kernel, Software, NVMe Device Specs. and Null Block Device configuration in the last slide

Things an application it likely to require
when doing more than synthetically
re-submitting upon completion

Things that need fixing

53

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Current cost, about 40~90 nanoseconds per command
• About the same cost as a DRAM load

• Cost less than not enabling IORING_REGISTER_BUFFERS (~100nsec)

• Cost less than going through a PCIe switch (~150nsec)

• Cost a fraction of going through the block layer (~1850nsec)

• Cost a lot less than a read from todays fast media (~8000nsec)

54

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Current cost, about 40~90 nanoseconds per command
• About the same cost as a DRAM load

• Cost less than not enabling IORING_REGISTER_BUFFERS (~100nsec)

• Cost less than going through a PCIe switch (~150nsec)

• Cost a fraction of going through the block layer (~1850nsec)

• Cost a lot less than a read from todays fast media (~8000nsec)

➔ Cost will go down!

55

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Current cost, about 40~90 nanoseconds per command
• About the same cost as a DRAM load

• Cost less than not enabling IORING_REGISTER_BUFFERS (~100nsec)

• Cost less than going through a PCIe switch (~150nsec)

• Cost a fraction of going through the block layer (~1850nsec)

• Cost a lot less than a read from todays fast media (~8000nsec)

➔ Cost will go down!

• What do you get?
• An even easier API

- High-level abstractions when you need them

- Peel of the layers and get low-level control when you do not

• Your applications, tools, and libraries will run on Linux, FreeBSD, and SPDK

Re-target your application without changes IOPS MB/s

./your_app pci:0000:01.00?nsid=1 150 K 613

./your_app /dev/nvme0n1 116 K 456

56

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Current cost, about 40~90 nanoseconds per command
➔ Cost will go down!

• What do you get?
• An even easier API

- High-level abstractions when you need them

- Peel of the layers and get low-level control when you do not

• Your applications, tools, and libraries will run on Linux, FreeBSD, and SPDK

• There is more!

Re-target your application without changes IOPS MB/s

./your_app pci:0000:01.00?nsid=1 150 K 613

./your_app /dev/nvme0n1 116 K 456

57

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Current cost, about 40~90 nanoseconds per command
➔ Cost will go down!

• What do you get?
• An even easier API

- High-level abstractions when you need them

- Peel of the layers and get low-level control when you do not

• Your applications, tools, and libraries will run on Linux, FreeBSD, and SPDK

• There is more!
• On top of the Base API: Command-set APIs e.g. Zoned Namespaces

• NVMe Meta File System – browse logs as files in binary and YAML

• Command-line tool builders (library and bash-completion generator)

Re-target your application without changes IOPS MB/s

./your_app pci:0000:01.00?nsid=1 150 K 613

./your_app /dev/nvme0n1 116 K 456

58

Programming Emerging Storage Interfaces: What does it cost?

• It is free, as in, APACHE 2.0

• Current cost, about 40~90 nanoseconds per command
➔ Cost will go down!

• What do you get?
• An even easier API

- High-level abstractions when you need them

- Peel of the layers and get low-level control when you do not

• Your applications, tools, and libraries will run on Linux, FreeBSD, and SPDK

• There is more!
• On top of the Base API: Command-set APIs e.g. Zoned Namespaces

• NVMe Meta File System – browse logs as files in binary and YAML

• Command-line tool builders (library and bash-completion generator)

• First release: https://xnvme.io Q1 2020

Re-target your application without changes IOPS MB/s

./your_app pci:0000:01.00?nsid=1 150 K 613

./your_app /dev/nvme0n1 116 K 456

https://xnvme.io/

60

Programming Emerging Storage Interfaces: test rig

• Slides, logs and numbers will be made available on: https://xnvme.io

• System Spec
• Supermicro X11SSH-F
• Intel Xeon E3-1240 v6 @ 3.7Ghz
• 2x 16GB DDR4 2667 Mhz

• Software
• Debian Linux 5.4.13-1 / fio 3.17 / liburing Feb. 14. 2020
• xNVMe 0.0.14 / SPDK v19.10.x / fio 3.3 (SPDK plugin)

• NVMe Device Specs.

• Null Block Device Config (bio-based)
queue_mode=0 irqmode=0 nr_devices=1 completion_nsec=10 home_node=0 gb=100 bs=512 submit_queues=1

hw_queue_depth=64 use_per_node_hctx=0 no_sched=0 blocking=0 shared_tags=0 zoned=0 zone_size=256 zone_nr_conv=0

• Null Block Device Config (mq)
queue_mode=1 irqmode=0 nr_devices=1 completion_nsec=10 home_node=0 gb=100 bs=512 submit_queues=1

hw_queue_depth=64 use_per_node_hctx=0 no_sched=0 blocking=0 shared_tags=0 zoned=0 zone_size=256 zone_nr_conv=0

Latency IOPS BW

Random Read 8 usec 190 K 900 MB/sec

Random Write 30 usec 35 K 150 MB/sec

https://xnvme.io/

