
NICTA Copyright 2013 From imagination to impact

Supporting
Undoability in

System Operations

I. Weber, H. Wada, A Fekete,
A. Liu and L. Bass

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

System operation could go wrong

• Operation errors as the largest contributor to
system failures [1]

• Configuration errors (28%) and human errors
(13%) cause service disruptions [2]

• System operation plays a large role in overall
system reliability

[1] D. Oppenheimer, et. al., "Why do internet services fail and what can be done about it?," USENIX, 2003
[2] L. Barroso, et. al., "The Datacenter as a Computer," 2013

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Cloud increases the problem

• More and more services operate on API-
controlled infrastructures
– e.g., IaaS cloud
– Enabled frequent changes - increase chance of error

● Activities are performed without a safety net
– Deleting a virtual disk results in a total loss
– Stopping a VM changes relations to other resources.

Not obvious how to fix it.

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Project Goal and Scope

• Provide an "undo button" on Amazon Web Service
– Facility to rollback changes is valuable support for

dependability in various areas
– Introduce "atomicity" in system operation

• Allow for restoring the state of cloud resources
such as VM, disk volume, IP address and the
structure

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Challenges

• Not possible to "copy back snapshot" directly
– Can only manipulate through given API
– Need to find a right sequence of operations

• "Revert one-by-one" may not work
– Constraints among operations/resources
– Error-prone operations require "backup" plans

• Completely non reversible operations
– e.g., deleting resources

• Partly reversible operations
– Not all resource properties can be restorable, e.g., id,

creation timestamp, ...

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Our Approach: Checkpoint

Introduce "checkpoint"
operation to record the
state of resources

No change in given
API operations

No change in "provider"

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Our Approach: Rollback by AI Planning

"Rollback" command
triggers system
restoration

Leverage AI planning to find
a sequence of operations to
restore the state at the
checkpoint

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Why AI Planning?

• Traditional techniques to rollback long-running
transactions do not apply or are sub-optimal:
– There may be no direct reverse operation
– More than one operations required to reverse one
– Hand-coding for all possible cases is tedious

• AI Planning:
– Given start state, goal state, set of actions, searches

a solution in the state of possible plans
– Our variant finds maximal contingency plans

• If one action fails, but the goal is still reachable, a backup
plan will be executed

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Domain Model: Supported Resources

Resource Type in AWS API operations

Virtual machine launch, terminate, start, stop, change size

Disk volume create, delete, create-from-snapshot,
attach, detach

Disk snapshot create, delete

Elastic IP address allocate, release, associate, disassociate

Security group create, delete

Autoscaling group create, delete, change size, change config,
create config, delete config

Tag create, delete

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Our Approach: Wrap non reversible ops

Replace completely
non reversible
operations with
"pseudo-do" operation

"Commit" command
applies changes

I. Weber, et. al., "Automatic undo for cloud management via AI planning," HotDep 2012.

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Partly reversible operations

• Many operations seem to be undoable - but not

• e.g., starting a VM is NOT reverse of stopping it
– Properties cannot be restorable: resource id, dynamic

IP address, or creation timestamp

• Restoring ALL properties is not feasible for
many scenarios; however, it may not be required
– e.g., undoing "change the size of the web layer" can

safely ignore changes to the creation timestamps

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Our Approach: Undoability Checking

• Facility to examine whether a collection of
operations to execute are undoable

List properties
need to be
restorable

Check if operations
to execute are
undoable

"subset" of
the domain

algorithm and proof at undo.
research.nicta.com.au

http://undo.research.nicta.com.au
http://undo.research.nicta.com.au
http://undo.research.nicta.com.au

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Two Usage Models of Checker

• Offline: check the undoability of all operations to
execute under any situations
– Much stronger than needed since it checks situations

that may not occur
• e.g., delete a volume if resource X is in state Z

• Online: check the undoability of an operation
before execution under the current situation
– Check the undoability exactly as needed
– Performance penalty do to state sensing

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Evaluation

• Evaluate prototype
– Undo engine released at undo.research.nicta.com.au

• Execution time to search undo plans
– Use FF [3] with an extension for planning

• Execution time to check undoability of a domain
(offline)

• Validation with real-world scenarios

[3] J. Hoffmann, et. al, "The FF planning system: Fast plan generation through heuristic search," J. of
Artifical Intelligence Research, 14 (2001)

http://undo.research.www.nicta.com.au

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Evaluation: planning performance

• 20 length is the maximum we
needed for practical use cases

• Executing a plan with 10 steps
takes ~145 sec

on Intel i7 (3.4GHz) with 4GB RAM

I. Weber, et. al., "Automatic undo for cloud management via AI planning," HotDep 2012.

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Evaluation: undoability check

• Checking a full domain (35 actions)
– Projection: remove unrecoverable errors and few

properties, and adding pseudo-delete and undelete
– 11.0 seconds to check 1330 planning problems
– Result can be reusable unless the projection changes

• Examine our day-to-day manual tasks
– e.g., adding a slave to a database server, expand the

disk size, scaling up/down web layer, and upgrading
app layer

– Confirmed the undoability given a domain projection

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Conclusion

• Facility to offer "undo" and check undoability
– Provide rollback on a set of API operations
– Check if operations are undoable under in certain

context (projected domain)
• Prototype shows the execution time is marginal

and the algorithm scales well
– http://undo.research.nicta.com.au

• Future work
– Capture internal resource state
– Parallelizing plans to speed up execution

http://undo.research.nicta.com.au
http://undo.research.nicta.com.au

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Appendix

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Domain Model: Example

• Formally captures operations in domain
– e.g., a set of operations that AWS supports

• Action to delete a disk volume in PDDL

(:action Delete-Volume
 :parameters (?vol - tVolume)

 :precondition
 (and
 (volumeAvailable ?vol)
 (not (unrecoverableFailure ?vol)))

 :effect
 (oneof
 (and
 (deleted ?vol)
 (not (volumeAvailable ?vol)))
 (unrecoverableFailure ?vol)))

Volume to be deleted
must be available

Volume will become
deleted and
unavailable, or failure

NICTA Copyright 2013 From imagination to impact LISA '13, Nov 7, 2013

Domain Projection and Undoability Check

• Domain projection
– Remove properties not required to be restorable
– Add pseudo-delete for each delete operations

• Undoability checking algorithm

– pre-states is an infinite set. We obtain sufficient pre-
states from domain model

foreach operation op to execute:
 foreach pre-state:
 find possible post-states by applying op:
 foreach post-state:
 let AI planner finds a plan from pre to post-state
 if no plan found
 op is not undoable

