Improving Integer Security
for Systems with KINT

Xi Wang, Haogang Chen, Zhihao lia,
Nickolai Zeldovich, Frans Kaashoek
MIT CSAIL Tsinghua I1IS

Integer error

* Expected result goes out of bounds
— Math (o=-bit): 230 x 23 =233
— Machine (32-bit): 239x23=0

* Can be exploited by attackers

Example: buffer overflow

* Array allocation
* malloc(n * size)
— Overflow: 239x 23 =0

— Smaller buffer than expected

* Memory corruption

— Privilege escalation
— iPhone jailbreak (CVE-2011-0226)

Example: logical bug

e Linux kernel OOM killer (CVE-2011-4097)

— Compute “memory usage score” for each process
— Kill process with the highest score

* Score: nr_pages * 1000 / nr_totalpages
* Malicious process

— Consume too much memory => a low score
— Trick the kernel into killing innocent process

An emerging threat

2007 CVE survey:

“Integer overflows, barely in the top 10 overall in
the past few years, are number 2 for OS vendor
advisories, behind buffer overflows.”

e 2010 — early 2011 CVE survey: Linux kernel

More than 1/3 of [serious bugs] are integer errors.

Hard to prevent integer errors

* Arbitrary-precision integers (Python/Ruby)
— Performance: require dynamic storage
— Their implementations (in C) have/had overflows

* Trap on every overflow

— False positives: overflow checks intentionally incur
overflow

— Linux kernel requires overflow to boot up
 Memory-safe languages (C#/Java)

— Performance concerns: runtime checks

— Not enough: integer errors show up in logical bugs

Contributions

A case study of 114 bugs in the Linux kernel

KINT: a static analysis tool for C programs
— Used to find the 114 bugs

kmalloc_array: overflow-aware allocation API
NaN integer: automated overflow checking

Case study: Linux kernel

* Applied KINT to Linux kernel source code

— Nov 2011 to Apr 2012
— Inspect KINT’s bug reports & submit patches

* 114 bugs found by KINT

— confirmed and fixed by developers
— 105 exclusively found by KINT
— 9 simultaneously found by other developers

* Incomplete: more to be discovered
— No manpower to inspect all bug reports

Most are memory and logic bugs

Buffer
overflow
37%

Logical
bugs

2/3 of bugs have checks

With

incorrect
checks

67%

Example: wrong bounds
net/core/net-sysfs.c

struct flow table {
entries[0]
struct flow entries[0]; entries]..]
}s; entries[n-1]

unsigned long n = /* from user space */;
if (n > 1<<30) return -EINVAL;
table = vmalloc(sizeof(struct flow table) +
n * sizeof(struct flow));
for (1 = 0; 1 </n; ++1i)
table->entries[i] = ..;

230 8 (23) 0

Example: wrong type
drivers/gpu/drm/vmwgfx/vmwgfx_kms.c

u32 pitch = /* from user space*/;
u32 height = /* from user space */; 32-bit mul

overflow

Patch 1:
u32 size = pitch * height;

if (size > vram_size) return; C spec: still

32-bit mul!
Patch 2: use 64 bits?
ubd size = pitch * height;
if (size > vram_size) return;

Patch 3: convert pitch and height to u64 first!
ubd size = (ub4)pitch * (u64)height;
if (size > vram_size) return;

Writing correct checks is non-trivial

» 2/3 of the 114 integer errors have checks
* One check was fixed 3 times and still buggy
* Even two CVE cases were fixed incorrectly

— Each received extensive review

* How do we find integer errors?

Finding integer errors

* Random testing
— Low coverage: hard to trigger corner cases

* Symbolic model checking
— Path explosion

— Environment modeling

e KINT: static analysis for bug detection

KINT Overview

LLVM IR
(from C code)

Per-function
analysis

Range analysis
(whole-program)

|

Solving &
classification

Taint analysis
(whole-program)

User
annotations

Possible
bugs

KINT Overview

LLVM IR
(from C code)

Per-function
analysis

Range analysis
(whole-program)

|

Solving &
classification

Taint analysis
(whole-program)

User
annotations

Possible
bugs

Per-function analysis

int foo(unsigned long n)

{
if (n > 1<<30) return -EINVAL;

void *p = vmalloc(n * 8);

¥

e Under what condition will n * 8 overflow?
— Overflow condition: n > MAX / 8

e Under what condition will n * 8 execute?
— Bypass existing check “if (n > 1<<30)”
— Path condition: n £ 1<<30

Solving boolean constraints

int foo(unsigned long n)

{
if (n > 1<<30) return -EINVAL;

void *p = vmalloc(n * 8);
}

* Symbolic query: combine overflow & path conditions
— (n>MAX/ 8) AND (n < 1<<30)

e Constraint solver: n = 1<<30
— KINT: a possible bug

KINT Overview

LLVM IR
(from C code)

Per-function
analysis

Range analysis
(whole-program)

|

Solving &
classification

Taint analysis
(whole-program)

User
annotations

Possible
bugs

Checks in caller

int foo(unsigned long n)

{
if (n > 1<<30) return -EINVAL;
void *p = vmalloc(n * 8);

}

void bar()

{
if (x >= 0 & x <= 100)

foo(x);
}

* nin [0, 100]

— n * 8 cannot overflow

A whole-program range analysis

* Goals
— Reduce false positives
— Scale to large programs with many functions

e Use two constants as bounds for each variable
— Example: nin [0, 100]
— Simpler to solve than overflow & path conditions

* |teratively propagate ranges across functions

KINT Overview

LLVM IR
(from C code)

Per-function
analysis

Range analysis
(whole-program)

|

Solving &
classification

Taint analysis
(whole-program)

User
annotations

Possible
bugs

Taint analysis for bug classification

* Users can provide annotations to classify bugs
— Optional
e Users annotate untrusted input

— Example: copy_from_user()

— KINT propagates and labels bugs derived from
untrusted input

e Users annotate sensitive sinks
— Example: kmalloc() size
— KINT labels overflowed values as allocation size

KINT Implementation

* LLVM compiler framework
* Boolector constraint solver

KINT usage

$ make CC=kint-gcc # generate LLVM IR *.II
$ kint-range-taint *.11 # whole program
$ kint-checker *.11 # solving & classifying bugs

Unsigned multiplication overflow (32-bit)
fs/xfs/xfs acl.c:199:3

Untrusted source: struct.posix _acl.a count
Sensitive sink: allocation size

Evaluation

Effectiveness in finding new bugs
False negatives (missed errors)
False positives (not real errors)
Time to analyze Linux kernel

KINT finds new bugs

114 in the Linux kernel shown in case study
5 in OpenSSH

1 in the lighttpd web server

All confirmed and fixed

KINT finds most known integer errors

* Test case: all 37 CVE integer bugs in past 3 yrs
— Excluding those found by ourselves using KINT

* KINT found 36 out of 37 bugs

— 1 missing: overflow happens due to loops

— KINT unrolls loops once for path condition

False positives (CVE)

Test case: patches for 37 CVE bugs (past 3 yrs)
Assumption: patched code is correct

KINT reports 1 false error (out of 37)

Also found 2 incorrect fixes in CVE
— Useful for validating patches

False positives (whole kernel)

Linux kernel 3.4-rcl in April 2012
125,172 possible bugs in total

741 ranked as “risky”
— Allocation size computed from untrusted input

Skimmed the 741 bugs in 5 hours
Found 11 real bugs
We don’t know if the rest are real bugs

KINT analysis time

e Linux 3.4-rcl: 8,915 C files
6 CPU cores (w/ 2x SMT)
 Total time: 3 hours

Summary of finding bugs with KINT

* 100+ bugs in real-world systems
— Linux kernel, OpenSSH, lighttpd

* Could have many more bugs
— Difficult to inspect all possible bugs

* How to mitigate integer errors?

Mitigating allocation size overflow

 kmalloc(n * size)
— Frequently used in the Linux kernel
— Can lead to buffer overflow

* kmalloc array(n, size)

— Return NULL if n * size overflows

— Since Linux 3.4-rcl

Generalized approach: NaN integer

* Semantics
— Special “NaN” value: Not-A-Number
— Any overflow results in NaN
— Any operation with NaN results in NaN

e Easy to check for overflow
— Check if final result is NaN

* Implementation: modified Clang C compiler
— Negligible overhead on x86: FLAGS register checks

Verbose manual check (had 3 bugs)

size t symsz = /* input */;
size_t nr_events = /* input */;
size t histsz, totalsz;

if (symsz > (SIZE MAX - sizeof(struct hist)) / sizeof(u64))
return -1;

histsz = sizeof(struct hist) + symsz * sizeof(u64);

if (histsz > (SIZE _MAX - sizeof(void *)) / nr_events)
return -1;

totalsz = sizeof(void *) + nr_events * histsz;

void *p = malloc(totalsz);

if (p == NULL)
return -1;

NaN integer example

nan size t symsz = /* input */;

nan size t nr_events = /* input */;

nan size t histsz, totalsz;
histsz = sizeof(struct hist) + symsz * sizeof(u64);
totalsz
void *p = malloc(totalsz);
if (p == NULL)

return -1;

sizeof(void *) + nr_events * histsz;

void *malloc(nan size t size)

{

if (isnan(size)) return NULL;
return libc_malloc((size t)size);

Conclusion

Case study of integer errors in the Linux kernel
— Writing correct checks is non-trivial

KINT: static detection of integer errors for C
— Scalable analysis based on constraint solving

— 100+ bugs confirmed and fixed upstream
kmalloc array: safe array allocation

NaN integer: automated bounds checking
http://pdos.csail.mit.edu/kint/

