NICTA Automatic Undo
for Cloud
Management via
Al Planning

Ingo Weber, Hiroshi Wada, Anna
Liu, Alan Fekete, and Len Bass

NICTA Funding and Supporting Members and Partners

m‘ Trade &
Investment g

NSW

LW Australian Government

v = E

Sged>" Department of Broadband, Communications
and the Digital Economy

. u
@'JJ &I'“’gism W OFEQuEgmuNn

‘Quosnsland Usiversity of Tachnology AUSTRALIA

Australian Research Council

Motivation (Je

NICTA
* Audience of approach: users of Cloud Mgmt APIs

« After trying out something in AWS, may want to go back
to original state
— Encountered during product development for Yuruware
— No unit testing possible — annoying to undo tests
— If something fails, resources are left in arbitrary states

* Reverting not always that straight-forward:

— Attaching volume is no problem while the instance is running,
detaching might be problematic
— Creating / changing auto-scaling rules has effect on number of
running instances
« Cannot terminate additional instances, as the rule would create new
ones!

— Deleted / terminated / released resources are gone!

Approach

— T —~_

Cloud resources <]
_ Execute
KJ\ I deletes
A
APl Wrapper
Execute
rollback > Wrapped Logical state Apply
API calls (e.g., pseudo- changes
) ‘ delete flags A
@ APl calls
Administrator/script .
.V Commit
Checknoint Operations
ecKpoin
P (API calls)
Rollback
I
[
\/ Y
Sense cloud Sense cloud
resources resources
states states
Generate Generate
Resource Input as Input as Resource
state goal state Al Planner initial state state
(PDDL) (PDDL)
Generate
Input
Compen- Code ¢ Compen- Domain
sation model
enerator i
script g sation plan (PDDL)
Undo System

()Oo
NICTA

Example e

e State In AWS: e

— Instance il running
— Elastic IP el associated with 11

e Do: e Undo
— terminate 11 — undelete 11
— start 11

— assoclate el to il

Why Al Planning? e

" : . NICTA
« Traditional techniques to rollback long-running

transactions do not apply or are sub-optimal:

— Sagas (execute inverse ops in reverse chronological
order), does not work on Amazon Web Services

— Hand-coding handling for all possible cases is tedious

« Al Planning:

— Given start state, goal state, set of actions, searches
a solution in the state of possible plans

— Highly optimized heuristics tame the PSPACE-hard
problem for practical purposes

— Our variant finds ,maximal‘ contingency plans

 If one action fails, but the goal is still reachable, a backup
plan is found

Evaluation @

_ NICTA
e Basis: prototype

— full implementation (for selected resource types);
planner-only implementation (for more resource

types)
e Use cases: ~70 different planning settings tested
 Performance 1: scaling plan length

e Performance 2: scaling number of unrelated
resources

Evaluating performance 1: plan length J®

- NICTA
0
©
c
®)
(&
Q
*
*
*
1.5
*
. *
1
0.5
. *
*
O eeeseee o* o ¢ ¢ * * T T T |
0 10 20 30 40 50 60 70

Plan length

10

Conclusions & future work Oe

NICTA
e Summary

— Approach and prototype for rollback in cloud
management, using Al Planning technigues
 Formalized part of AWS APIs in a planning domain model

* Used an off-the-shelf planner and developed a prototype
around it

— Scales well in terms of number of rollback operations
needed, for practical system sizes
e Future work
— Finding forward plans / “do”
— Parallelizing plans

— Extending checkpoints to capture internal resource
state

11

Q&A Dr. Ingo Weber

iIngo.weber@nicta.com.au

Thank You!

Research study opportunities in dependable cloud computing:

« Software Architecture = |
« Data Management C] |
« Performance Engineering = B ||
e Autonomic Computing s | -
: ‘.&m Bolt (l Replicated instance

? i Replicated instance

To find out more, send your CV and undergraduate details to
students@nicta.com.au

12

