
Lowering the USB Fuzzing 
Barrier by Transparent 

Two-Way Emulation
Rijnard van Tonder

Herman Engelbrecht

Stellenbosch University



Motivation

➢ High-impact security bugs reside in the USB attack 
surface

➢ Challenging to explore due to
○ limited pure software solutions
○ hardware acquisition
○ inflexible hardware for security testing
○ knowledge requirement of USB

➢ Can we do better?

2



Existing Solutions

Software:
➢ Qemu emulation (MWR Labs, ‘11)
➢ Frisbee Lite (Davis, ‘12)

Hardware:
➢ USB Analyzer, Frisbee and 

GraphicUSB (Davis, ‘11)
➢ Arduino (Ose, ‘11, Davis, ‘11)

➢ Facedancer (Goodspeed, Bratus, ‘12), 
umap (Davis, ‘13)

➢ BeagleBone and USBProxy 
(Spill ‘14)

3



Fast ✓

Read and Write ability ✓

Man-in-the-middle ✓

Knowledge requirement ✓

Cost ✗

Flexible ✗

Fast ✗

Read and Write ability ✓

Man-in-the-middle ✗

Knowledge requirement ✗

Cost ✓

Flexible ✓

✓

4



Contributions
➢ The TTWE USB fuzzing framework that

○ Is flexible,
○ Is cost-effective, and
○ Lowers the knowledge requirement

➢ Initial results and analysis of bug-hunting with 
TTWE

➢ New possibilities for USB fuzzing and attacks

5



USB Protocol Primer

➢ Consists of requests and descriptors exchanged 
between host and peripheral

➢ USB defines device classes for peripherals
➢ Endpoints designate data direction and address
➢ Control transfers and Non-control transfers
➢ Packets

○ Token
○ Data
○ Handshake

6



TTWE

➢ Tap into the communication between host and 
peripheral

➢ Modify communication
➢ The Facedancer can emulate host or peripheral 

devices

➢ Emulate both simultaneously

7



Design

Peripheral Host

Host Emulation Peripheral Emulation

Mediating Computer
EP1OUTEP2OUT

EP3INEP1IN

EP0 EP0

8



Hardware Implementation

USB/Serial adapter

16-bit Microcontroller

USB controller

Target MC

9



Software Implementation

➢ Emulation drivers
○ Host and Peripheral mode
○ Communicate via named pipes

Two challenges:
➢ Endpoint Hijacking
➢ Handshake emulation

10



Endpoint Hijacking

EP1: IN
EP2: OUT

EP3: IN
EP1: OUT

➢ Problem: hardcoded endpoint descriptors

11



Design

Peripheral Host

Host Emulation Peripheral Emulation

Mediating Computer
EP1OUTEP2OUT

EP3INEP1IN

EP0 EP0

12



Transparent Emulation Results

➢ Mass storage device
○ Enumeration 
○ SCSI data

○ Mount, read, and 
write ability

13



Fuzzing Results

➢ “Dumb” fuzzing setup
➢ Printer Driver bug

○ Memory corruption

➢ Application DoS on print
○ Waits for ACK

➢ WiFi dongle
○ Invalid response to clear_feature

➢ Mass storage driver bug in printer
○ Malformed SCSI response

14



Limitations

➢ Slow
➢ Device timeouts
➢ Number of endpoints

15



Conclusion

➢ Flexible and inexpensive way to explore the USB 
attack surface

➢ Record and replay when fuzzing

Further avenues:
➢ TOCTTOU RIT attack (Mulliner, ‘12)
➢ Devices-as-seed-files

16



Questions

@rvtond

https://github.com/rvantonder/ttwe-proto

?
rvantonder@ml.sun.ac.za


