Lowering the USB Fuzzing Barrier by Transparent Two-Way Emulation

Rijnard van Tonder Herman Engelbrecht

Stellenbosch University

Motivation

- High-impact security bugs reside in the USB attack surface
- Challenging to explore due to
 - limited pure software solutions
 - hardware acquisition
 - inflexible hardware for security testing
 - knowledge requirement of USB
- ➤ Can we do better?

Existing Solutions

Software:

- Qemu emulation (MWR Labs, '11)
- ➤ Frisbee Lite (Davis, '12)

Hardware:

 USB Analyzer, Frisbee and GraphicUSB (Davis, '11)

 BeagleBone and USBProxy (Spill '14) Arduino (Ose, '11, Davis, '11)

 Facedancer (Goodspeed, Bratus, '12), umap (Davis, '13)

Fast	1
Read and Write ability	✓
Man-in-the-middle	1
Knowledge requirement	~
Cost	X
Flexible	X

Fast	X		
Read and Write ability			
Man-in-the-middle	×		
Knowledge requirement	X		
Cost	1		
Flexible	1		

Contributions

- ➤ The TTWE USB fuzzing framework that
 - Is flexible,
 - Is cost-effective, and
 - Lowers the knowledge requirement
- Initial results and analysis of bug-hunting with TTWE
- > New possibilities for USB fuzzing and attacks

USB Protocol Primer

- Consists of requests and descriptors exchanged between host and peripheral
- USB defines device classes for peripherals
- Endpoints designate data *direction* and *address*
- Control transfers and Non-control transfers
- Packets
 - Token
 - o Data
 - Handshake

TTWE

- Tap into the communication between host and peripheral
- Modify communication
- The Facedancer can emulate host or peripheral devices

 \succ Emulate both simultaneously

Design

Hardware Implementation

16-bit Microcontroller

Software Implementation

Emulation drivers

- Host and Peripheral mode
- Communicate via named pipes

Two challenges:

- ➤ Endpoint Hijacking
- Handshake emulation

Endpoint Hijacking

Problem: hardcoded endpoint descriptors

Design

Transparent Emulation Results

- ➤ Mass storage device
 - Enumeration
 - SCSI data
 - Mount, read, and write ability

DIR	EP	DATA (Base 10)
OUT	[0]	[128, 6, 0, 1, 0, 0, 64, 0]
IN	[0]	[18, 1, 0, 2, 0, 0, 0, 64, 143, 5, 135, 99, 2, 1, 1, 2, 3, 1]
OUT	[0]	[0, 5, 25, 0, 0, 0, 0, 0]
OUT	[0]	[128, 6, 0, 1, 0, 0, 18, 0]
IN	[0]	[18, 1, 0, 2, 0, 0, 0, 64, 143, 5, 135, 99, 2, 1, 1, 2, 3, 1]
OUT	[0]	[128, 6, 0, 6, 0, 0, 10, 0]
IN	[0]	[10, 6, 0, 2, 0, 0, 0, 64, 1, 0]
OUT	[0]	[128, 6, 0, 2, 0, 0, 9, 0]
IN	[0]	[9, 2, 32, 0, 1, 1, 0, 128, 100]
OUT	[0]	[128, 6, 0, 2, 0, 0, 32, 0]
IN	[0]	[9, 2, 32, 0, 1, 1, 0, 128, 100, 9, 4, 0, 0, 2, 8, 6, 80, 0, 7,
		5, 1 , 2, 64, 0, 0, 7, 5, 130 , 2, 64, 0, 0]
OUT	[0]	[128, 6, 0, 3, 0, 0, 255, 0]
IN	[0]	[4, 3, 9, 4]
OUT	[0]	[128, 6, 2, 3, 9, 4, 255, 0]
IN	[0]	[26, 3, 77, 0, 97, 0, 115, 0, 115, 0, 32, 0, 83, 0, 116, 0, 111,
		0, 114, 0, 97, 0, 103, 0, 101, 0]
OUT	[0]	[128, 6, 1, 3, 9, 4, 255, 0]
IN	[0]	[16, 3, 71, 0, 101, 0, 110, 0, 101, 0, 114, 0, 105, 0, 99, 0]
OUT	[0]	[128, 6, 3, 3, 9, 4, 255, 0]
IN	[0]	[18, 3, 49, 0, 57, 0, 54, 0, 50, 0, 51, 0, 55, 0, 51, 0, 54, 0]
OUT	[0]	[0, 9, 1, 0, 0, 0, 0, 0]
OUT	[0]	[161, 254, 0, 0, 0, 0, 1, 0]
IN	[0]	[0]
OUT	[1]	[85, 83, 66, 67, 1, 0, 0, 0, 36, 0, 0, 0, 128, 0, 6, 18, 0, 0, 0,
		36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
IN	[3]	[0, 128, 4, 2, 31, 0, 0, 0, 71, 101, 110, 101, 114, 105, 99, 32,
		70, 108, 97, 115, 104, 32, 68, 105, 115, 107, 32, 32, 32, 32, 32,
		32, 56, 46, 48, 55]
IN	[3]	[85, 83, 66, 83, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
OUT	[1]	[85, 83, 66, 67, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
IN	[3]	[85, 83, 66, 83, 2, 0, 0, 0, 0, 0, 0, 0, 1]
OUT	[1]	[85, 83, 66, 67, 3, 0, 0, 0, 18, 0, 0, 0, 128, 0, 6, 3, 0, 0, 0,
		18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Fuzzing Results

- ➤ "Dumb" fuzzing setup
- Printer Driver bug
 - Memory corruption
- Application DoS on print
 - Waits for ACK
- ➢ WiFi dongle
 - Invalid response to clear_feature
- Mass storage driver bug in printer
 - Malformed SCSI response

Limitations

- > Slow
- Device timeouts
- > Number of endpoints

Conclusion

- Flexible and inexpensive way to explore the USB attack surface
- Record and replay when fuzzing

Further avenues:

- ➤ TOCTTOU RIT attack (Mulliner, '12)
- Devices-as-seed-files

Questions

@rvtond

https://github.com/rvantonder/ttwe-proto

rvantonder@ml.sun.ac.za