
Karl Koscher, Tadayoshi Kohno, David Molnar

 Many potential reasons for vulnerabilities

 Time-to-market pressures

 Limited patching abilities

 Historic lack of adversarial pressure

 Limited visibility of the whole system

 Limited tools for security analysis

 Many potential reasons for vulnerabilities

 Time-to-market pressures

 Limited patching abilities

 Historic lack of adversarial pressure

 Limited visibility of the whole system

 Limited tools for security analysis

 For “traditional” software, we have many

 Memory checkers (e.g., valgrind)

 Fuzzers (e.g., Peach, SAGE, etc.)

 For embedded systems, not so much

 Hard to add instrumentation to real systems
 Limited resources

 Lack of standard abstractions (e.g., OS APIs)

 Hard to emulate
 Heterogeneity

 Systems are tightly coupled with their
environment

QEMU

QEMU

JTAG

 This is not easy

 We are not the first to propose this approach

 Prior work is limited by I/O performance

 A substantial amount of effort is needed to make
this work in practice

 We demonstrate the feasibility of near-real-
time whole system emulation

 We discuss the engineering challenges and
tradeoffs

 We identify and overcome new challenges
when running a whole system under this type
of emulation

 Our design decisions are driven by our failures

 First approach: Connect QEMU to OpenOCD
and issue memory reads/writes over JTAG

 This is extremely slow

 Most JTAG debuggers implement memory
operations by modifying the CPU state
 Read CPU state (i.e., registers)

 Update registers for operation (address, data)

 Inject instruction to perform the operation

 Single-step the CPU

 Read out the result from a register

 Restore CPU state

 To overcome this performance bottleneck, a
dedicated debug channel is provided

 Load small stub into cache/RAM

 Begin executing the stub

 Send commands/data over the dedicated debug
channel

 Next approach: A stub that accepts
commands over ARM’s DDC

 Stub is 768 bytes (small enough to lock in cache)

 Multiple commands:

 Single byte/word/dword write

 Multiple byte/word/dword read/write

 Set processor flags (e.g., interrupt enable flag)

 Much faster! … but still not fast enough

 Devices with coprocessors or watchdogs can be
very sensitive to timing

 Bottleneck? USB

 USB 2 polls devices up to once every millisecond

 => Under the best conditions, 500 ops/second

 Execution depends on the environment, so this
limits total performance

 Idea: memory map the target device into the
host’s address space using an FPGA connected
to the PCIe bus
 No OS overhead – it’s just (uncached) memory

 Can map entire 32-bit address spaces
into 64-bit emulator processes

 Great idea… in theory.

 Problem: PCIe requires that all 64-bit
mappings are prefetchable

 Side effect free

 This is fundamentally incompatible with MMIO

 So just ask for a 32-bit mapping and have
everything else move above 4 GB?

 Problem: Address space below 4 GB is scarce

 You can’t map more than 128 – 256 MB

 MMIO shouldn’t use that much space

 Problem: MMIO often does use that much

 Sparse memory layout for easy address decoding

 Memory-map FPGA registers to initiate I/O
requests over JTAG

 e.g., writing an address to the “read address”
register will initiate a read over JTAG

 Read the result out of the “read result” register

 PCIe stalls can be used to avoid polling for the
result…

▪ … unless your system is buggy

 MMIOs are now limited by JTAG speed

 For a 4 MHz JTAG clock, we can do ~16000 read
ops/sec and ~17000 write ops/sec

▪ v.s. 5 ops/sec in Avatar

 Now we have several more issues to address

 When an IRQ is raised on the target, the stub
disables IRQs and sends a notification to the
host

 The FPGA converts this to a host interrupt,
which is passed as a signal to qemu

 Emulated IRQ handler runs

 Acknowledges the IRQ

 Re-enables interrupts

▪ This sends a command to the stub to do so as well

 What if a second interrupt occurs?

 Multiple interrupts can occur on real
hardware, so systems are designed for it

 e.g. an interrupt controller which tracks
unacknowledged IRQs

 Some SoCs use plain ARM IRQs/FIQs, and
some use vectored IRQs

 Vectored IRQs are often implemented in ROM as
they are unsupported in the ISA

 This ROM can be emulated as well, so we only
have to handle IRQ/FIQ!

 For performance, RAM is not mirrored on the
target

 This breaks DMA

 No standard DMA interface

 Two approaches:

 Add a small amount of logic to qemu to emulate
DMA controller(s) of the SoC

 Exploit the fact that DMA buffers can’t be cached

 Watchdogs should generally be disabled

 Changing the SoC’s clock generator will cause
the JTAG adapter to lose sync

 Use Surrogates to find the write that causes it
to crash and refuse to pass that write

 Pico Computing E17 PCIe card

 Xilinx Virtex5 FX70T

▪ ~14% utilization

 ~1100 lines of Verilog

▪ ~1000 lines of tests

 FriendlyARM 2440
dev board (S3C2440)

 Full integration with dynamic analyses tools
(e.g., S2E)

 Learn approximate models of hardware
 Can search for bugs in parallel

 Verify potential bugs against real hardware

 Cheaper hardware (USB 3?) / Open Source

 We demonstrate the feasibility of near-real-time
whole system emulation

 We discuss the engineering challenges and
tradeoffs

 We identify and overcome new challenges when
running a whole system under this type of
emulation

