
Karl Koscher, Tadayoshi Kohno, David Molnar 



 



 Many potential reasons for vulnerabilities 

 Time-to-market pressures 

 Limited patching abilities 

 Historic lack of adversarial pressure 

 Limited visibility of the whole system 

 Limited tools for security analysis 



 Many potential reasons for vulnerabilities 

 Time-to-market pressures 

 Limited patching abilities 

 Historic lack of adversarial pressure 

 Limited visibility of the whole system 

 Limited tools for security analysis 



 For “traditional” software, we have many 

 Memory checkers (e.g., valgrind) 

 Fuzzers (e.g., Peach, SAGE, etc.) 

 

 For embedded systems, not so much 



 Hard to add instrumentation to real systems 
 Limited resources 

 Lack of standard abstractions (e.g., OS APIs) 
 

 Hard to emulate 
 Heterogeneity 

 Systems are tightly coupled with their 
environment 
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 This is not easy 

 We are not the first to propose this approach 

 Prior work is limited by I/O performance 

 A substantial amount of effort is needed to make 
this work in practice 



 We demonstrate the feasibility of near-real-
time whole system emulation 
 

 We discuss the engineering challenges and 
tradeoffs 
 

 We identify and overcome new challenges 
when running a whole system under this type 
of emulation 



 Our design decisions are driven by our failures 
 

 First approach: Connect QEMU to OpenOCD 
and issue memory reads/writes over JTAG 
 

 This is extremely slow 



 Most JTAG debuggers implement memory 
operations by modifying the CPU state 
 Read CPU state (i.e., registers) 

 Update registers for operation (address, data) 

 Inject instruction to perform the operation 

 Single-step the CPU 

 Read out the result from a register 

 Restore CPU state 



 To overcome this performance bottleneck, a 
dedicated debug channel is provided 

 Load small stub into cache/RAM 

 Begin executing the stub 

 Send commands/data over the dedicated debug 
channel 



 Next approach: A stub that accepts 
commands over ARM’s DDC 

 Stub is 768 bytes (small enough to lock in cache) 

 Multiple commands: 

 Single byte/word/dword write 

 Multiple byte/word/dword read/write 

 Set processor flags (e.g., interrupt enable flag) 

 



 Much faster! … but still not fast enough 

 Devices with coprocessors or watchdogs can be 
very sensitive to timing 

 Bottleneck? USB 

 USB 2 polls devices up to once every millisecond 

 => Under the best conditions, 500 ops/second 

 Execution depends on the environment, so this 
limits total performance 





 Idea: memory map the target device into the 
host’s address space using an FPGA connected 
to the PCIe bus 
 No OS overhead – it’s just (uncached) memory 

 Can map entire 32-bit address spaces  
into 64-bit emulator processes 

 
 Great idea… in theory. 



 Problem: PCIe requires that all 64-bit 
mappings are prefetchable 

 Side effect free 

 This is fundamentally incompatible with MMIO 

 

 So just ask for a 32-bit mapping and have 
everything else move above 4 GB? 



 Problem: Address space below 4 GB is scarce 

 You can’t map more than 128 – 256 MB 

 MMIO shouldn’t use that much space 

 

 Problem: MMIO often does use that much 

 Sparse memory layout for easy address decoding 





 Memory-map FPGA registers to initiate I/O 
requests over JTAG 

 e.g., writing an address to the “read address” 
register will initiate a read over JTAG 

 Read the result out of the “read result” register 

 PCIe stalls can be used to avoid polling for the 
result… 

▪ … unless your system is buggy 



 MMIOs are now limited by JTAG speed 

 For a 4 MHz JTAG clock, we can do ~16000 read 
ops/sec and ~17000 write ops/sec 

▪ v.s. 5 ops/sec in Avatar 

 
 Now we have several more issues to address 

 
 



 When an IRQ is raised on the target, the stub 
disables IRQs and sends a notification to the 
host 
 

 The FPGA converts this to a host interrupt, 
which is passed as a signal to qemu 



 Emulated IRQ handler runs 

 Acknowledges the IRQ 

 Re-enables interrupts 

▪ This sends a command to the stub to do so as well 

 

 What if a second interrupt occurs? 



 Multiple interrupts can occur on real 
hardware, so systems are designed for it 

 e.g. an interrupt controller which tracks 
unacknowledged IRQs 

 



 Some SoCs use plain ARM IRQs/FIQs, and 
some use vectored IRQs 

 Vectored IRQs are often implemented in ROM as 
they are unsupported in the ISA 

 This ROM can be emulated as well, so we only 
have to handle IRQ/FIQ! 



 For performance, RAM is not mirrored on the 
target 

 This breaks DMA 

 
 No standard DMA interface 



 Two approaches: 

 Add a small amount of logic to qemu to emulate 
DMA controller(s) of the SoC 

 

 Exploit the fact that DMA buffers can’t be cached 



 Watchdogs should generally be disabled 
 

 Changing the SoC’s clock generator will cause 
the JTAG adapter to lose sync 
 

 Use Surrogates to find the write that causes it 
to crash and refuse to pass that write 



 Pico Computing E17 PCIe card 

 Xilinx Virtex5 FX70T 

▪ ~14% utilization 

 ~1100 lines of Verilog 

▪ ~1000 lines of tests 

 FriendlyARM 2440 
dev board (S3C2440) 

 





 Full integration with dynamic analyses tools 
(e.g., S2E) 
 

 Learn approximate models of hardware 
 Can search for bugs in parallel 

 Verify potential bugs against real hardware 

 
 Cheaper hardware (USB 3?) / Open Source 



 We demonstrate the feasibility of near-real-time 
whole system emulation 
 

 We discuss the engineering challenges and 
tradeoffs 
 

 We identify and overcome new challenges when 
running a whole system under this type of 
emulation 




