
Fuzzing E-mail Filters with Generative Grammars and
N-Gram Analysis

Presented by

Sean Palka / George Mason University

And

Damon McCoy / International Computer Science Institute

WOOT 2015

/bin/whoami

• Graduate Student at George Mason University
• Senior Penetration Tester at Booz Allen Hamilton
• Social Engineering Researcher

Acknowledgements…

This research could not have been accomplished without the assistance
of:

• Dr. Damon McCoy
• Dr. Harry Wechsler
• Dr. Mihai Boicu
• Dr. Dana Richards
• Dr. Duminda Wijesekera
• George Mason Department of Computer Science
• Booz Allen Hamilton

Current Phishing Landscape

• Phishing is no longer just a broad spectrum attack.

• Highly evolved, targeted attack strategies

– Phishing, Smishing, Twishing, Whaling, Spear-phishing….

• Open-source attack frameworks

– Social engineering toolkit (SET), Phishing Frenzy, Wifiphisher…

• Threat has evolved, but so has detection

Phishing Detection and Prevention

Technical Models

• Known examples used as training datasets

• Identification of threat signatures using various
analysis techniques

User-Centric Models

• Detected attacks and crafted examples used in
awareness training

• Modified examples used as payloads in live
exercises and simulations

Technical Models

• Known examples used as training datasets

• Identification of threat signatures using various
analysis techniques

Typical Email Filtering

Keyword Filtering

• Triggers on specific
phrases or keywords
regardless of context

• Signature-based
approach, not very
flexible

• Suffers from same
limitation as black-
listing in other media

Bayesian Models

• Determines threat
based on word
probabilities

• Each word contributes
to the overall threat
score

• Requires training on
known good and bad
e-mails to be effective

Goal

• Defensive: Given the number of potential e-
mail variations, how can we evaluate whether
a given filtering approach is effective?

• Offensive: Can we figure out a way to increase
the odds of an attack succeeding by finding
kinks in the armor?

• Answer: Fuzzing

• Vary input to identify boundary conditions
that may be exploitable

• Basic Example: TCP/IP packet fuzzing

Fuzzing Overview

E-mail Variation
Headers

Start

Middle

End

Date

Salutation

Introduction

Threat

Action

Name

Address

Building an e-mail

• Previously we used generative grammars to
dynamically create useful phishing e-mail
contents for exercises (PhishGen)

• By varying the different production rules, we
cause variations in the different sections and
subsections in the e-mail

• Our original approach was used to avoid
repetition in e-mails for exercises, and the
same approach works for intelligent fuzzing

ID Left Rule Right Rule

1 {START} {INTRO}{PROBLEM}{RESOLVE}

2 {INTRO} {Hello, [FIRSTNAME].}

3 {PROBLEM} {Your hasEmployee() is invalid.}

4 {PROBLEM} {Your hasEmployee() has a hasMisc(hasEmployee([X])).}

5 {RESOLVE}
{Please click here to have your hasEmployee([X])
updated.}

6 {RESOLVE}
{Please check your hasEmployee([Y]) to ensure there are
no issues.}

Example of Production Rules and Placeholders

Expansion Example

Expand {START} using production rule 1

Expand {INTRO} using production rule 2

Expand {PROBLEM} using production rule 4

Expand {RESOLVE} using production rule 5

Remove {} delimiters

Apply relevant values to global and relational placeholder variables

{START}

{INTRO}{PROBLEM}{RESOLVE}

{Hello, [FIRSTNAME].}{PROBLEM}{RESOLVE}

{Hello, [FIRSTNAME].} {Your hasEmployee() has a hasMisc(hasEmployee([X])).}

{RESOLVE}

{Hello, [FIRSTNAME].} {Your hasEmployee() has a hasMisc(hasEmployee([X])).} {Please

click here to have your hasEmployee([X]) updated.}

Hello, Bob. Your computer has a virus. Please click

here to have your computer updated.

Signatures

• Each generated e-mail has a “signature”
defined by the production rules that were
used to create it.

• Previous example:

1→2 → 4 → 5 → G1 → R1 → R2

• Previous grammar could also have generated:

1→2 → 3 → 6 → G1 → R2

1→2 → 3 → 6 → G1 → R1

Identifying Filtered Rules

• If we sent the previous e-mail, and it was
filtered, how could we determine which rule
(or combination or rules) resulted in the
filtering?

• What if a different variations was not filtered?

FILTERED: 1→2 → 4 → 5 → G1 → R1 → R2

UNFILTERED: 1→2 → 3 → 6 → G1 → R2

1→2 → 3 → 6 → G1 → R1

N-Grams

1→2 → 4 → 5 → G1 → R1 → R2

N=1

1

2

4

5

G1

R1

R2

N-Grams

1→2 → 4 → 5 → G1 → R1 → R2

N=1

1

2

4

5

G1

R1

R2

N=2

1→2

2→ 4

4→ 5

5 → G1

G1 → R1
R1 → R2

N-Grams

1→2 → 4 → 5 → G1 → R1 → R2

N=1

1

2

4

5

G1

R1

R2

N=2

1→2

2→ 4

4→ 5

5 → G1

G1 → R1

R1 → R2

N=3

1→2 →4

2→ 4 →5

4→ 5 →G1

5 → G1 →R1

G1 → R1 →R2

N=3 , N=4, N=5 …..

Fuzzing Strategy

Generator

Known-good production rules

are favored in future generations

N=1: 1 3 5 6 …

N=2: 1 → 3 3 →5

N=3: 1 → 3 → 5

N=4: …

…

Exercise Domain

Send E-mails

2 → 3 → 5 → …

7 → 4 → 5 → …

N=1: 3 4 5 7

N=2: 3 →5 …

Update Status

N=1: 1 3 5 6 …

N=2: 1 → 3 3 →5

N=3: 1 → 3 → 5

N=4: …

…

N=1: 1 3 5 6 …

N=2: 1 → 3 3 →5

N=3: 1 → 3 → 5

N=4: …

…

Simulations

• To test our approach, we ran simulations in
two different environments:

– Production environment supporting several
thousand users with existing detection measures

– Trained environment using SpamAssassin and
Bayesian probabilistic classification (795,092
training samples)

• For each environment, we ran 4 rounds of
simulations. Each had 4 sets of 100 generated
e-mails, and used feedback from the exercise
domain to update production rules

Results

0

5

10

15

20

25

1 2 3 4

D
et

ec
te

d
 E

-m
ai

ls
 (

%
)

Simulation Round

Detection Rates in Production and Trained Environments

Production Environment

Trained Environment

Conclusions

• After 4 rounds of testing, our generator was able to
bypass all detection filters and get all 100 e-mails
through to the inbox

• Successful but very noisy approach, better suited for
administrators than attackers

• To request a copy of PhishGen, please send an e-mail to
spalka (at) gmu.edu with subject line: Phishgen Request

Questions

