
Run-DMA
Michael Rushanan, Stephen Checkoway

Johns Hopkins University, University of Illinois at Chicago

1

Introduction

• Arbitrary computation using Direct Memory Access engine

• Access all resources of the device

• Implement the following as an example:

• Brainfuck

• Rootkit

2

Glorified
memcpy

Direct Memory Access

• Offload task of copying memory to/from auxiliary processors
(e.g., NIC, GPU, etc)

• Free CPU to do more interesting work

CPU

Auxiliary
Processor

Main
MemoryDMA

3

DMA Engine

• CPU configures DMA transfer by setting control registers

• Control registers specify transfer operation

src

dest

length

next_cb

4

Control Block Structure

Control Blocking Chaining
• Scatter/gather DMA can transfer to/from multiple memory

areas in a single transaction

• Configure a sequence of control blocks

5

src

dest

length

next_cb

src

dest

length

next_cb

src

dest

length

next_cb

Required DMA Properties

• Perform memory-to-memory copies

• Programmed by loading address of control blocks

• Supports scatter/gather mode

6

Target Device
• Raspberry Pi 2 single-board computer

• Other Potential DMA Engines:

• Intel 8237 (e.g., legacy IBM PC/ATs)

• Cell multi-core microprocessor (e.g., PS3)

BCM2836

7

DMA Gadgets
• DMA “programs” require self-modifying constructs

• Overwrite members of later control blocks

8

src

01 00 00 00 01 00 00 00

cb0 cb1

Table Lookups

9

src

01 00 00 00

dest

01 00 00 00

next_cb

cb0 cb1

00

04

01

…

sqr_tbl

01

04
sqr_tbl

02

Basic Building Blocks

10

Unary
Functions

Lookup value in table and
store to memory y = f(x)

Variable
Dereferencing

Copy value pointed to into
src/dest of subsequent
control block

*x

Basic Building Blocks

11

Conditional Goto Address of a control block written to the
next_cb member of a trampoline

Switch Offset table with entries that are offsets
into an address table

Memory-mapped
I/O Registers

Loop over memory-mapped flag or
status register

BrainFuck

12

BrainFuck

13

+ increment the cell pointed to
by head ++*ptr;

- decrement the cell pointed to
by head --*ptr;

> increment head to point to
the next cell ++ptr;

< decrement head to point to
the previous cell --ptr;

BrainFuck

14

[
if the cell pointed to by head
is nonzero, execute next
instruction; otherwise, jump
to the instruction following]

while (*ptr) {

]
if the cell pointed to by head
is zero, execute next
instruction; otherwise, jump
to the instruction following [

}

, store the input to the cell
pointed to by head *ptr=getchar();

. output the cell pointed to by
head putchar(*ptr);

Interpreter Implementation

• 8 gadgets corresponding to BrainFuck instructions

• Dispatch

• Increment word and decrement word

• Fetch Next instruction (i.e., increment PC and dispatch)

15

Increment

16

01

02

ff

00

…

inc_tbl

00 03 00 fb

04 00 00 00 04 00 00 00

cb0 cb1

01 00 00 00

cb2

01 00 00 00

cb3

01

00 03 00 fb 04 03 00 fb 00 10 00 fb

Increment

17

01

02

ff

00

…

inc_tbl

00 03 00 fb

04 00 00 00 04 00 00 00

cb0 cb1

01 00 00 00

cb2

01 00 00 00

cb3

01

00 03 00 fb 00 10 00 fb

Variable Dereference

Increment

18

01

02

ff

00

…

inc_tbl

00 03 00 fb

04 00 00 00 04 00 00 00

cb0 cb1

01 00 00 00

cb2

01 00 00 00

cb3

01

00 03 00 fb 00 10 00 fb

Unary Function

Increment

19

01

02

ff

00

…

inc_tbl

00 03 00 fb

04 00 00 00 04 00 00 00

cb0 cb1

01 00 00 00

cb2

01 00 00 00

cb3

01

00 03 00 fb 04 03 00 fb 00 10 00 fb

04 03 00 fb

01 10 00 fb

Dispatch

20

quit

nop

inc

dec

…

insn_tbl

00 30 00 fb

04 00 00 00 04 00 00 00

cb0 cb1

01 00 00 00

cb2

01 00 00 00

cb3

2b

e0 30 00 fb 00 20 00 fb 00 23 00 fb

00 00 00 00

trampoline

00 04 … … … …08 0c 10 04

dispatch_tbl

2b 20 00 fb 08 23 00 fb

Variable Dereference

Dispatch

21

quit

nop

inc

dec

…

insn_tbl

00 30 00 fb

04 00 00 00 04 00 00 00

cb0 cb1

01 00 00 00

cb2

01 00 00 00

cb3

2b

e0 30 00 fb 00 20 00 fb 00 23 00 fb

00 00 00 00

trampoline

00 04 … … … …08 0c 10 04

dispatch_tbl

2b 20 00 fb 08 23 00 fb

Switch

Dispatch

22

quit

nop

inc

dec

…

insn_tbl

00 30 00 fb

04 00 00 00 04 00 00 00

cb0 cb1

01 00 00 00

cb2

01 00 00 00

cb3

2b

e0 30 00 fb 00 20 00 fb 00 23 00 fb

00 00 00 00

trampoline

00 04 … … … …08 0c 10 04

dispatch_tbl

2b 20 00 fb 08 23 00 fb

Dispatch

23

quit

nop

inc

dec

…

insn_tbl

00 30 00 fb

04 00 00 00 01 00 00 00

cb0 cb1

01 00 00 00

cb2

04 00 00 00

cb3

2b

e0 30 00 fb 00 20 00 fb 00 23 00 fb

00 00 00 00

trampoline

00 04 … … … …08 0c 10 04

dispatch_tbl

2b 20 00 fb 08 23 00 fb

Turing-Complete

• BrainFuck is Turing-complete

• We implemented BrainFuck with DMA gadgets

• Thus DMA gadgets are Turing-complete

Simulate any other
computational

device/language

24

Resource-Complete

• DMA has access to memory-mapped IO registers

• Thus DMA gadgets are resource-complete

Access all resources
of system from within

the language

25

Hello World

https://github.com/stevecheckoway/rundma

26

More Gadgets

• Binary functions

• f : {0,1}8 × {0,1}8 → {0,1}8

• Relational operators

• Equality (e.g., =)

• Inequality (e.g., <)

27

Raspbian Rootkit
• Raspbian Linux

• task_structs hold information about a process

• pointer to cred structure (e.g., UID of process)

• pointer to next structure

init_task task 1 task n…

28

DMA Performance

29

Gadget Control Blocks

inc/dec 4

inc/dec word 4 + 2 trampolines

dispatch 33

right/left 26

left/right condition 2

I/O 5

Total DMA Transfers

30

Program Control Blocks

Interpreter 148

Hello World 36356

Rootkit 20

DMA Malware
• DMA Malware

• Code running on auxilary processor/external device with
DMA access

• Example: firewire, thunderbolt, NIC, GPU

• Main difference of our work:

• DMA gadgets run entirely on DMA engine

• No additional processors

31

Countermeasures

• Input/out memory management (Duflot, 2011)

• Peripheral firmware load-time integrity (Stewin, 2012)

• Anomaly detection systems (Duflot, 2011)

• Bus agent runtime monitors (Stewin, 2013)

32

Conclusion

• Everything non-trivial ends up being Turing-complete

• Parsing file formats

• Page Tables

• DMA Engine is yet another example

• We need to consider specialized hardware

33

Questions?

34

