I
Acceleration Attacks on PBKDF2

Or, what is inside the black-box of oclHashcat?

Andrew Ruddick, UK
Dr. Jeff Yan, Lancaster University, UK

andrew.ruddick@hotmail.co.uk, jeff.yan@Ilancaster.ac.uk

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

O s
What is PBKDF2?

e Password Based Key Derivation Function v2 (PBKDF2)
e Standardised as NIST FIPS SP 800-132 and IETF RFC 2898

* Key-stretching Algorithm

* Based on an underlying hash-function, e.g. SHA-1x, SHA-2x, or MD-x
* We look at PBKDF2-HMAC-SHA1, the most popular implementation

e Used by Microsoft, Apple, Cisco, Google and WiFi

« WPA/ WPA2, Microsoft .NET, Microsoft Windows Data Protection API
(DPAPI), Apple OS X OS User Passwords, Apple iOS passcodes / passwords,
Cisco I0S Type 4 passwords, Android Full Disk Encryption (v3+), TrueCrypt ...
and many many more

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

A. Ruddick, J. Yan

Our Contribution

1. What are the limits of acceleration on cheap, commodity GPUs?
* In pushing the limits, what new deep insights can be learned?

2. What are the relative contributions of various optimisations on
acceleration?
* Algorithmic Optimisation
* OpenCL Kernel Code Optimisation

3. Why does oclHashcat outperform competitors?

* Do they exploit hidden cryptographic vulnerabilities?
* Can we improve its acceleration?

4. A practical attack on Microsoft’s .NET Framework
 We will release our code: https://github.com/OpenCL-Andrew/.NETCracker/

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

PBKDF2 Construction

HMAC(K, M) = H((K ® opad) || H((K @ ipad) | M)) (1)
PBK DF2(Pass, Salt, count,dkLen) = (T || T2 || ... || Ti<can be partial block>) (2)
T; = F(Pass, Salt, count, z) = (U1 U, ... Ucount) (3)
Uy = HMAC(Pass, Salt || int(i)) 1st iteration
Uy =HMAC(Pass,Uy) 2nd iteration
Urc — . . (4)

U.=HMAC(Pass,U.ount—1) Final Iteration

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

PBKDF2 Optimisations — Cryptanalytic

* Merkle-Damgard optimisations

* PBKDF2 key stretching

e Zero-based optimisations

* Cyclic storage optimisations

* S-Box optimisations (not discussed in paper)

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

Optimisations — Merkle-Damgard (SHA1)

m(3] || 1000...0 | |
msg len

m[0] m[1] m[2]

m[0] || 1000...0 | | msg len

v :h_,mm)
(fixed)

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

A. Ruddick, J. Yan

Optimisations — Merkle-Damgard (HMAC)

HMAC(K,M) = H((K @ opad) || H((K & ipad) || M))

message || 1000...0

Key XOR iPad || (64 + passLen)
IV
(fixed)
Inner Hash | |
Key XOR oPad 1000...0 | | 84

v
(fixed)

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

A. Ruddick, J. Yan

Optimisations — Merkle-Damgard (PBKDF2)

o (pass & opad), (pass & ipad)known to be the same for all iterations
HMAC(oPadH, iPadH, message)

e 2 + 2c SHA1 iterations, instead of 4c
message | | 1000...0
|1 (64 + passLen) * ~50% speed bonus for an attacker
Inner Hash | |
1000...0 | | 84

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

Optimisations — Key Stretching (PBKDF2)

* An early exit optimisation targeting key stretching:
PBKDF2(PGSS S(th, count, dkLen) — (Tl || T2 || s || Tl<Can be partial block>)

* If multiple iterations required, just calculate the first
* Match? Probably a crack, check next block (or don’t. SHA1 = 2160 entropy).
 No match? Early exit.

* A further 50% bonus for an attacker, in an implementation containing
2 blocks

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

O s

Optimisations — S-Box Rotations (SHA1)

* Rotate using pre-processor macros — removes 4 assignments per S-
Box (320 per SHA1 round)

or (t=20;t<16; +it) #define R1_S_BOX(A, B, C, D, E, W)
L
temp = ROTATE_LEFT(A, 5)
OCL_BIT SELECT(B, C, D)
E
Wl t]
KO;

(ROTATE_LEFT(A,5)
+ OCL_BIT SELECT(B,C,D) + E + W + K@);
ROTATE_LEFT(B,30);

R1_S_BOX
R1_S_BOX
R1_S_BOX
R1_S_BOX
R1_S BOX
R1_S_BOX

ROTATE_LEFT(B, 30);
A;
temp;

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

Cryptanalytic Optimisation Summary

* Merkle-Damgard and Key-Stretching optimisations remove ~75% of
all necessary SHA1 round stages.

* Remaining SHA1 round stages benefit from the following instruction
count reductions
m-m-__—
Zero-Based
S-Box Redundant XOR 27 27
S-Box Rotations 320
Cyclic Storage T/, exint32 memoryperkemel 17777777777
HMAC Redundant Checks 2
PBKDF2 1000 loops: 11,000 27,000 27,000 640,000 2,000

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

O s

GPGPU Programming Overview

* OpenCL solution, supports NVIDIA & ATl GPUs, AMD & Intel CPUs and
Altera FPGAs

* GPUs have much slower clock speeds than CPUs

* Many more processing elements (stream processors / SIMD-Vector
Units), 2-3k on top-end cards

* Massive memory bandwidth (ATI R9 290X — 352 GB/s)
* Manual data buffering / bus transfers
* OpenCL Kernels run on GPU, analogous to a shader program (HLSL)

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

A. Ruddick, J. Yan

GPGPU Programming Overview

_Range * The execution of a single kernel is
A workarow termed a Work-Item
T s - * Work-Items are grouped into
1 H-H | Wavefronts (termed Warp by
A O [
L] %) NVIDIA)
% RN | * Work-Group can consist of upto 4
* | Wavefronts
N e - ——l ‘ ‘,“5‘ . .
o / A * Device Compute Units can handle
;' * WORK-TEM multiple in-flight Work-Groups at
a .
Tl J J a time.
Wavef!'ont _
0,;% : (HW-Specific Size)
0@’\
o,)e Dimension X

Image from AMD opencl programming guide http://developer.amd.com/wordpress/media/2013/07/AMD Accelerated Parallel

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2 Processing OpenCL Programming Guide-rev-2.7.pdf

PBKDF2 Optimisations — OpenCL Kernel

* Manual unrolling / inlining

* Bus data transfers — GPU collision detection
* Occupancy / latency hiding

 Memory access coalescence

* Instruction Packing

* Work group sizes

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

O s

Optimisations — Manual Unrollmg/ Inlining

#define ATE_LEFT(a,n) ((a << n) | (a >> (32 - n)))
. #define W_CYCLIC(W, t) \
* AMD OpenCL automatic loop et = e e 8 Q
unrolling is not optimal ks e e e
AWt & MASK \
* Forces developers to work around e \

ib))F

compiler bugs

#define R2_F_BOX_CYCLIC(A, B, C, D, E, W, t)

* Manual unrolling of all core loops
and inlining the majority of
function calls results in excess of a
70% performance gain

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

Optimisations — GPU Collision Detection

Collision Detection Bus Transfer Times
 Bus transfers are costly
| [| |

* In SHA1 if all hash results are —e— Host Detection
transferred back to host, this 100 |{ —=— GPU Detection .
results in 22% of execution time
spent serving memory requests

* Calculating hash collisions on
the GPU is more efficient — we
only transfer a single boolean
per password block

 If a crack is found, a second 0 | |

.) 19 20 21 22 23 24
buffer contains the plaintext q (o
password No. Passwords Per Block (2")

N
-
|

Total Transfer Time (ms)

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

A. Ruddick, J. Yan

Optimisations — Work Group Sizes

440

* If work-group size is already large
enough to mask any memory
access latencies, increasing WG
size adds additional wavefront
context switching overhead

|
—o— WG =64
-—=— WG =128

—— WG =256

420

e Optimal results were always
obtained with a single WG for
PBKDF2

400

1000 Hashes per second (KH/s)

380

14 15 16 17 18
Number of passwords per block (2")

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

A. Ruddick, J. Yan

Kernel Optimisation Summary

Approximate Speed Increase

Manual Unrolling / Inlining ~ 70%

Instruction Packing 12%
Workgroup Sizes 1.37 — 5.07% (block size dependant)
Bus data transfers 0.09% (31.03% less bus memory traffic)

Occupancy / Latency Hiding 100%

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

Results

GPU |[sHA1 HMAC-SHA1 PBKDF2-HMAC-SHA1

ATI HD6870, 1GB 794.60 MH/s 395.21 MH/s 424.78 KH/s
ATI R9 290X, 4GB 3,415.37 MH/s 1,610.62 MH/s 1611.98 KH/s

e Qur PBKDF2 is 11.09% faster than oclHashCat on R9 290X
e Our HMAC is 8.5% faster than oclHashCat on R9 290X

 PBKDF2 results based on 1,000 iterations and a 256 bit output key size

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

O s
Cracking .NET Passwords

e ~¥15% of all websites worldwide run on ASP.NET

* Default password hashing uses PBKDF2-HMAC-SHA1, 1000 iterations
and a 256-bit key size

* Our application provides direct support for cracking .NET hashes

* We achieve a real throughput speed of 1,608,860 passwords / sec
(10.36 mins per 1 billion candidates) on an ATI R9 290X GPU

* A previous password data dump, following a security breach lead to
an 18.2% crack success rate from a dictionary containing 1.494 billion
words

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

A. Ruddick, J. Yan

Cracking .NET Passwords

* High prObabi“ty of CraCking d Probability v Kernel Execution Time Ratio
password after trying 10 or 11 1
against our dictionary

* This would take us 2.58 — 2.83
hours, on a single GPU

0.8

0.6

Probability

0.4

0.2

0 | | | | |
0 2 4 6 8§ 10 12

Time (Hours)

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

Application to WPA?2

* Only difference in WPA2 is 4,096 iterations

e Our attack equally applies to WiFi security — 10.56 -11.59 hours to try
10 or 11 networks

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

A. Ruddick, J. Yan

Conclusions

* Cryptanalytic optimisations provide a larger contribution than
hardware acceleration (measurement details see our paper)

* An optimal SHA1 # optimal HMAC # optimal PBKDF2
e We are now state-of-the-art for PBKDF2 and HMAC

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

A. Ruddick, J. Yan

Conclusions

* oclHashcat outperforms competitors due to their cryptanalytic
optimisations, which combined with GPU acceleration made them
the previous state-of-the-art

* Our PBKDF2 implementation is ~11.09% faster, thus the chance of
further hidden optimisations in oclHashCats implementation is low

* Small optimisations to SHA1 = large benefits in PBKDF2

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

O s

Conclusions

* Our attacks pose a real threat to actively deployed security systems,
including .NET and WPA / WPA2, amongst many others

* The definition of PBKDF2 in both PKCS#5 (IETF RFC 2898) and NIST
FIPS SP 800-132 contains 2 serious design flaws:

1. Inner HMAC is incorrectly keyed; If password and salt were swapped, we’d
be unable to exploit this

2. key stretching is fundamentally broken; only ever use one block for
passwords

* PKCS#5 should be updated to use H(p| |s| | c) as defined by Yao & Yin
* Future implementations should consider memory-hard functions

Yao, F., Yin, L.: Design and Analysis of Password-Based Key Derivation Functions. In: IEEE
USENIX WOOT ’16 | Acceleration Attacks On PBKDF2 Transactions on Information Theory, vol. 51, pp. 3292-3297 (2005)

A. Ruddick, J. Yan

Questions?

Andrew Ruddick — andrew.ruddick@hotmail.co.uk
Jeff Yan — jeff.yan@Ilancaster.ac.uk

Source Code: https://github.com/OpenCL-Andrew/.NETCracker/

USENIX WOOT ’16 | Acceleration Attacks On PBKDF2

