
Takeshi Yoshimura†, Hiroshi Yamada†*, Kenji Kono†*
†Keio University *JST/CREST

October 7 2012

Is Linux Kernel Oops Useful Or Not?

• OSes need to be highly available

– Necessary for all apps to continue running

– A kernel crash can lead to the outage of the entire apps

• Kernel crashes are difficult to be zero

– Bugs inside Linux still exist [Palix et al. ASPLOS ’11]

– Bugs are not always fixed soon

OS Kernel Crash

 Application

OS Kernel

 Application Application

CRASH

• A Linux behavior to handle detected bugs

– e.g., in-kernel NULL deref

• Linux kills a faulty context’s proc in kernel oops

– Linux attempts to avoid kernel crashes, called “panic”

• Linux continues to run on a compromised reliability

What Is Kernel Oops?

Proc C

OS Kernel

Proc A context Proc B context Proc C context

Shared kernel objects

Proc B Proc A

Oops

ERROR

NO ERROR

• Linux can remain reliable after kernel oops
if errors are confined in a kernel context

– Shared kernel objects remain correct

– Non-faulty procs can continue running correctly

• Without rebooting or any complex mechanisms

Why Can Kernel Oops Be Useful?

Proc C

OS Kernel

Proc A context Proc B context Proc C context

Shared kernel objects

Proc B Proc A

Oops

ERROR

NO ERROR

Error Propagation Scope
• Process-local error

– Propagates only within the kernel context of a proc

• e.g., kernel stack, function-local data

– Errors can be removed by killing a faulty proc

• Kernel-global error

– Propagates to data shared among kernel contexts

• e.g., kernel states, global data, heap data

OS Kernel

Shared Kernel objs

Kernel-global error propagation

OS Kernel

Proc context Proc context

Proc context Proc context

Shared Kernel objs

Process-local error propagation

ERROR

NO ERROR

Proc context Proc context

Proc context Proc context propagate

G-1: Analyze Linux behavior to faults
– How freqently does Linux invoke oops/panic?

G-2: Analyze error propagation scope in oops
– Are kernel states corrupted after fault activation?

G-3: Estimate the Linux reliability after kernel oops
– How freqently can Linux avoid panic correctly?

• Explore the possibility of using kernel oops as an
error recovery method

Goal in This Work

• Linux 2.6.38 kernel on VMware Workstation 8
– 1 CPU, 1GB memory, 20GB Disk

• A fault injector used by existing work
– [Ng et al. ’98],[Swift et al. ’03], [Depoutovitch et al. ’10]

– Obtained from Nooks Research web site
• http://nooks.cs.washington.edu/

• KDB, a kernel debugger
– To trace error propagation

• Six benchmarks as workloads
– UnixBench on {ext4, fat, USB}, Netperf, Aplay and

restarting all the daemon

Experimental Equipment

The Fault Injector
• Emulates 15 fault types

– Mutates random instr in the running kernel text

– Extended to imitate some reported bugs in
[Palix et al. ASPLOS ’11]

• e.g., deleting NULL check

Fault type before after

init int x = 1; int x;

irq arch_local_irq_restore() deleted.

off by one while (x < 10) while (x <= 10)

bcopy memcpy(ptr, ptr2, 256); memcpy(ptr, ptr2, 512);

size ptr = kmalloc(256, GFP_KERNEL); ptr = kmalloc(128, GFP_KERNEL);

free kfree(ptr); deleted.

null if (ptr == NULL) return; deleted.

Examples of the Injected Fault

• Inject a fault

• Set a breakpoint to the faulty instr

• Run every workload in 6 benchmarks

• See if the fault is activated

– If the kernel hits the breakpoint

• See what happens until the workload fails

– Or until the workload is finished

G-1: Analyzing Linux behavior

• 887 faults are activated (6738 are injected)
– 75%: not manifested

– 15%: oops, panic (propagation scope is investigated)

– 10%: fail silence violation, hang, terminated by VMM

G-1 Result: Failure By Fault Type

0%

20%

40%

60%

80%

100%

panic oops FSV hang TERM not manifested

• Inject a fault causing kernel oops/panic

• Set a breakpoint to the faulty instr

• Run a workload

– Wait until the kernel hits the breakpoint

• Trace instrs until the kernel oops

– Currently, examine if stack or heap is corrupted

– Analysis similar to a taint-analysis

G-2: Analyzing Error Propagation

G-2 Result: Scope Analysis
• 124 kernel oops & 10 panic are investigated

– 73%: process-local error

– 27%: kernel-global error

• Overrun, corrupt list_head or callback ptr, etc.

0%

20%

40%

60%

80%

100%

proc-local kern-global

• Inject a fault

• Run a workload

• Confirm kernel oops and the kernel kills a proc

• Remove the injected fault by using KDB

– To imitate transient faults by the existing injector

• Run a workload in 6 benchmarks for each oops

• See what happens until the workload fails

– Or until the workload is finished

G-3: Estimating Reliability

• 589 workloads are investigated

– 58.7% of the workloads keep running

• Workloads use a subsystem unrelated to the error

– 40.8% of the workloads stop or do not start

• Deadlock, oops/panic, and killing a important proc

– 0.5% of the workloads run incorrectly

G-3 Result: Failure After Oops By Scope

0% 20% 40% 60% 80% 100%

process-local

kernel-global

total

not manifested deadlock no proc oops panic erroenous

• 99.5% of the workloads run correctly or fail-stop
after kernel oops
– Deadlock occurs context’s fail-stop

• The mutual execution is done to write shared data

• A context killed in a critical section holds the lock

– Linux shows fail-stopness even when errors are
kernel-global

Is Linux Kernel Oops Useful?

Proc C

OS Kernel

Proc A context Proc B context Proc C context

Shared kernel objects

Proc B Proc A

Oops

ERROR

NO ERROR

DEAD
LOCK

Related work
• A study of Linux behavior under errors [Gu et al. DSN ’03]

– Conduct fault injection experiments

– Show error propagation among subsystems

• Linux faults study [Palix et al. ASPLOS ’11]

– Use a static analyzer to Linux kernels

– Show the life-time and the distribution of bugs in Linux

• Reboot-based recovery with apps’ state reserved
 [Depoutovitch et al. EuroSys ’10, HotDep ’08]

– Switch to the slave kernel when the master kernel crashes

– Take downtime & need to re-design apps

Conclusion
• OSes need to be highly available

• Linux kills only a faulty proc instead of crashes

– This kernel behavior is called “kernel oops”

– Any complex mechanisms are not required

• Kernel oops can be useful as an error recovery

– 99.5% of workloads run correctly or fail-stop after
killing a faulty process

