Strato: A Retargetable Framework for
Low-Level Inlined Reference Monitors

Bin Zeng, Gang Tan, Ulfar Erlingsson

Lehigh University Google Inc.
USENIX Security 2013
@Washington DC, USA

Attacks

 How attacks happen

— Arrive as user input through a communication
channel

— Trigger pre-existing bugs
— Take over program executions
e Attack vector
— Mobile code, untrusted extensions
— Memory corruption attacks [StackSmash]
— Return Oriented Programming [ROP]

Existing Countermeasures

Data Execution Protection [DEP]

Address Space Layout Randomization [PaX]

Program Shepherding [Shep
Inlined Reference Monitors

nerding]

IRM]

— Control Flow Integrity [CFI, XFIl, HyperSafe]
— Software-based Fault Isolation [Pittsfield, Native

Client]

Inlined Reference Monitors (IRMs)

* [RM: embed security checks in programs

* Well-established against various attacks

— E.g., buffer overflows, Return-Oriented
Programming attacks

Inlined Reference Monitors (IRMs)

* CFI (Control-Flow Integrity): checks control
flow

* SFI (Software-based Fault Isolation) also
checks memory reads and writes

 Example: Google’s Native Client

— machine code plugins for browsers

However, Most IRM Implementations
are Low-Level

* Binary rewriting, assembly instrumentation,...

* Implementations
— Tightly coupled with architectures
— Hard to reuse

* For example, Native Client (NaCl) has multiple
implementations

— X86-32; x86-64

Our General Idea

* Perform IRM rewriting at an Intermediate-
Representation (IR) level

— Use an IR that is largely architecture-independent
(in particular, LLVM IR)

* Benefits
— Reuse transformations among architectures

— IR is amenable to optimizations

e Retain verifiability of low-level code

Challenges of IR-level Rewriting

 Compiler transformations after the IR can
invalidate security assumptions

* Have to trust the compiler back-end from IR to
low-level code

— TCB Bloat

Are Compilers Trustworthy?

Source Code

—
—
e eode

Binary Code

Compilers are Buggy

Source Code

Binary Code

—
—
el

10

Compilers are Buggy

* Compilers have a huge code base
— GCC 4.8 has more than 7.3 million lines of code

e Csmith found 300+ unknown bugs [PLDI ‘11]
 LLVM has a steady bug rate

Buggy Compiler Optimizations

Any sufficiently optimizing compiler is

indistinguishable from magic.
-- Paraphrasing Arthur C. Clarke

12

Compiler Optimizations

* Compiler optimizations invalidate security
assumptions

* They only care about functional semantics
e Security properties are often non-functional

13

Research Question

* How to do IRM rewriting at the IR level, and
preserve low-level security?

e Our paper’s contribution:

— Strato: a IRM-implementation framework that
performs IR-level rewriting and preserves low-
level security

14

Key Challenge

* Challenge: after checks are inserted at the IR
level, backend transformations may invalidate
security — if all data memory is untrusted

, , After register allocation
Before register allocation

ptr.safe = check(ptr)

ptr.safe = check(ptr) tmp = load *ptr.safe
tmp = load *ptr.safe | store ptr.safe, *stack loc
store v, *ptr.safe 7 ptr.safe2 = load *stack_loc

store v, *ptr.safe2

DL

DB

Attack Model

GSize

GSize Guardregionis

mprotected

Anything from
memory is untrusted

16

Our Idea for Addressing the Problem

* |nsert more-than-enough checks at the IR level

e Attach constraints to checks to encode conditions
that might be invalidated by the compiler

e After compiler transformations, perform
constraint checking at the low level

— Remove checks iff constraints are still valid

— |f a compiler transformation invalidates a constraint,
then the check is left intact for security

Let’s go through an example next

Uninstrumented IR Code

entry:
tmp=0
if(v > 47) goto then
else:
tmp = load *ptr
goto end
then:
store v, *ptr
end:
ret tmp

Instrumented and Optimized IR

entry:
ptr.safe = check(ptr) // checkl
tmp=0
if(v > 47) goto then

else:
ptr.safel = check(ptr.safe) // check?2
noSpill(ptr.safe, check1, check?2)
tmp = load *ptr.safel
goto end

then:
ptr.safe2 = call check(ptr.safe) // check3
noSpill(ptr.safe, check1, check3)
store v, *ptr.safe2

end:
ret tmp

Security checks

Constraints

Original code

Redundant Check Elimination o

After Constraint Checking

entry:
ptr.safe = check(ptr) // checkl
tmp=0
if(v > 47) goto then

else:

noSpill(ptr.safe, checkl, check?2)
tmp = load *ptr.safe
goto end

then:

ptr.safe2 = call check(ptr.safe) // check3
noSpill(ptr.safe, checkl, check3)
store v, *ptr.safe2

end:

ret tmp

Assume ptr.safe not
spilled between
checkl and check?2,
but spilled between
check2 and check3

20

Another Example: Uninstrumented IR
Code

X=gepp,0,0

tmp1l = load *x
y=gepp,0,1

tmp2 = load *y

sum = add tmp1, tmp2
ret sum

Instrumented and Optimized IR

p.safe = check(p) // checkl

X = gep p.safe, 0,0

x.safe = check(x) // check2

noSpill(p.safe, checkl, check?2)

sizeof(struct s)*0 + sizeof(long)*0 < GZSize
tmp1l = load *x.safe

y = gep p.safe, 0, 1

y.safe = check(y) // check3

noSpill(p.safe, checkl, check3)

sizeof(struct s)*0 + sizeof(long)*1 < GZSize
tmp2 = load *y.safe

sum = add tmp1l, tmp?2

ret sum

Sequential Memory Access Optimization

22

After Constraint Checking

p.safe = check(p) // checkl

X = gep p.safe, 0,0
xsafe-=—cheeckbd-Lechecl2

noSpill(p.safe, checkl, check?2)

sizeof(struct s)*0 + sizeof(long)*0 < GSize
tmp1l = load *x.safe

y = gep p.safe, O, 1
y-safe=—cheekh-Fftecheeck3

noSpill(p.safe, checkl, check3)

sizeof(struct s)*0 + sizeof(long)*1 < GSize
tmp2 = load *y.safe

sum = add tmp1, tmp2

ret sum

Assume (1)
ptr.safe not
spilled between
checkl and
check2, or checkl
and check3

(2) offsets less
than guard-zone
Size

23

Strato: Retargetable IRMs

Instrumentation at intermediate representation
level, i.e. LLVM IR

— |IR-level checks

Optimizations of security checks and attach
constraints

Constraint-checking before lowering
— If a constraint holds, remove the check
— Otherwise, lower the IR-level check to machine code

Verification at the low level

— Remove everything else outside the TCB (including
constraint checking)

24

The Architecture of Strato

Source

l Compiler Frontend

IR
l Compiler Optimizations

IR
l Check Instrumentation

Secured IR
l' Check Optimizations

Secured IR
l’ Code Gen

1’ i ‘l’ Constraint Checking

x32 ASM x64 ASM ... ASM
1' i l’ Check Lowering
x32 ASM x64 ASM ... ASM

i 1' 1’ Verification

x32 ASM x64 ASM ... ASM

Benefits

* Retargetable
— Easy to port to other architectures

* Enable optimizations
— Structured information at the IR level

— Static Single Assignment form

e Codereuse

— Instrumentation and optimizations can be shared
among various architectures

The Implementation of Strato

Two policies: CFl & SFI

Instrumentation

— Function passes into the end LLVM pipeline
Optimizations

— Redundant Check Elimination

— Sequential Memory Access Optimization

— Loop-based Check Optimization
— Optimizations attach constraints

Constraint checking
Range analysis (interval analysis) based verifier

27

Verification

Based on CCS paper [CCS’ 11]

After all the optimizations, constraint
checking, a verifier verifies the final result in
assembly code

Removes everything before out of TCB
Based on range analysis
Found a few bugs in our implementation

Performance Evaluation

e LLVM 2.9

* To demonstrate retargetability:
— X86-32
— x86-64 (small changes on x86-32)

30 %

25 %

20 %

15 %

10 %

5%

0 %

CFl Overhead on SPEC2k

X86-32: ~6%

x86-32

x86-64: ~8% gzip mm—

crafty
parser

eon

gap

vortex
bzip2
twolf I

—
—
I
perlbmk
I
I
[

avg

x86-64

30

Overhead of CFl with Data Sandboxing

for Both Reads and Writes on SPEC2K

70 %
60 %
50 %
40 %
30 %
20 %
10 %

0 %

x86-32: ~20%
Xx86-64: ~25%

x86-32

x86-64

gzip
vpr

gCC I
mcf
crafty
parser 1
eon I
perlbmk

gap I

vortex N
bzip2

twolf n— |

avg .

31

Compare with Previous work’s
performance
* Even though our framework is retargetable

and trustworthy, the performance is
competitive

Summary

A retargetable framework for IRMs

Optimizations on checks
— Competitive performance

Constraint language
Range analysis based verifier

33

References

[CFI] Abadi et al. “Control-Flow Integrity — Principles, Implementations, and
Applications”, ACM CCS 2005

[csmith] Yang et al. “Finding and Understanding Bugs in C Compilers”, PLDI 2011
[HyperSafe] Wang et al. “HyperSafe: A Lightweight Approach to Provide Lifetime
Hypervisor Control-Flow Integrity”, IEEE S&P 2010

[IRM] Erlingsson et al. “The Inlined Reference Monitor Approach to Security Policy
Enforcement”, doctoral dissertation, 2004

[Native Client] Yee et al. “Native Client: A Sandbox for Portable, Untrusted x86 Native
Code”, IEEE S&P 2009

[Pittsfield] McCamant et al. “Evaluating SFI for a CISCI Architecture”, USENIX Security
2006

[ROP] Roemer et al. “Return-oriented Programming: Systems, Languages, and
Applications”, ACM TISSEC 2012

[Shepherding] Kiriansky et al. “Secure Execution Via Program Shepherding”, USENIX
Security 2002

[SmashStack] Aleph One. “Smashing the stack for fun and profit”, Phrack Magazine,
1996

[XFI] Erlingsson et al. “XFI: Software Guards for System Address Spaces”, OSDI 2006

Strato: A Retargetable Framework for
Low-Level Inlined-Reference Monitors

Thank you!
Questions?

Bin Zeng Gang Tan Ulfar Erlingsson
zeb209@lehigh.edu gtan@cse.lehigh.edu ulfar@google.com

