
Enabling Realms with the Arm Confidential Compute Architecture

Xupeng Li
Columbia University

Xuheng Li
Columbia University

Christoffer Dall
Arm Ltd

Ronghui Gu
Columbia University

Jason Nieh
Columbia University

Yousuf Sait
Arm Ltd

Gareth Stockwell
Arm Ltd

Mark Knight
Arm Ltd

Charles Garcia-Tobin
Arm Ltd

The Armv9 architecture will have a new secure execution
environment, called Realms. Realms includes minimal hard-
ware changes, relying on firmware for most of its features, so
that existing applications can run unchanged yet be secured.
In this article, we explain how Realms works, how we used
Coq to prove the correctness of the firmware, run benchmarks
to compare performance using Realms, and contrast Realms
with existing secure enclaves.

1 Introduction

The use of sensitive private data in many applications from
advertising to healthcare, often in the context of machine
learning models, has raised concerns regarding the privacy
of data in computing. These applications increasingly run on
commodity cloud providers. For example, data and compu-
tation may be contained in virtual machines (VMs) running
on shared hardware in the cloud, relying on a hypervisor to
preserve VM isolation to protect applications and their data
in VMs.

Software stacks generally require applications to trust sys-
tem software which they rely on, such as hypervisors and
operating systems (OSes). Although hypervisors and OSes
are supposed to protect applications and their private data,
their large codebases contain vulnerabilities that can risk data
confidentiality and integrity. Vulnerable system software run-
ning at more privileged levels that can access application data
is a significant security issue.

To address this problem, the Arm Confidential Compute
Architecture (Arm CCA) introduces Realms, secure execution
environments that are completely opaque to privileged, un-
trusted system software such as OSes and hypervisors. Arm
CCA retains the ability of existing system software to man-
age hardware resources for Realms, while preventing it from
violating Realm confidentiality and integrity. For example,
Arm CCA allows a hypervisor to dynamically allocate mem-
ory to or free memory from a Realm VM, but disallows it
from accessing the protected memory contents of a Realm
VM. Arm CCA guarantees the confidentiality and integrity

of Realm code and data in use - that is, data in CPU registers
and memory - but makes no guarantees regarding their avail-
ability. Confidentiality means that any change that a Realm
makes to its private data cannot be observed by other Realms
or untrusted system software. Integrity means that a Realm
will not observe any changes to its private data that it did not
make.

Arm CCA avoids hardware complexity by only introducing
core hardware mechanisms for attestation and basic address
space protection, then relying on firmware to manage the use
of those mechanisms. Specifically, Arm CCA relies on an
Arm architecture feature called the Realm Management Ex-
tension (RME). RME introduces Realm world, a new physical
address space for Realms orthogonal to privilege levels and
separate from the existing Non-Secure (NS) world used today
for running software stacks. Within each world, the normal
privilege levels apply and instructions retain their existing
semantics, but software in NS world cannot access CPU state
and memory used by software in Realm world. Arm CCA
introduces the Realm Management Monitor (RMM), a new
firmware component which runs in Realm world at a higher
privilege level than Realms. Untrusted system software such
as a hypervisor running in NS world can make requests to
RMM to manage Realms, including creating and running
Realms. RMM protects the confidentiality and integrity of
Realms while handling such requests. System software in NS
world is expected to retain full control of the dynamic allo-
cation of hardware resources to Realms, including memory
allocation and CPU scheduling.

We implemented, evaluated, and verified an early prototype
of Arm CCA firmware. Although RME hardware is not yet
available, we demonstrated Arm CCA on a functionally accu-
rate Arm Fast Model with Arm CCA support. We modified
the Linux KVM hypervisor [15–17] to use RMM interfaces
to manage Realm VMs, and ran various VM workloads on the
model. We also ported Arm CCA firmware to current Arm
hardware to obtain preliminary data on Arm CCA perfor-
mance, which shows that KVM on Arm CCA incurs modest
overhead versus vanilla KVM on real application workloads.

1



Because CCA relies on firmware to guarantee the security
of Realms, we verify that firmware using the Coq proof as-
sistant [37]. We verified the correctness of both the C and
Arm assembly Arm CCA firmware implementation, including
RMM, proving its implementation refines its specification.
We proved the specification has equivalent behavior to an ide-
alized secure machine model to verify the confidentiality and
integrity guarantees of Realms. This is the first proof of the
security guarantees of a confidential computing architecture.
RME is an optional feature of the Arm A-Profile architecture
as of Armv9.3-A, and CCA firmware is open source.

2 Threat Model

We consider an attacker without physical access to the ma-
chine and assume the attacker’s goal is to compromise the
confidentiality and integrity of VM data. Confidentiality and
integrity attacks in scope include compromising the hypervi-
sor or any other software to read or modify private VM mem-
ory or register state, including by controlling DMA-capable
devices, or via memory remapping and aliasing attacks. We
assume a VM does not voluntarily reveal its own private data
whether on purpose or by accident, but attacks from other
compromised VMs, including confidentiality and integrity
attacks, are in scope. Availability attacks by a compromised
hypervisor are out of scope. Protection against known soft-
ware error injection attacks and side-channel attacks require
appropriate usage of architectural mitigations and are beyond
the scope of this article. DRAM attacks, such as cold boot
attacks, live probing, or replay, require additional hardware
and are outside of the scope of the threat model.

3 Arm CCA Design

A key challenge with introducing Realms is how to provide
backwards compatibility with a widely-used existing archi-
tecture that, like other CPU architectures, was designed based
on the fundamental assumption that more privileged levels
have greater control and access than less privileged levels of
software. One issue is understanding the potential interactions
of Realms with all the features in the Arm architecture. For
example, debug registers defined in the Arm architecture are
explicitly designed to allow hypervisors to peer into VM state,
which is fundamentally at odds with Realms. The behavior of
each instruction could be redefined in the context of Realms,
but this would be an enormous undertaking with unclear com-
patibility implications, given that the Arm instruction set was
designed over multiple decades.

Another issue is how to provide memory protection and
isolation for Realms. The way this works for VMs is that
hypervisors manage nested page tables (NPTs) [9] to iso-
late physical memory between VMs and protect hypervisor
memory from VMs. The physical addresses perceived by a

Secure

Non-Secure

Hypervisor

Host OS

App App

Realm

RMM

Guest OS

App App

RMI

Monitor

VM

RSI

EL3

EL2

EL1

EL0

Figure 1: Arm Confidential Compute Architecture.

VM are intermediate physical addresses (IPAs), which are
translated by an NPT to physical addresses for the hardware.
Physical memory not mapped to the NPT is not accessible
to the VM. However, NPTs are under full control of the un-
trusted hypervisor, providing no protection against hypervisor
access to VM data. While it would be possible to introduce
an additional data structure to track memory ownership for
each frame of physical memory [3], this approach comes with
several problems. First, the amount of information required
for each frame of memory would be substantial and signif-
icantly impact TLB design and performance. Second, this
data structure would have to be managed either via a separate
more privileged software entity than the hypervisor or via
complex instructions capable of capturing measurements of
data assigned to a Realm. Such complex CISC-like instruc-
tions would almost certainly require introducing extensive
microcode into an architecture, which does not currently use
any.

Arm CCA avoids these problems by only introducing sim-
ple hardware mechanisms orthogonal to existing privilege
levels and then relies on firmware to manage the use of those
mechanisms. This reduces hardware complexity at the cost of
depending on the firmware for the security guarantees of the
architecture. As a result, verifying Arm CCA firmware is of
crucial importance.

Figure 1 shows how Arm CCA extends the Arm archi-
tecture. Armv8-A provided two statically partitioned worlds,
NS world used by most software stacks and Secure world
to host platform security services, with an orthogonal Moni-
tor Mode at EL3 [5]. RME introduces Realm world, which
is fully compatible with NS world so that existing software
stacks that run in NS world can also run in Realm world.
RME provides three privilege levels in each of the NS, Realm
and Secure worlds: EL0 for user, EL1 for kernel, and EL2 for
hypervisor. Because Realm and Secure worlds are mutually
distrusting, RME introduces a fourth, more privileged Root
world to manage switching between the other worlds.

Each world has its own Physical Address Space (PAS).
Each 4 KB frame of physical memory, which we refer to as
a memory granule, belongs to one PAS at any given time.

2



Security State PAS
NS Secure Realm Root

NS Allow Block Block Block
Secure Allow Allow Block Block
Realm Allow Block Allow Block
Root Allow Allow Allow Allow

Table 1: RME access control policy. The entity accessing a granule
belongs to a security state, while the Physical Address Space(PAS)
is a property only of the granule being accessed.

Individual memory granules can be dynamically transitioned
from NS PAS to Realm PAS; there is no static partitioning of
resources between NS and Realm worlds. RME hardware per-
forms a PAS check on each memory access against a Granule
Protection Table (GPT) that tracks the PAS of each memory
granule and enforces the access control policy shown in Ta-
ble 1, forbidding invalid accesses. NS world can only access
its own memory. Realm and Secure worlds can access their
own respective memory and NS memory, but cannot access
each other’s memory. RME hardware requires all DMA ac-
cesses be subject to GPT checks, protecting the Realm PAS
against DMA-based attacks. We focus on the interactions be-
tween NS and Realm worlds and omit further discussion of
Secure world due to space constraints.

Arm CCA relies on two trusted firmware components:
RMM and the EL3 Monitor (EL3M). RMM runs at EL2 in
Realm world. It controls the execution of Realms and provides
services to untrusted system software running in NS world.
It isolates Realms from each other using existing virtualiza-
tion technologies such as NPTs and CPU register save/restore
sequences. Because RMM only enforces the security guaran-
tees of Arm CCA, it can be orders of magnitude smaller than
bare-metal hypervisors which must also provide virtualization
functionality. For example, to run Realm VMs, RMM protects
the confidentiality and integrity of Realms while relying on
existing hypervisors for everything else, including resource
allocation and scheduling, physical hardware support, and
complex device emulation.

EL3M runs in Root world at EL3, the highest level of priv-
ilege. It is responsible for context switching CPU execution
among the three other worlds and managing the GPT. EL3M
can access memory in any PAS. Only EL3M can change the
PAS of a granule, which involves updating its entry in the GPT.
Software running in the three other worlds can issue a Secure
Monitor Call (SMC) to EL3M to request a PAS change.

In the current version of Arm CCA, the Realm isolation
boundary is at the level of entire VMs. This solution can
be used to secure containers, but within virtual machines, as
demonstrated by the Confidential Containers project (Coco)
[40]. Application level containerisation is not available in
the current version of Arm CCA but might be considered
in future work [38]. Similar to normal VMs, a Realm VM
can concurrently run multiple virtual CPUs (VCPUs) and the
number of Realm VMs on a system is only limited by the
amount of physical memory available, not by any arbitrary

Command Description
Version Query RMI ABI version.
Granule.Delegate Change granule (from NS) to Delegated.
Granule.Undelegate Change granule (from Delegated) to NS.
Realm.Create Create Realm Descriptor (RD).
Realm.Destroy Destroy Realm identified by RD.
Realm.Activate Change Realm (from New) to Active.
REC.Create Create Realm Execution Context (REC).
REC.Destroy Destroy REC.
REC.Run Enter REC (i.e. run VCPU).
Data.CreateUnknown Change granule to Data with unknown content.
Data.Create Change granule to Data, copy NS content.
Data.Destroy Change Data granule to Delegated, zeroed.
RTT.Create Create Realm Translation Table (RTT).
RTT.Destroy Destroy RTT.
RTT.MapProtected Map Data granule in RTT.
RTT.UnmapProtected Remove mapping from RTT.
RTT.MapUnprotected Map NS granule in RTT.
RTT.UnmapUnprotected Remove NS mapping from RTT.
RTT.ReadEntry Return content of an RTT entry.

Table 2: RMM Realm Management Interface (RMI).

limits. The untrusted hypervisor always has the ability to stop
scheduling a Realm and can always reclaim memory assigned
to a Realm, but in no circumstances does it have access to
Realm CPU or memory state.

This split of responsibility between an untrusted hypervisor
and RMM, where the untrusted hypervisor allocates memory,
and RMM provides integrity and confidentiality guarantees
for the data and code stored in that memory, is accomplished
through a simple but powerful delegation concept. The hy-
pervisor delegates memory to Realm world, and undelegates
memory back to NS world. All memory used by Realms must
first be delegated by the hypervisor; RMM does not itself
manage a pool of memory for Realms. Once memory is del-
egated to Realm world, the hypervisor can request RMM to
use it for various purposes, such as storing metadata or data
for a Realm. Whenever a memory granule is delegated to
Realm world but not used by RMM, RMM ensures that the
granule contains only zeros, reducing the risk of accidental
information flow when a granule is reused or undelegated.

RMM provides a Realm Management Interface (RMI) for
the hypervisor to request RMM to delegate memory, create
Realms, execute Realms, and allocate memory to Realms.
Each RMI command is implemented as an SMC, so when the
hypervisor invokes the command, it traps to EL3M, which in
turn switches execution to RMM in Realm world to handle
the command. Upon completion of the RMI command, RMM
issues an SMC to EL3M, which switches execution back to
the hypervisor in NS world. Table 2 lists the RMI commands.

RMM must know the state of each memory granule on the
system to uphold the security guarantees of Realms, which it
accomplishes by maintaining its own Granule Status Table
(GST) to track the delegation status and current use of each
granule. RMM uses the GST to ensure that a granule is in a
valid state to perform the requested action. For example, when
the hypervisor delegates a memory granule, RMM checks its
GST to confirm the granule has not already been delegated,

3



then issues an SMC to EL3M to request a change to Realm
PAS. EL3M checks that the granule is currently in NS PAS,
then updates the GPT to move it to Realm PAS. Finally,
RMM updates its GST to record that the granule has been
delegated. If the hypervisor attempts to delegate a granule
which is already delegated, or undelegate a granule which is
in active use by RMM, RMM returns an error code to the
untrusted hypervisor. This pattern of checking valid states
and either performing a discrete action or returning an error
is used for all RMI commands, allowing RMM to remain
in overall control of the consistency of the system, while
complex logic for policy and resource allocation remains in
the hypervisor. Unlike the GPT, the GST is not checked by
hardware and is only a software bookkeeping mechanism.
By maintaining a separate GST from the GPT, the GPT can
be kept simple so that it only needs to contain information
required for hardware-enforced checks.

The hypervisor creates Realms, Realm Execution Contexts
(RECs), and Realm Translation Tables (RTTs) using the re-
spective commands in Table 2. RECs correspond to VCPUs
and RTTs correspond to NPTs for normal VMs. RTTs are
Arm stage 2 page tables that translate from an IPA to a physi-
cal address. RTTs use the same format and topological layout
in Realm world as NS stage 2 page tables, but also provide a
bit which allows Realms to access NS granules under the con-
trol of RMM, for example, for virtual I/O between a Realm
and the hypervisor. On each of the Realm, REC, and RTT
create commands, RMM checks the GST entry for the ad-
dress provided to confirm the granule is already delegated,
and updates the GST entry to track that it is being used for
Realm, REC, and RTT metadata, respectively. We refer to a
Realm’s metadata as its Realm Descriptor (RD).

The IPA space of a Realm includes a Protected Address
Range (PAR), which RMM ensures can only be mapped to
Realm PAS granules. For accesses within the PAR, RMM
guarantees confidentiality and integrity to the Realm; outside
the PAR, the hypervisor is free to map NS PAS granules
or emulate accesses. This provides an OS running inside a
Realm VM with a reliable mechanism to determine whether
it is accessing its own private memory, or memory which can
be shared with untrusted agents, for example, buffers used for
untrusted DMA with virtual or physical network and block
devices.

During Realm creation, the hypervisor can assign a granule
to the Realm at a specific IPA within the PAR and copy data to
it from an NS granule. The IPA and data are cryptographically
hashed and the hash is included in the attestation token of the
Realm. The attestation token allows a Realm owner to reason
about its initial state and content. Once a Realm has been
activated, the measurement is fixed, and memory can only
be added to otherwise unused IPAs with unknown content.
We refer to delegated granules used to store data for a Realm
as Data granules. The hypervisor can request that RMM
maps NS granules outside the PAR at any time. Physically

contiguous delegated memory can be mapped to a Realm in
blocks larger than 4 KB granules to optimize TLB usage.

The hypervisor can reclaim memory from a Realm at any
time. RMM zeros a granule before undelegating it and return-
ing it to the hypervisor. Subsequent accesses from a Realm to
the IPA where the memory was reclaimed result in a stage 2
abort to RMM which prevents further execution of the Realm
and preserves the Arm CCA integrity guarantee. The hypervi-
sor cannot subsequently map a granule to a previously-backed
IPA within a PAR without Realm permission.

As a system designed to scale to many cores, RMM makes
extensive use of fine-grained locking to support a high degree
of concurrent operation. For example, each memory granule
has its own lock so many granule operations can be done
in parallel. Similarly, an RTT is a multi-level page table, for
which each level has its own lock, and hand-over-hand locking
is used to support concurrent operations on RTTs. For exam-
ple, two Realm VCPUs can each cause a stage 2 page fault
at the same time but at different IPAs, which can be resolved
by the hypervisor in parallel on two CPUs to improve per-
formance. This is a key requirement to support large Realms.
Although most of RMM is written in C, Arm assembly code is
also used to implement memory accesses with acquire/release
semantics where lockless concurrent accesses are used for
performance reasons, and to implement the locking primitives
themselves.

Arm CCA firmware is designed for security following best
practices. Systems such as Linux map all physical memory to
the kernel page table. RMM and EL3M do not. RMM’s own
page table statically maps code and metadata exclusively ac-
cessed by RMM, such as the GST and locks for each granule.
Additional entries in RMM’s page table are used to statically
assign a virtual address range to each physical CPU in the
system, resulting in a fixed number of virtual address slots
per CPU. Memory is then mapped on demand when needed.
RMM maps Data granules and metadata granules, such as RD
and REC, on demand, and unmaps them once the respective
operation is completed. EL3M’s own page table only statically
maps the EL3M code, a small fixed size stack, and the GPT;
no other memory is mapped to its page table. Furthermore,
SMC parameters are only interpreted as values in EL3M,
never as pointers used to access memory. Even if a bug is
introduced in some future version of Arm CCA firmware that
is not completely verified, these defense-in-depth measures
make it much harder for a return-oriented or jump-oriented
programming attack to succeed.

4 Verification and Evaluation

We have implemented, verified, and evaluated an early Arm
CCA prototype [29]. Verification was done in Coq and used
to guarantee the correctness of the firmware and the security
of Realms. We proved the CCA firmware implementation
refines its layered specification in Coq, then use the top-level

4



specification to prove the system’s security properties hold for
the implementation. The most challenging refinement proofs
were for verifying RMM’s RTT implementation. RTT prim-
itives use hand-over-hand locking to synchronize access to
dynamically allocated 4-level page tables, allowing fine-grain
concurrent operation on different page table levels. Verifying
the RTT implementation required us to develop new verifica-
tion techniques to verify the correctness of hand-over-hand
locking in a real system for the first time. To verify security
properties even though untrusted system software is in full
control of system resources, we proved the specification sim-
ulates an idealized secure machine model whose definition
forbids behaviors that compromise Realm confidentiality or
integrity. A key feature of the proof is that it only needs to
trust roughly 200 lines of Coq specification, making the for-
mal guarantees of the confidentiality and integrity of Realm
code and data in use easy to read and understand. The veri-
fication outcomes, including the discovery of several latent
bugs, were confirmed by Arm’s development team and used
to further improve the firmware implementation. The im-
plementation has since been open sourced and continues to
evolve [4], and formal methods continue to be applied to its
development [19].

We have run the CCA software stack, including RMM,
EL3M, and modifications to the Linux KVM hypervisor to
use Realms, on an Arm Fast Model which implements the
Realm Management Extensions (RME) CPU architecture.
However, Fast Models do not provide any cycle accurate mea-
sure of real performance. To provide a preliminary measure
of Arm CCA performance even though Armv9-A hardware
with RME support is not yet available, we have ported the
Arm CCA software prototype to run on currently available
Arm hardware, an Arm N1 System Development Platform
(N1SDP) [6] with an Armv8.2-A Neoverse N1 SoC. This
version of EL3M is based on the the Trusted Firmware-A
(TFA) codebase. The N1SDP does not provide GPT or Realm
world hardware, so it cannot enforce the security guarantees
of Realms, but we can use it to mimic the performance costs
of Realms by modifying the EL3M code. Context switching
between NS and Realm worlds is mimicked by modifying
EL3M to switch between two separate contexts within NS
world. EL3M is further modified to support the RMI as well as
handle GPT update requests from RMM. We did not include
EL3M code that controls GPT registers as they do not exist
on the N1SDP, but data is still written to the GPT, although
without any effect.

This setup necessarily will have some performance dif-
ferences from real RME hardware, but it provides a useful
approximation of actual Realm performance. The cost of GPT
checks by RME hardware are not included since no GPT hard-
ware is available, but are expected to exhibit good caching
behavior and will not affect the relative performance of VMs
versus Realm VMs since they apply equally in NS and Realm
worlds. The cost of some hypervisor operations, such as those

Name Description
Apache Apache server v2.4.41 handling 100 concurrent requests via

TLS/SSL from remote ApacheBench [1] v2.3 client, serving
the index.html of the GCC 7.5.0 manual.

Hackbench Hackbench [34] using Unix domain sockets and 20 process
groups running in 500 loops.

Kernbench Compilation of the Linux kernel v4.18 using allnoconfig for
Arm with GCC 9.3.0.

Memcached Memcached v1.5.22 handling requests from a remote
memtier [32] v1.2.11 client with default parameters.

MongoDB MongoDB server v3.6.8 handling requests from a remote
YCSB [11] v0.17.0 client running workload A with 16 concur-
rent threads and operationcount=500000.

MySQL MySQL v8.0.27 running sysbench v1.0.11 with 32 concurrent
threads and TLS encryption.

Redis Redis v4.0.9 server handling requests from a remote redis-
benchmark client (redis-tools v5.0.7) [33] running GET/SET
with 50 parallel connections and 12 pipelined requests.

Table 3: Application benchmarks.

that require exiting to userspace, will be overly conservative as
controlling timer interrupt behavior requires those operations
to write to the Arm Generic Interrupt Controller (GIC) on
the N1SDP which is slow, whereas real RME hardware will
have system registers that can be used by RMM to achieve the
same functionality. Finally, the prototype evaluated for this
article lacks support for directly injecting virtual interrupts
without hypervisor intervention, but this is expected to be
available in future RME hardware.

We ran application workloads in VMs on unmodified KVM
and CCA KVM in Linux 5.12 on the N1SDP, which has two
dual-core 2.6 GHz Neoverse N1 CPUs, 6 GB RAM, a 240 GB
SATA3 SSD and a Intel 82574L 1 Gbps NIC. We used QEMU
4.2.0 [8] to run VMs. VMs were run using KVM or CCA
KVM with 4 cores and 1 GB RAM with the VM capped at 2
VCPUs and 512 MB RAM; VCPUs were pinned to individual
cores. VHOST networking was used and virtual block storage
devices were configured with cache=none [20, 24, 35]. Arm
VHE [7, 13, 14] was used for all measurements. For client-
server workloads, clients ran on an x86 machine with a 16-
core Intel Xeon E5-2690 2.9 GHz CPU, 378 GB RAM and an
Intel I350 1 Gbps NIC, connected to the N1SDP via a Linksys
LGS108 1 Gbps switch.

Table 3 lists the application workloads we ran. We also ran
the workloads on native hardware running the same kernel
to provide a baseline for comparison, restricting the system
to use 2 CPUs and 512 MB RAM to provide a comparable
configuration to the VMs. For each platform, we ran each
workload 50 times and measured the average, worst, and best
performance.

Figure 2 shows the average performance for each bench-
mark for unmodified KVM versus CCA KVM, with error bars
indicating worst and best performance. Performance was nor-
malized to average native execution on the N1SDP hardware;
lower is better. Unlike microbenchmark performance, the ap-
plication benchmark performance shows that CCA KVM and
KVM have much more modest performance differences on
more realistic workloads.

5



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Apach
e
Hackb

enchKernbe
nch
Memc

achedMongo
DB MySQ

L Redis

KVM CCA KVM

Figure 2: Application benchmark performance.

CCA KVM has less than 8% overhead versus unmodified
KVM for most workloads, but in the worst case, overhead was
18% for MongoDB, an I/O intensive workload. The I/O in-
tensive workloads have higher overhead for a couple reasons.
The main reason is because the VM exits more frequently,
so the cost of exits has a more significant impact on perfor-
mance. An exit to the hypervisor is more expensive on CCA
KVM, taking an extra 1.5 µs. If there are many exits as will
be case for I/O intensive workloads, this additional cost can
become significant. For example, Memcached incurs roughly
a million VM exits to the hypervisor. This results in roughly
1.5 s of additional overhead, or .75 s of overhead per core if
the exits are split evenly across cores for a VM with 2 VC-
PUs. Memcached takes 9 s to run on vanilla KVM, so this
is 8% overhead due to the extra latency for exits on CCA
KVM, which roughly matches the actual overhead measured
for Memcached on CCA KVM versus vanilla KVM.

A secondary reason is because CCA KVM needs to use
a bounce buffer while vanilla KVM does not. CCA KVM
needs a bounce buffer to support virtio because Realm mem-
ory is protected from the hypervisor. KVM uses the default
virtio mechanism to directly access VM memory, so it does
not require bounce buffers and does not need to perform the
additional data copying. Since KVM can also be configured
to use a bounce buffer, we also measured KVM with this
configuration to isolate the impact of using a bounce buffer
on performance. The overhead with versus without a bounce
buffer was negligible in most cases, but in the worst case
as high as 3-4% for the more disk I/O intensive workloads,
MongoDB and MySQL.

We expect the overheads for I/O intensive workloads on
real RME hardware to be less than what we measured on
the N1SDP hardware. Exits are expected to occur less fre-
quently on real RME hardware when support for direct virtual
interrupt injection is added. Exits that go to userspace are
expected to cost less on real RME hardware as the expensive
GIC writes required for N1SDP hardware will be eliminated,
though this was not a dominant factor in our results with the
use of VHOST networking. This cost can be further miti-
gated by using device passthrough instead of paravirtual I/O,
which will largely avoid these exits and their associated per-

formance overhead. Support for Realm device passthrough
will be added a future version of Arm CCA. Overall, our mea-
surements indicate that Arm CCA’s security guarantees can
be delivered with acceptable performance overheads for real
application workloads.

5 Related Work

Hardware-enforced trusted execution environments have be-
come an important feature of major computer architectures.
Arm TrustZone [5] can be used to statically partition and
isolate a memory region in Secure world, but most imple-
mentations only support a small number of such memory
regions, limiting its scalability. Intel Software Guard Exten-
sions (SGX) [23] can be used by application developers to
protect userspace memory from other programs, including a
potentially malicious OS or hypervisor. SGX is not suitable
for securing VMs.

AMD Secure Encrypted Virtualization (SEV) [2] and Intel
Trust Domain Extensions (TDX) [22] provide protection at
the level of VMs with similar threat models to Arm CCA. The
initial version of SEV ensured confidentiality by encrypting
VM memory at runtime, but did not ensure memory data in-
tegrity, which has been utilized as an attack vector such that
a compromised hypervisor can tamper with or steal private
VM data [21, 25, 30, 31, 39]. Secure Nested Paging (SNP) [3]
now provides the previously missing integrity protection ca-
pability. SEV-SNP allows an untrusted hypervisor to directly
manage NPTs, but checks accesses against a reverse map
table, an additional data structure managed by a security co-
processor. In contrast, Intel TDX runs a TDX module in a
privileged SEAM (Secure-Arbitration Mode) root CPU mode.
The firmware manages NPTs used by protected VMs in re-
sponse to requests issued by the untrusted hypervisor. Unlike
Arm CCA, the security of SGX, SEV, SEV-SNP and TDX
relies on complex implementations in unverified microcode
and firmware [10, 12]. They are difficult to update, either to
patch security flaws or introduce new features.

Komodo [18] draws on ideas from SGX, but is imple-
mented as a software monitor in verified Arm assembly code
on top of TrustZone instead of requiring hardware to sup-
port complex enclave-manipulation instructions. This avoids
hardware complexity and enables deployment of new enclave
features independently of CPU upgrades. Komodo does not
support multiprocessor execution, largely due to the challenge
of verifying low-level concurrent code. Arm CCA retains the
advantages of Komodo’s approach by relying on a verified
software monitor to implement Realms, but supports verified
VM protection and multiprocessor execution.

The idea of retrofitting a commodity hypervisor so that its
security guarantees are enforced by a small trusted core was
first explored by SeKVM [26–28,36]. SeKVM was the first to
show how this retrofitting approach, known as microverifica-
tion, makes it possible to verify that a commodity hypervisor

6



guarantees the confidentiality and integrity of VMs. Arm
CCA allows hypervisors to be modified to support Realm
VMs, whose confidentiality and integrity are protected by
a verified monitor, reminscient of SeKVM. While SeKVM
uses existing Arm hardware, RME introduces new hardware
mechanisms that protect VMs from untrusted software run-
ning in both NS and Secure world, and allow hypervisors to
make full use of Arm virtualization features such as VHE
for better performance. Furthermore, Arm CCA firmware is
designed to support a higher degree of scalability and concur-
rent operation by allowing data races, leveraging fine-grain
synchronization, and enabling the hypervisor to provide fully
dynamic memory allocation for all VM-related metadata.

6 Conclusions

Arm CCA introduces Realms, secure execution environments
that protect the confidentiality and integrity of VMs against
untrusted system software such as hypervisors. Realms are
made possible by hardware support for Realm world, a new
physical address space for Realms inaccessible to untrusted
system software, and a firmware monitor that runs in Realm
world to control RME hardware to secure and manage Realms,
including handling requests from untrusted hypervisors to
create Realms, run Realms, and allocate memory to Realms.
This design maintains compatibility with the Arm architecture
without introducing complex hardware mechanisms by rely-
ing on firmware, and avoids complexity in the firmware by
relying on existing hypervisors to provide virtualization func-
tionality. We formally verified Arm CCA firmware, demon-
strating the feasibility of relying on trustworthy firmware for
the security guarantees of the architecture. Arm CCA pro-
vides its security guarantees with only modest performance
overhead compared to running VMs with the Linux KVM
hypervisor without verified VM protection.

7 Acknowledgments

This work was supported in part by Arm, OPPO, an Amazon
Research Award, a Guggenheim Fellowship, DARPA contract
N66001-21-C-4018, and NSF grants CCF-1918400, CNS-
2052947, and CCF-2124080. Ronghui Gu is the Founder of
and has an equity interest in CertiK.

References

[1] ab, The Apache Software Foundation. http://
httpd.apache.org/docs/2.4/programs/ab.html,
April 2015.

[2] Advanced Micro Devices. Secure Encrypted Virtualiza-
tion API Version 0.16. https://support.amd.com/
TechDocs/55766_SEV-KM%20API_Spec.pdf,
February 2018.

[3] Advanced Micro Devices. AMD SEV-SNP: Strength-
ening VM Isolation with Integrity Protection
and More. https://www.amd.com/system/
files/TechDocs/SEV-SNP-strengthening-vm-
isolation-with-integrity-protection-and-
more.pdf, January 2020.

[4] ARM Ltd. TF-RMM: the Trusted Firmware Im-
plementation of the Realm Management Monitor
(RMM). https://www.trustedfirmware.org/
projects/tf-rmm/.

[5] ARM Ltd. ARM Security Technology Build-
ing a Secure System using TrustZone Technol-
ogy. https://documentation-service.arm.com/
static/5f212796500e883ab8e74531, April 2009.

[6] ARM Ltd. Arm Neoverse N1 Core Technical
Reference Manual. https://developer.arm.com/
documentation/100616/0400/, April 2019.

[7] ARM Ltd. Virtualization Host Extensions. https:
//developer.arm.com/documentation/102142/
0100/Virtualization-Host-Extensions,
January 2019.

[8] Fabrice Bellard. QEMU, a Fast and Portable Dynamic
Translator. In Proceedings of the USENIX 2005 An-
nual Technical Conference, FREENIX Track (FREENIX
2005), pages 41–46, Anaheim, CA, April 2005.

[9] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. Hard-
ware and Software Support for Virtualization. Synthesis
Lectures on Computer Architecture. Morgan and Clay-
pool Publishers, February 2017.

[10] Anrin Chakrabortid, Reza Curtmola, Jonathan Katz, Ja-
son Nieh, Ahmad-Reza Sadeghi, Radu Sion, and Yin-
qian Zhang. Cloud Computing Security: Foundations
and Research Directions. Foundations and Trends in
Privacy and Security, 3(2):103–213, February 2022.

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SoCC 2010),
pages 143–154, Indianapolis, IN, June 2010.

[12] Victor Costan and Srinivas Devadas. Intel SGX Ex-
plained. Cryptology ePrint Archive, Report 2016/086,
January 2016. https://ia.cr/2016/086.

[13] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh,
and Georgios Koloventzos. ARM Virtualization: Perfor-
mance and Architectural Implications. In Proceedings
of the 43rd International Symposium on Computer Ar-
chitecture (ISCA 2016), pages 304–316, Seoul, South
Korea, June 2016.

7

http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
https://support.amd.com/TechDocs/55766_SEV-KM%20API_Spec.pdf
https://support.amd.com/TechDocs/55766_SEV-KM%20API_Spec.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.trustedfirmware.org/projects/tf-rmm/
https://www.trustedfirmware.org/projects/tf-rmm/
https://documentation-service.arm.com/static/5f212796500e883ab8e74531
https://documentation-service.arm.com/static/5f212796500e883ab8e74531
https://developer.arm.com/documentation/100616/0400/
https://developer.arm.com/documentation/100616/0400/
https://developer.arm.com/documentation/102142/0100/Virtualization-Host-Extensions
https://developer.arm.com/documentation/102142/0100/Virtualization-Host-Extensions
https://developer.arm.com/documentation/102142/0100/Virtualization-Host-Extensions
https://ia.cr/2016/086


[14] Christoffer Dall, Shih-Wei Li, and Jason Nieh. Optimiz-
ing the Design and Implementation of the Linux ARM
Hypervisor. In Proceedings of the 2017 USENIX An-
nual Technical Conference (USENIX ATC 2017), pages
221–234, Santa Clara, CA, July 2017.

[15] Christoffer Dall and Jason Nieh. KVM/ARM: Expe-
riences Building the Linux ARM Hypervisor. Tech-
nical Report CUCS-010-13, Department of Computer
Science, Columbia University, June 2013.

[16] Christoffer Dall and Jason Nieh. Supporting KVM on
the ARM Architecture. LWN Weekly Edition, pages
18–22, July 2013.

[17] Christoffer Dall and Jason Nieh. KVM/ARM: The De-
sign and Implementation of the Linux ARM Hypervisor.
In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2014), pages 333–347,
Salt Lake City, UT, March 2014.

[18] Andrew Ferraiuolo, Andrew Baumann, Chris Haw-
blitzel, and Bryan Parno. Komodo: Using verification to
disentangle secure-enclave hardware from software. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles (SOSP 2017), pages 287–305, Shanghai,
China, October 2017.

[19] Anthony C. J. Fox, Gareth Stockwell, Shale Xiong,
Hanno Becker, Dominic P. Mulligan, Gustavo Petri, and
Nathan Chong. A Verification Methodology for the
Arm® Confidential Computing Architecture: From a
Secure Specification to Safe Implementations. Proc.
ACM Program. Lang., 7(OOPSLA1), April 2023.

[20] Stefan Hajnoczi. An Updated Overview of the QEMU
Storage Stack. In LinuxCon Japan 2011, Yokohama,
Japan, June 2011.

[21] Felicitas Hetzelt and Robert Buhren. Security Analysis
of Encrypted Virtual Machines. In Proceedings of the
13th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE 2017), pages
129–142, Xi’an, China, April 2017.

[22] Intel Corporation. Intel Trust Domain Extensions.
https://www.intel.com/content/www/us/
en/developer/articles/technical/intel-
trust-domain-extensions.html, October 2014.

[23] Intel Corporation. Intel Software Guard Ex-
tensions Programming Reference. https:
//software.intel.com/sites/default/files/
managed/48/88/329298-002.pdf, May 2021.

[24] KVM contributors. Tuning KVM. http:
//www.linux-kvm.org/page/Tuning_KVM, May
2015.

[25] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan
Solihin. Exploiting Unprotected I/O Operations in
AMD’s Secure Encrypted Virtualization. In Proceed-
ings of the 28th USENIX Security Symposium (USENIX
Security 2019), pages 1257–1272, Santa Clara, CA, Au-
gust 2019.

[26] Shih-Wei Li, John S. Koh, and Jason Nieh. Protecting
Cloud Virtual Machines from Commodity Hypervisor
and Host Operating System Exploits. In Proceedings of
the 28th USENIX Security Symposium (USENIX Secu-
rity 2019), pages 1357–1374, Santa Clara, CA, August
2019.

[27] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. A Secure and Formally Verified Linux
KVM Hypervisor. In Proceedings of the 2021 IEEE
Symposium on Security and Privacy (IEEE S&P 2021),
pages 1782–1799, San Francisco, CA, May 2021.

[28] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. Formally Verified Memory Protec-
tion for a Commodity Multiprocessor Hypervisor. In
Proceedings of the 30th USENIX Security Symposium
(USENIX Security 2021), pages 3953–3970, Vancouver,
BC Canada, August 2021.

[29] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu,
Jason Nieh, Yousuf Sait, and Gareth Stockwell. Design
and Verification of the Arm Confidential Compute Ar-
chitecture. In Proceedings of the 16th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 2022), pages 465–484, Carlsbad, CA, July 2022.

[30] Mathias Morbitzer, Manuel Huber, and Julian Horsch.
Extracting Secrets from Encrypted Virtual Machines. In
Proceedings of the 9th ACM Conference on Data and
Application Security and Privacy (CODASPY 2019),
pages 221–230, Dallas, TX, March 2019.

[31] Mathias Morbitzer, Manuel Huber, Julian Horsch, and
Sascha Wessel. SEVered: Subverting AMD’s Virtual
Machine Encryption. In Proceedings of the 11th Eu-
ropean Workshop on Systems Security (EuroSec 2018),
pages 1–6, Porto, Portugal, April 2018.

[32] Redis Labs. Memtier Benchmark. https:
//github.com/RedisLabs/memtier_benchmark,
January 2018.

[33] Redis Labs. Redis Benchmark. https://redis.io/
docs/reference/optimization/benchmarks/,
March 2022.

[34] Rusty Russell. Hackbench. http://
people.redhat.com/mingo/cfs-scheduler/
tools/hackbench.c, January 2008.

8

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://www.linux-kvm.org/page/Tuning_KVM
http://www.linux-kvm.org/page/Tuning_KVM
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://redis.io/docs/reference/optimization/benchmarks/
https://redis.io/docs/reference/optimization/benchmarks/
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c


[35] SUSE. Performance Implications of Cache
Modes. https://www.suse.com/documentation/
sles11/book_kvm/data/sect1_3_chapter_

book_kvm.html, September 2016.

[36] Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li, Ja-
son Nieh, and Ronghui Gu. Formal Verification of a
Multiprocessor Hypervisor on Arm Relaxed Memory
Hardware. In Proceedings of the 28th ACM Symposium
on Operating Systems Principles (SOSP 2021), pages
866–881, Virtual Event, Germany, October 2021.

[37] The Coq development team. The Coq Proof Assistant.
http://coq.inria.fr. Accessed on December 13,
2022.

[38] Alexander Van’t Hof and Jason Nieh. BlackBox: A
Container Security Monitor for Protecting Containers
on Untrusted Operating Systems. In Proceedings of the
16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2022), Carlsbad, CA, July
2022.

[39] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and
Thomas Eisenbarth. SEVurity: No Security Without
Integrity Breaking Integrity-Free Memory Encryption
with Minimal Assumptions. In Proceedings of the 2020
IEEE Symposium on Security and Privacy (IEEE S&P
2020), pages 1483–1496, San Francisco, CA, May 2020.

[40] Willen Yang, Arm Ltd. Confidential Con-
tainers (Coco) on Arm CCA. https://
linaroconnect2023.sched.com/event/1K86S/
lhr23-315-confidential-containerscoco-
on-arm-cca, April 2023.

9

https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter _book_kvm.html
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter _book_kvm.html
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter _book_kvm.html
http://coq.inria.fr
https://linaroconnect2023.sched.com/event/1K86S/lhr23-315-confidential-containerscoco-on-arm-cca
https://linaroconnect2023.sched.com/event/1K86S/lhr23-315-confidential-containerscoco-on-arm-cca
https://linaroconnect2023.sched.com/event/1K86S/lhr23-315-confidential-containerscoco-on-arm-cca
https://linaroconnect2023.sched.com/event/1K86S/lhr23-315-confidential-containerscoco-on-arm-cca

	Introduction
	Threat Model
	Arm CCA Design
	Verification and Evaluation
	Related Work
	Conclusions
	Acknowledgments

