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Message from the USENIX Security ’23 
Artifact Evaluation Committee Co-Chairs

On behalf of USENIX, we want to welcome you to the Artifact Appendices to the Proceedings of the 32nd USENIX 
Security Symposium. Over a year ago, we started to work with everyone to run an artifact evaluation (AE) in conjunction 
with the main conference. We are proud of what our community has accomplished together. Learning from the last years, we 
increased the artifact evaluation committee to 127 members. We mainly recruited the members via a self-nomination process 
leading to PhD students, post-docs, or early career researchers from around the world to apply. One significant change was 
the introduction of a publication chair since the expected workload to validate the numerous artifact appendices would have 
been too large.

Artifact Evaluation in the security community is still relatively new and has only occurred for the 4th time since 2020. We 
aligned the artifact evaluation with the paper submission cycles such that the artifact evaluation follows after the final paper 
deadline of each of the 3 main paper submission cycles. Authors may submit their artifacts for review and select which 
badges they would like to be evaluated against. Each evaluation cycle took 4–5 weeks to complete, in which the evaluators 
worked with the author-provided artifacts and discussed issues with the authors in a single-blind manner. In each cycle, 
evaluators were assigned 1 to 2 artifacts to judge against the badge criterion.

After three AE cycles, we concluded with 140 artifacts receiving at least one of the three badges. As a result, out of 422 
USENIX Security ’23 papers, 31% went through artifact evaluation and successfully received a badge, a decrease of 13% 
from 2022. In total, 138 Artifacts Available, 120 Artifacts Functional, and 96 Results Reproduced badges were awarded by 
the Artifact Evaluation Committee (AEC). The Artifacts Available badge ensures that the artifact is publicly available; the 
Artifacts Functional badge ensures that the artifact is complete, documented, and exercisable; the Results Reproduced badge 
ensures that the major claims of the paper have been reproduced by an evaluator independently using the author-provided 
artifacts.

We are tremendously grateful to the AEC. The evaluators spent countless hours improving and communicating with the 
authors leading to more than 2,750 comments in HotCRP and close to 350 reviews. Without this effort, this proceedings 
volume of 140 artifact appendices wouldn’t have been possible.

To further promote artifact evaluation in the community and highlight great artifacts, the AEC selected 4 distinguished 
artifact awards and 5 distinguished artifact reviewer awards. The former recognizes artifacts that should act as lighthouses to 
anyone seeking guidance on how to build a great artifact. The latter is to recognize the efforts of reviewers who went above 
and beyond to review and help authors improve their artifacts.

New this year was updated documentation for authors and reviewers as well as the artifact appendix template. In addition, 
we allowed out-of-cycle submissions of artifacts. That is, authors were able to submit artifacts in the same cycle their paper 
was accepted or any of the following cycles. This resulted in a slow start to the artifact submissions in the summer cycle and 
doubled with every cycle leading to almost 80 artifact submissions in the final winter cycle. 

We want to express our immeasurable gratitude to the community without whom these proceedings would not be possible. 

Cristiano Giuffrida, Vrije Universiteit Amsterdam 
Anjo Vahldiek-Oberwagner, Intel Labs 
USENIX Security ’23 Artifact Evaluation Committee Co-Chairs

Alexios Voulimeneas, Delft University of Technology 
USENIX Security ’23 Artifact Evaluation Publication Chair
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A Artifact Appendix

A.1 Abstract

The artifact contains the dataset and benchmark results of
tracking users’ keystroke sounds to recover unconstrained
keyboard inputs. It contains test cases with code to reproduce
the attack results in different scenarios.

A.2 Description & Requirements

We run experiments on a computer with dual Xeon v3 E2683
processors and 32-GB RAM.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The artifact can be accessed via the following GitHub link
https://github.com/auditoryeye/auditoryeye_

artifact/releases/tag/20230809

A.2.3 Hardware dependencies

We recommend using computers with at least 12-core proces-
sors and 32-GB RAM.

A.2.4 Software dependencies

The code was written and tested in Matlab R2020b. We rec-
ommend using R2020b or newer versions of Matlab with the
parallel computing toolbox.

A.2.5 Benchmarks

None.

A.3 Set-up
We organize the contents in test cases. There are 11 folders
in the repository. Each folder contains the data, benchmark
results, and code. In each folder, there is a main.m file. The
artifact can be evaluated after navigating to one of the folders
and opening the main.m file in Matlab.

A.3.1 Installation

The artifact is ready to run after downloading the contents
from its GitHub repository:
https://github.com/auditoryeye/auditoryeye_

artifact/tree/20230809

A.3.2 Basic Test

Navigate to the 01_proofofconcept_multiround_apple_keys
folder. Open main.m file in Matlab and run each line
in order. The results will be saved to the 01_proofofcon-
cept_multiround_apple_keys/recording01_keys_interpolated
folder. The results will be illustrated in the prompted win-
dows. Step-by-step instructions to start the parallel pool
and run the basic test are available at the artifact’s GitHub
repository.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Auditory Eyesight can distinguish compactly spaced
keys by localizing keystroke sound signals in the differ-
ential range of microseconds.
This is proven by: 1) experiments (E1, E2) described
in paper’s Section 4 whose results are illustrated in the
paper’s Figure 6, Figure 7, Figure 8, Figure 10, Figure
12, Figure 26, Figure 27, Figure 28, Figure 29, Figure
30, Figure 31, Table 1, and Table 2;
2) experiments (E9, E10) described in paper’s Section
7 whose results are illustrated in the paper’s Figure 22
and Figure 23.
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(C2): Auditory Eyesight can reveal unconstrained user in-
puts. This is proven by the experiment (E3) described in
the paper’s Section 5, whose results are summarized in
the paper’s Table 3.

(C3): Auditory Eyesight works with different angles, dis-
tances, and certain non-line-of-sight scenarios. This is
proven by: 1) experiments (E4, E5, E6, E7, E8) described
in paper’s Section 7 whose results are summarized in
the paper’s Table 6.
2) experiments (E9, E10) described in paper’s Section
7 whose results are illustrated in the paper’s Figure 22
and Figure 23.
3) experiment (E11) described in paper’s Section 6.2
whose results are summarized in the paper’s Figure 21
and Table 5.

A.4.2 Experiments

(E1): [30 human-minutes + 10 compute-minutes + 2GB
disk]: Proof-of-concept attacks to localize 598
keystrokes on the Apple Magic keyboard from a 0.5-m
attack distance.
How to:
1. Navigate to the
01_proofofconcept_multiround_apple_keys folder.
2. Read the 01_readme.txt file.
3. Open main.m file in Matlab and run each
line in order to calculate the results. The re-
sults will be saved into the 01_proofofcon-
cept_multiround_apple_keys/recording01_keys_interpolated
folder.
4. The results will be illustrated in the prompted
windows and the console.
Preparation:
Start the Parallel Pools in Matlab.
Execution:
Run each line in the main.m file.
Results:
We describe the results and the corresponding contents
as follows:

• E1.01
Command:
run(’YZProcessing05_statistics_remoutlier.m’)
Reproduced Result:
Paper’s Figure 6 top

• E1.02
Command:
run(’Statistics101_round1.m’);
Reproduced Result:
Paper’s Figure 7

• E1.03
Command:

run(’Statistics201_figure_2d_1round.m’);
Reproduced Result:
Paper’s Figure 26

• E1.04
Command:
run(’YZProcessing07_2ndroundstatistics.m’)
Reproduced Result:
Paper’s Figure 6 middle

• E1.05
Command:
run(’Statistics101_round2.m’);
Reproduced Result:
Paper’s Figure 8

• E1.06
Command:
run(’Statistics201_figure_2d_2round.m’);
Reproduced Result:
Paper’s Figure 27

• E1.07
Command:
run(’YZProcessing09_3rdroundstatistics’)
Reproduced Result:
Paper’s Figure 6 bottom

• E1.08
Command:
run(’Statistics101_round3.m’);
Reproduced Result:
Paper’s Figure 10

• E1.09
Command:
run(’Statistics101_round5’);
Reproduced Result:
Paper’s Table 2

• E1.10
Command:
run(’Statistics201_figure_2d_5round’);
Reproduced Result:
Paper’s Figure 28

• E1.11
Command:
run(’Statistics_accuracy_calculation’);
Reproduced Result:
Paper’s Table 1

(E2): [30 human-minutes + 10 compute-minutes + 2GB
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disk]: Proof-of-concept attacks to localize 595
keystrokes on the Razor keyboard from a 0.5-m attack
distance.
How to:
1. Navigate to the
02_proofofconcept_multiround_razor_keys folder.
2. Read the 01_readme.txt file.
3. Open main.m file in Matlab and run each
line in order to calculate the results. The re-
sults will be saved into the 02_proofofcon-
cept_multiround_razor_keys/recording01_keys_interpolated
folder.
4. The results will be illustrated in the prompted
windows and the console.
Preparation:
Start the Parallel Pools in Matlab.
Execution:
Run each line in the main.m file.
Results:
We describe the results and the corresponding contents
as follows:

• E2.01
Command:
run(’YZProcessing05_statistics_remoutlier.m’)
Reproduced Result:
Paper’s Figure 12 top

• E2.02
Command:
run(’Statistics201_figure_2d_1round.m’);
Reproduced Result:
Paper’s Figure 29

• E2.03
Command:
run(’YZProcessing07_2ndroundstatistics.m’)
Reproduced Result:
Paper’s Figure 12 middle

• E2.04
Command:
run(’Statistics201_figure_2d_2round.m’);
Reproduced Result:
Paper’s Figure 30

• E2.05
Command:
run(’YZProcessing09_3rdroundstatistics’)
Reproduced Result:
Paper’s Figure 12 bottom

• E2.06
Command:

run(’Statistics201_figure_2d_5round’);
Reproduced Result:
Paper’s Figure 31

• E2.07
Command:
run(’Statistics101_round5’);
Reproduced Result:
Paper’s Table 2

• E2.08
Command:
run(’Statistics_accuracy_calculation’);
Reproduced Result:
Paper’s Table 1

(E3): [30 human-minutes + 20 compute-minutes + 10GB
disk]: Attacks on unconstrained user inputs
How to:
1. Navigate to the 03_userstudy_1 folder.
2. Read the 01_readme.txt file.
3. Open main.m file in Matlab and run each
line in order to calculate the results. The re-
sults will be saved into the 02_proofofcon-
cept_multiround_razor_keys/recording01_keys_interpolated
folder.
4. The results will be illustrated in the prompted
windows and the console.
Preparation:
Start the Parallel Pools in Matlab.
Execution:
Run main.m file.
Results:
We describe the results and the corresponding contents
as follows:

• E3.1
Command:
run(’Statistics_accuracy_calculation’);
Reproduced Result:
Paper’s Table 3

(E4): [15 human-minutes + 5 compute-minutes + 2GB disk]:
Test case with different angle
How to:
1. Navigate to the 04_additiontestcase_angle01 folder.
2. Read the 01_readme.txt file.
3. Open main.m file in Matlab and run each
line in order to calculate the results. The re-
sults will be saved into the 04_additiontest-
case_angle01/recording01_keys_interpolated folder.
4. The results will be illustrated in the prompted
windows and the console.
Preparation:
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Start the Parallel Pools in Matlab.
Execution:
Run main.m file.
Results:
We describe the results and the corresponding contents
as follows:

• E4.1
Command:
run(’Statistics_accuracy_calculation’);
Reproduced Result:
Paper’s Table 6, Test Case 1

(E5): [15 human-minutes + 5 compute-minutes + 2GB disk]:
2nd test case with different angle
How to:
1. Navigate to the 04_additiontestcase_angle02 folder.
2. Read the 01_readme.txt file.
3. Open main.m file in Matlab and run each
line in order to calculate the results. The re-
sults will be saved into the 04_additiontest-
case_angle02/recording01_keys_interpolated folder.
4. The results will be illustrated in the prompted
windows and the console.
Preparation:
Start the Parallel Pools in Matlab.
Execution:
Run main.m file.
Results:
We describe the results and the corresponding contents
as follows:

• E5.1
Command:
run(’Statistics_accuracy_calculation’);
Reproduced Result:
Paper’s Table 6, Test Case 2

(E6): [15 human-minutes + 5 compute-minutes + 2GB disk]:
3rd test case with different angle
How to:
1. Navigate to the 04_additiontestcase_angle03 folder.
2. Read the 01_readme.txt file.
3. Open main.m file in Matlab and run each
line in order to calculate the results. The re-
sults will be saved into the 04_additiontest-
case_angle03/recording01_keys_interpolated folder.
4. The results will be illustrated in the prompted
windows and the console.
Preparation:
Start the Parallel Pools in Matlab.
Execution:
Run main.m file.
Results:
We describe the results and the corresponding contents
as follows:

• E6.1
Command:
run(’Statistics_accuracy_calculation’);
Reproduced Result:
Paper’s Table 6, Test Case 3

(E7): [15 human-minutes + 5 compute-minutes + 2GB disk]:
4th test case with different angle and 3 microphones
How to:
1. Navigate to the 04_additiontestcase_angle04_3mics
folder.
2. Read the 01_readme.txt file.
3. Open main.m file in Matlab and run each
line in order to calculate the results. The re-
sults will be saved into the 04_additiontest-
case_angle04_3mics/recording01_keys_interpolated
folder.
4. The results will be illustrated in the prompted
windows and the console.
Preparation:
Start the Parallel Pools in Matlab.
Execution:
Run main.m file.
Results:
We describe the results and the corresponding contents
as follows:

• E7.1
Command:
run(’Statistics_accuracy_calculation’);
Reproduced Result:
Paper’s Table 6, Test Case 4

(E8): [15 human-minutes + 5 compute-minutes + 2GB disk]:
5th test case with different angle and 3 microphones
How to:
1. Navigate to the 04_additiontestcase_angle05_3mics
folder.
2. Read the 01_readme.txt file.
3. Open main.m file in Matlab and run each
line in order to calculate the results. The re-
sults will be saved into the 04_additiontest-
case_angle05_3mics/recording01_keys_interpolated
folder.
4. The results will be illustrated in the prompted
windows and the console.
Preparation:
Start the Parallel Pools in Matlab.
Execution:
Run main.m file.
Results:
We describe the results and the corresponding contents
as follows:

• E8.1
Command:
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run(’Statistics_accuracy_calculation’);
Reproduced Result:
Paper’s Table 6, Test Case 5

(E9): [15 human-minutes + 5 compute-minutes + 2GB disk]:
test case with 1-m distance
How to:
1. Navigate to the 04_additiontestcase_distance1m
folder.
2. Read the 01_readme.txt file.
3. Open main.m file in Matlab and run each
line in order to calculate the results. The re-
sults will be saved into the 04_additiontest-
case_distance1m/recording01_keys_interpolated
folder.
4. The results will be illustrated in the prompted
windows and the console.
Preparation:
Start the Parallel Pools in Matlab.
Execution:
Run main.m file.
Results:
We describe the results and the corresponding contents
as follows:

• E9.1
Command:
run(’Statistics101_round3.m’);
Reproduced Result:
Paper’s Figure 22 top

(E10): [15 human-minutes + 5 compute-minutes + 2GB
disk]: test case with 2-m distance
How to:
1. Navigate to the 04_additiontestcase_distance2m
folder.
2. Read the 01_readme.txt file.
3. Open main.m file in Matlab and run each
line in order to calculate the results. The re-
sults will be saved into the 04_additiontest-
case_distance2m/recording01_keys_interpolated
folder.
4. The results will be illustrated in the prompted
windows and the console.
Preparation:
Start the Parallel Pools in Matlab.
Execution:
Run main.m file.
Results:
We describe the results and the corresponding contents
as follows:

• E10.1
Command:
run(’YZProcessing05_statistics_remoutlier’);
Reproduced Result:

Paper’s Figure 23 top

• E10.2
Command:
run(’YZProcessing07_2ndroundstatistics’);
Reproduced Result:
Paper’s Figure 23 middle

• E10.3
Command:
run(’YZProcessing09_3rdroundstatistics’);
Reproduced Result:
Paper’s Figure 23 bottom

• E10.4
Command:
run(’Statistics101_round3.m’);
Reproduced Result:
Paper’s Figure 22 bottom

(E11): [20 human-minutes + 5 compute-minutes + 2GB
disk]: non-line-of-sight test case using a laptop
How to:
1. Navigate to the 04_additiontestcase_nloslaptop
folder.
2. Read the 01_readme.txt file.
3. Open main.m file in Matlab and run each
line in order to calculate the results. The re-
sults will be saved into the 04_additiontest-
case_nloslaptop/recording01_keys_interpolated
folder.
4. The results will be illustrated in the prompted
windows and the console.
Preparation:
Start the Parallel Pools in Matlab.
Execution:
Run main.m file.
Results:
We describe the results and the corresponding contents
as follows:

• E11.1
Command:
run(’YZProcessing05_statistics_remoutlier’);
Reproduced Result:
Paper’s Figure 21 top

• E11.2
Command:
run(’YZProcessing07_2ndroundstatistics’);
Reproduced Result:
Paper’s Figure 21 middle

• E11.3
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Command:
run(’YZProcessing13_5throundstatistics.m’);
Reproduced Result:
Paper’s Figure 21 bottom

• E11.4
Command:
run(’Statistics_accuracy_calculation’);
Reproduced Result:
Paper’s Table 5

A.5 Notes on Reusability
There is a lack of an existing reference study of acoustic side-
channel keystroke attacks with publicly available datasets.
To address this issue, we publish the dataset, benchmark re-
sults, and the software of Auditory Eyesight to reproduce the
results.

This artifact is suitable for various research purposes. The
dataset can be used to benchmark different acoustic-channel
keyboard attack methods in the future. Future works can
investigate integrating additional signal processing or other
extracted features to improve the attack performance.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
To the reviewers we provide our entire codebase for run-
ning our attacks described from the paper. This is a private
GitHub repository which we have packaged into a tarball
with a README.md with more information into configura-
tion. This codebase is not released to the public due to ethical
reason discussed in A.2.1.

A.2 Description & Requirements
The attack has been tested on a 64-bit Windows machine and
on a 2017 Intel Macbook Pro. This limitation is due to the
PhotoDNA binary which is architecture specific. Our attacks
on PDQ have been tested to work on Linux as well.

To reproduce our major results, you can run our attack as
described in the README.md with the appropriate parame-
ters or left blank for default parameters.

A.2.1 Security, privacy, and ethical concerns

One ethical concern is with the protection of the PhotoD-
NAx64.dll and PhotoDNAx64.so files since these are not
publicly released. Additionally, our attack could be modified
to use on real world systems and therefore should not be pub-
licly available at the risk of aiding in the actions of a malicious
actor1.

A.2.2 How to access

While we do not provide public access to our codebase as dis-
cussed in A.2.1, we do provide perceptualhashing.lol which
contains more details regarding our codebase.

*Currently affiliated with Two Six Technologies, LLC (Arlington, VA).
1Discussed in more detail in §1 of our paper.

A.2.3 Hardware dependencies

The only dependency is to have a machine compatible with
the corresponding .dll or .so file for PhotoDNA. This should
work on a 64-bit Windows or Intel Mac environment. The rest
of our attack (including that on PDQ) works with or without
gpu2.

A.2.4 Software dependencies

The main dependency is pytorch. Additional dependencies
listed in requirements.txt.

A.2.5 Benchmarks

Our attack requires the ImageNet 2012 Validation dataset.
Instructions to obtain are detailed in the README.md file.

A.3 Set-up

You may install all requirements utilizing our provided
setup.py file, simply run pip install -e . to do so. For
GPU support see the provided README.md for more in-
struction. Additionally, the ILSVRC2012 Validation Images
Dataset tarball and two development kits must be placed in
src/data/imagenet.

A.3.1 Installation

To install any dependencies run pip install -e src/.
Then to test functionality you may run python
src/hashattack/hashing/pyphotodna.py and python
src/hashattack/hashing/pdq_hash_test.py.

2Note that in our evaluation of the PDQ algorithm, we utilize a 72-core
machine to achieve our 3-hour runtime. See §5.1 in our paper for more info.
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A.3.2 Basic Test

The above mentioned files pyphotodna.py & pdq_hash_test.py
will test the ability to produce a hash with either algorithm.
These tests will output a 2-d tensor of integers. To per-
form a more thorough test with our system you may run
python src/hashattack/hash_atk.py --no-write -cm 10 and
python src/hashattack/fuzzy_collisions_avoidance.py --no-
write which you can kill once it begins looping.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): We are able to achieve a successful attack on both
PhotoDNA and PDQ utilizing our threat model described
in §3. This includes producing a Second-Preimage and
Collision Avoidance image at the calculated baseline
threshold3.

A.4.2 Experiments

(E1): Targeted-Second-Preimage Attack [10 human-minutes
+ 4 compute-hours per run4 + 20GB disk]:
How to: To run the experiment run python
src/hashattack/hash_atk.py using both the -ha
pdna and -ha pdq flag.
Preparation: Install the pip package using pip install
-e src/ and download the ImageNet dataset as described
above.
Execution: Run the provided code using the appropri-
ate flags as mentioned in the results section 5.3. Once all
20 images have converged using both algorithms, you
may view the results from the produced tensorboard.
Results: The results will be displayed using tensor-
board.

(E2): Detection Avoidance Attack [10 human-minutes + 1
compute-hour]:
How to: To run the experiment run python
src/hashattack/fuzzy_collisions_avoidance.py us-
ing both the -ha pdna and -ha pdq flag.
Preparation: Install the pip package using pip install
-e src/ and download the ImageNet dataset as described
above.
Execution: Run the provided code using default param-
eters. This will output the attack progression as an image
over three set distance values.
Results: The results can be viewed from the terminal.
The final output image will be saved to disk.

3Code used to calculate this baseline provided as well.
4Attacks on PDQ require significantly longer to run and should be carried

out on a high core cpu machine. Discussed further in §5.1 & §5.3.1.

A.5 Notes on Reusability
This artifact may be used for additional study on a wide range
of perceptual hash functions, but providing this code publicly
could facilitate malicious activity.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
We introduce our open-source project mpc4j, an efficient and
easy-to-use Secure Multi-Party Computation (MPC) library
mainly written in Java. Package psu in mpc4j-s2pc-pso of
mpc4j contains the implementations, along with configura-
tions needed to replicate our experiments from Section 6. In
particular, our artifact supports running and comparing Pri-
vate Set Union (PSU) protocols with element set sizes up
to 220 on machines having 128GB memory. We also pro-
vide guidelines for installing dependencies and compiling
native libraries needed by mpc4j on different platforms, in-
cluding x86_64 MacBook, MacBook with M1 chip, Ubuntu
20.04, and CentOS 8. The project is licensed under Apache
License 2.0. The source code is available online at https://
github.com/alibaba-edu/mpc4j. The stable version for
the artifact evaluation is available at https://github.com/
alibaba-edu/mpc4j/releases/tag/v1.0.4.

In this artifact appendix, we first introduce the minimal
hardware and software requirements to get performance re-
ports shown in our paper using mpc4j. Then, we introduce how
to install and run mpc4j on different platforms. We note that
there are some performance gaps between different platforms,
and having complete comparisons for different protocols is
very challenging. Aside from that, mpc4j still tries to provide
a library for having relatively unified comparisons. We wel-
come suggestions and performance reports on other platforms
with future reproducibility.

A.2 Description & Requirements
We introduce our open-source project mpc4j (Multi-Party
Computation for Java), an efficient and easy-to-use Secure

Multi-Party Computation (MPC) library mainly written in
Java. mpc4j aims to provide an academic library for re-
searchers to study and develop MPC and related protocols in
a unified manner. As mpc4j tries to provide state-of-the-art
MPC implementations, researchers could leverage the library
to have quick and unified comparisons between the proposed
and existing protocols.

Package psu in mpc4j-s2pc-pso of mpc4j contains the im-
plementations, along with configurations needed to replicate
our experiments from Section 6. Existing Private Set Union
(PSU) implementations are under different MPC frameworks
and different experimental settings. After carefully studying
existing open-source codes, we fully re-implement exisiting
PSU protocols and their underlying basic protocols using Java.
Evaluators can test PSU protocols on mpc4j by simply using
different configuration files. All experiment results shown in
Section 6 of our paper are obtained by running mpc4j.

Evaluators can compile and run mpc4j on different 64-bit
platforms. We provide guidelines for installing dependencies
and compiling native libraries needed by mpc4j on different
platforms, including x86_64 MacBook, MacBook with M1
chip, Ubuntu 20.04, and CentOS 8. Note that successfully
running all PSU experiments with large element size (i.e.,
n = 220) requires 128GB RAM. We run our experiments on a
single Intel Core i9-9900K with 3.6GHz and 128GB RAM.
We note that there are some performance gaps between dif-
ferent platforms. We welcome suggestions and performance
reports on other platforms with future reproducibility.

In the full version of our paper, we further provide exper-
iment results on two PSU applications, namely IP blacklist
aggregation and Private ID. The related source code has been
merged into version v1.0.51.

1https://github.com/alibaba-edu/mpc4j/releases/tag/v1.0.
5
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A.2.1 How to access

mpc4j is available online on GitHub at https://github.
com/alibaba-edu/mpc4j. Evaluators can visit the sta-
ble version v1.0.4 (https://github.com/alibaba-edu/
mpc4j/releases/tag/v1.0.4) to reproduce the experi-
ment results shown in the paper.

A.2.2 Hardware dependencies

mpc4j currently support 64-bit macOS, Ubuntu, and CentOS
systems. Evaluators may meet errors when compiling mpc4j
on a 32-bit or less system. The reason is that mpc4j uses some
64-bit Single instruction, multiple data (SIMD) operations.

A.2.3 Software dependencies

mpc4j leverages native C/C++ codes to speed up crypto-
graphic operations. The native codes and Java codes are inter-
acted by the Java Native Interface (JNI) technique.

We separate native C/C++ codes into two modules, namely
mpc4j-native-tool and mpc4j-native-fhe. mpc4j-native-tool con-
tains native codes for basic cryptographic operations, while
mpc4j-native-fhe contains native codes for Fully Homomor-
phic Encryption (FHE) using SEAL2. All basic cryptographic
operations in mpc4j-native-tool have alternative pure-Java im-
plementations in mpc4j with the same functionalities and the
same data representations. Note that if evaluators only run
mpc4j for PSU, there is no need to install SEAL and compile
mpc4j-native-fhe. mpc4j-native-tool relies on the following
C/C++ libraries:

• GMP (https://gmplib.org/): An efficient library for
operations with arbitrary precision integers, rationals,
and floating-point numbers.

• NTL (https://libntl.org/): A high-performance,
portable C++ library providing data structures and algo-
rithms for manipulating signed, arbitrary length integers
and for vectors, matrices, and polynomials over the in-
tegers and over finite fields, developed by Victor Shoup
(https://shoup.net/). Note that one can further intro-
duce GF2X (https://gitlab.inria.fr/gf2x/gf2x)
for more efficient operations in a Galois Field. However,
since the installation procedure for GF2X is rather com-
plicated, we use NTL by default.

• MCL (https://github.com/herumi/mcl): A
portable and fast pairing-based cryptography library.
MCL also includes fast Elliptic Curve implementations,
especially the optimized implementation for the elliptic
curve secp256k1.

• libsodium (https://doc.libsodium.org): A modern,
easy-to-use software library for encryption, decryption,

2https://github.com/microsoft/SEAL

signatures, password hashing, and more. libsodium in-
cludes efficient implementations for the elliptic curve
Curve25519 with APIs for X25519 and Ed25519.

• OpenSSL (https://www.openssl.org/): a robust,
commercial-grade, full-featured toolkit for general-
purpose cryptography and secure communication.
OpenSSL includes many efficient cryptographic primi-
tive implementations.

A.3 Set-up
A.3.1 Installation

Installing mpc4j-native-tool might be a bit complicated for
ones who are not that familiar with Unix-like systems, since
the procedures differ across platforms. The documentation
(README.md) in package mpc4j-native-tool provides instruc-
tions for installing mpc4j-native-tool on macOS (x86_64 /
aarch64), Ubuntu, and CentOS, respectively.

A.3.2 Basic Test

We develop mpc4j using Intellij IDEA (https:
//www.jetbrains.com/idea/) and CLion (https:
//www.jetbrains.com/clion/). After successfully com-
piling mpc4j-native-tool (Please see readme.md in these
modules for more details on how to compile them), evaluators
only need the community version of Intellij IDEA to run all
basic tests.

Evaluators need to configure IDEA with the following pro-
cedures so that IDEA can link to the complied mpc4j-native-
tool native libraries.

1. Open “Run->Edit Configurations...”

2. Open “Edit Configuration templates...”

3. Select “JUnit”.

4. Add the following command into “VM Options”: -
Djava.library.path=/YOUR_ABS_NATIVE_LIB_PATH.

After that, evaluators can run tests of any submodule
by pressing the green arrows showing on the left of the
source code in test packages. See Section Demonstration of
readme.md in mpc4j on details for running the tests.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): In our paper, we claimed that we fully re-implement
state-of-the-art PSU protocols and their underlying basic
protocols using Java. This can be verified by running
basic tests in psu (See Section A.3.2 for details), or run-
ning experiments with different configuration files (See
Section A.4.2 for details).
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(C2): In our paper, we claimed that although there is some
performance gap, most basic operations in Java and
C/C++ have similar performances. This can be verified
by running all efficient tests in mpc4j-common-tool (test
classes with names end with “EfficiencyTest”). For ex-
ample, try running “PrpEfficiencyTest” in the package
edu.alibaba.mpc4j.common.tool.crypto.prp of the sub-
module mpc4j-common-tool, evaluators can see the per-
formance comparisons between using AES provided by
Java and by AES-NI invoked with JNI.

A.4.2 Experiments

(E1): [Generate jar file] [5 human-minutes + 5 compute-
minutes]: Generate mpc4j-s2pc-pso-1.0.4-jar-with-
dependencies.jar containing the main function entry.
How to: On the charms bar of IDEA, evaluators can
find a button with name “Maven”. Press that botton,
double-click “mpc4j -> Lifecycle -> package”, IDEA
would automatically compile and generate mpc4j-s2pc-
pso-1.0.4-jar-with-dependencies.jar containing the main
function entry.
Preparation: Evaluators need to successfully running
basic tests before generating the jar file.
Execution: Just double-click “mpc4j -> Lifecycle ->
package”.
Results: The generated file would be located in
“mpc4j/mpc4j-s2pc-pso/target”.

(E2): [(optimal) Config network settings] [5 human-minutes
+ 1 compute-minute]: Config network settings using tc.
How to: Open a terminal, and execute the following
command: “tc qdisc add dev lo root netem rate 10Mbit
latency 80ms”. Then, the local network is configured as
10Mbit bandwidth with 80ms latency. Evaluators can
try other network settings with other parameters, e.g.,
100Mbit/80ms, 1Gbit/40ms, 10Gbit/0.02ms.
Preparation: None
Results: Execute “sudo tc qdisc show dev lo” to see if
the network is configured correctly.

(E3): [Run experiments] [10 human-minutes + 5 compute-
hour]: Run experiments using different configuration
files.
How to: Open two terminals, one for the PSU
server and one for the PSU client. Switch to the
dictionary where mpc4j-s2pc-pso-1.0.4-jar-with-
dependencies.jar located (Evaluators can also
copy the generated jar file to other dictionar-
ies). For the server’s terminal, execute “java -
Djava.library.path=/YOUR_ABS_NATIVE_LIB_PATH
-Djava.util.concurrent.ForkJoinPool.common.parallelism=8
-jar mpc4j-s2pc-pso-1.0.4-jar-with-dependencies.jar
CONFIG_SERVER_FILE.txt”. For
the client’s terminal, execute “java -
Djava.library.path=/YOUR_ABS_NATIVE_LIB_PATH

-Djava.util.concurrent.ForkJoinPool.common.parallelism=8
-jar mpc4j-s2pc-pso-1.0.4-jar-with-dependencies.jar
CONFIG_CLIENT_FILE.txt”. The corresponding
server/client configuration files are in “mpc4j-s2pc-
pso/conf/psu”. Note that evaluators must first run server
and then run client.
Preparation: None.
Note: It would take a long time to run if the network
has limited bandwidth, long latency, and/or a large set
size. See the performance results of our paper to esti-
mate the total running time. Evaluators may find that the
setup of SKE-PSU time is quite different from the result
presented in Table 3 of our paper. This is because in
the paper, we assume Boolean multiplication triples are
pre-computed offline and stored locally in a temporary
file. Therefore, the setup phase only contains loading
Boolean multiplication triples into the memory. In our
artifact, we dynamically generate Boolean multiplication
triples in the setup phase using silent Oblivious Transfer
techniques. In the full version of the paper, we provide
the triple generation costs for SKE-PSU, which would be
similar to the costs in the setup phase evaluators obtained
using the artifact.
Results: Java would run the experiments and generate
the performance reports under the current dictionary.

A.5 Notes on Reusability
Evaluators can check and modify server/client configuration
files to change IP addresses, port numbers, the element byte
length used for PSU. We also provide other configuration
examples (marked with #) for specific PSU protocols.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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Improving Logging to Reduce Permission Over-Granting Mistakes

Bingyu Shen, Tianyi Shan, Yuanyuan Zhou
UC San Diego

A Artifact Appendix

A.1 Abstract

This artifact includes the source code of our static analysis tool
to improve the access-control logging, as well as the software
binaries that we used to conduct evaluation. By executing
the tool on the compiled software LLVM bitcode, it produces
the logging locations and the list of variables that should be
included in the logging.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Tthe stable URL evaluated in the artifact evaluation.
https://github.com/byshen/seclog_ae/releases/
tag/v1.0.

Please pull the latest version if there are any issues or
updates. git@github.com:byshen/seclog_ae.git.

Rename the folder to AceInstrument after clone
it. git clone git@github.com:byshen/seclog_ae.git
AceInstrument

A.2.3 Hardware dependencies

• Please ensure enough memory for compiling LLVM.
16GB memory is enough during our evaluation.

A.2.4 Software dependencies

• Ubuntu 18.04;

• LLVM 9.0.0 for compiling the static analysis source
code;

• wllvm for extracting the software binary’s LLVM bit-
code;

• Python pandas for processing the analysis output.

A.2.5 Benchmarks

We provide several testing programs in dir_bcfiles direc-
tory. For the ten server programs, we provide instructions to
compile them in compile-software.md. We also provide
the compiled bitcode files here. You can download and di-
rectly unzip it into dir_bcfiles directory.

A.3 Set-up
You should run the following the following command on a
Linux platform. We used Ubuntu 18.04 in our experiment.

A.3.1 Installation

./build_llvm.sh

A.3.2 Basic Test

We provide several tests for quick testing.

1. Modify BUILD_DIR to /home/USER/llvm-9.0.0.obj

and APP_DIR to
/home/USER/llvm-9.0.0.src/lib/Transforms/AceInstrument

in scripts/opt_exec.sh.

2. Simply run ./scripts/opt_exec.sh
test_releatParam , the output is in
output/test_releatParam.output.

3. To get a csv format from out put, run the follow-
ing. cd output python3 output_parser.py -i
test_releatParam

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): SecLog can suggest logging locations and logging vari-
ables for the software. This is proven by the experiment
(E1).

A.4.2 Experiments

(E1): [Logging Enhancement]:
How to: The experiment will simply execute the static
analysis tool on the software’s llvm bitcode to analyze
the logging locations and logging variables.
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Preparation: Using the provided bitcode files, or
compile from source following the instructions in
compile-software.md .
Execution: Under the cloned repository.
./scripts/opt_exec.sh softwarename

Results: The results are in output/softwarename
Use the script to convert it to a csv format. python3
output_parser.py -i softwarename

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: BotScreen: Trust Everybody, but Cut the
Aimbots Yourself

Minyeop Choi1, Gihyuk Ko2,3, and Sang Kil Cha1,2

1KAIST 2Cyber Security Research Center at KAIST 3Carnegie Mellon University
{okas832,gihyuk.ko,sangkilc}@kaist.ac.kr

A Artifact Appendix

A.1 Abstract
BotScreen is a client-side distributed system for detecting aim-
bots in FPS games. In its operation, BotScreen is deployed
in each client’s machine and pre-processes incoming stream
of FPS game data in a trusted manner (i.e., in SGX). Then,
BotScreen uses a pre-trained deep learning model (SGRU) to
detect aimbots in the game. This artifact includes the source
code of BotScreen, the (anonymized) dataset of gameplay
logs we collected for training and validation of BotScreen,
and scripts for reproducing results in the paper. In the fol-
lowing sections, we provide step-wise instructions in order to
reproduce the results in our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Not applicable.

A.2.2 How to access

The source code of BotScreen is accessible through GitHub
at https://github.com/SoftSec-KAIST/BotScreen/
tree/8ad88322f6abbcff6de1974103b275940a839028.
We also provide pre-processed dataset as well as pre-trained
weights of the SGRU models used in our experiments at
https://doi.org/10.5281/zenodo.8058051.

A.2.3 Hardware dependencies

To reproduce the results in our paper locally, a machine with at
least one PyTorch-supported GPU is required. Specifically, we
recommend using a GPU that has more than 11GB of VRAM.
In our experiments, we used a machine equipped with 4 Intel
Xeon Silver 4214 CPUs and 4 NVIDIA RTX 2080 Ti (11GB
VRAM) GPU cards for training SGRU models, and used a
machine equipped with an AMD Ryzen 9 5950X CPU and
one NVIDIA RTX 3090 Ti (24GB VRAM) for testing the
trained models.

A.2.4 Software dependencies

BotScreen is designed to run on a Linux machine, and we
tested it on Ubuntu 20.04 and Ubuntu 22.04. Also, BotScreen
is written in Python 3 (3.10), and it depends on packages
such as torch, numpy, pandas, and more. Please refer to the
provided requirements.txt for a full list of required Python
packages.

A.2.5 Benchmarks

We make our anonymized pre-processed dataset, pre-trained
SGRU models and pre-evaluated data available through Zen-
odo: https://doi.org/10.5281/zenodo.8058051.

A.3 Set-up
A.3.1 Installation

Our implementation of BotScreen depends on several Python
packages. The required Python packages can be installed
through pip, via running the following command:
$ pip3 install -r requirements.txt

Please also note that our scripts run via GNU Makefile. In
the provided makefile, the default configurations for training
and evaluation parameters are set.

A.3.2 Basic Test

First, download the dataset from https://doi.org/10.
5281/zenodo.8058051 and place the data_processed
folder into the root of the source code.

Next, one can train SGRU models using downloaded
dataset by running the following:
$ make train
The above command will train a total of 7 SGRU
models, where each model is trained according to the
7-fold cross-validation split of the dataset. Specifi-
cally, it will produce the following files as output
in the trained_models directory: config.json, and
gru_k0.pt-gru_k6.pt. config.json saves the model pa-
rameters in JSON format, and gru_k0-6.pt contains the
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trained weights of each SGRU model from 7-fold cross vali-
dation.

Once the SGRU models are trained, one can evaluate their
effectiveness by running the following:
$ make eval
The above command will produce the following files as out-
put in the trained_models directory: eval_k0-eval_k6.
These files are pickle files containing (true label, predicted
label) tuples, generated to speed up further evaluation.

A.4 Evaluation workflow

A.4.1 Set up trained SRGU models

There are two ways to obtain the trained SRGU models. One
is to train new models from our dataset, and the other is to
use the pre-trained model that we provide through Zenodo.

[10 human-mins + 70 compute-hrs + 15GB disk]
(Option 1) Train from our dataset as follows,
$ unzip BotScreen_data.zip
$ mv BotScreen_data/data_processed ./
$ make train
$ make eval

[10 human-mins + 15GB disk]
(Option 2) Use the provided pre-trained model. This can
be done by copying data_processed and trained_models
from provided artifact into the root of the source code.
$ unzip BotScreen_data.zip
$ mv BotScreen_data/trained_models ./

A.4.2 Major Claims

(C1): BotScreen can detect aimbot properly. This is proven
by Experiment (E1) described in Section 5.2.1 of our
paper.

(C2): BotScreen can perform better than previously sug-
gested methods. This is proven by Experiment (E2) de-
scribed in Section 5.4 of our paper.

(C3): Differences in observations does not impact largely to
BotScreen. This is proven by Experiment (E3) described
in Section 5.5 of our paper.

A.4.3 Experiments

(E1): [5 human-minutes]
The experiment will show the accuracy of the detection
model.
How to: Run make experiments/exp_bench and see
result in bench.tsv.
Preparation: Trained model and evaluation data in
A.4.1 are needed.
Execution: $ make experiments/exp_bench

Results: Check the report file in bench/bench.tsv
Each line in bench.tsv shows the result of model’s
performance from each split.

(E2): [15 human-minutes + 30 compute-minutes]
The experiment will compare the performance between
previous tools and BotScreen.
How to: Run experiments in comp_study and
experiments/exp_bench.
Preparation: Dataset, trained model and evaluation
data in A.4.1 are needed.
Execution: Execute whole experiments is as follows,
$ make experiments/exp_bench
$ make comp_study/th_vara
$ make comp_study/th_acca
$ make comp_study/th_kill
$ make comp_study/ks_acca
$ make comp_study/os_cac
$ make comp_study/os_lac
$ make comp_study/os_smac
$ make comp_study/history

Results: Each experiment will print the evaluation
result.
$ make experiments/exp_bench
Botscreen:
best_acc: 0.9764, best_prec: 0.9685, auc_roc: 0.9712
TP: 63, TN: 185, FP: 1, FN: 5

Experiment comp_study/history will produces
history based detection result of each player in tsv file
per methods.
$ make comp_study/history
$ ls *.tsv
history_botscreen.tsv history_os_LAC.tsv
history_th_Kill.tsv history_ks_AccA.tsv
history_os_SMAC.tsv history_th_VacA.tsv
history_os_CAC.tsv history_th_AccA.tsv

(E3): [5 human-minutes + 20 compute-minutes]
The experiment will show the differences in detection
results between players.
How to: Run make experiments/stat_obs, make
experiments/exp_obs and see the statistic of differ-
ences of observation bewteen clients and see effects of
observation rate to accuracy.
Preparation: Dataset, trained model and evaluation
data in A.4.1 are needed.
Execution: Run as follows,
$ make experiments/stat_obs
$ make experiments/exp_obs

Results: After running experiments/stat_obs,
saved statistic data and visualized results of each game
are stored in the data_loss directory.

16    Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association



$ make experiments/stat_obs
$ ls data_loss/exp_1/
figures game_1 game_2 ...

Next, by running experiments/exp_obs, you
will get a figure in figures/fig_07_obs.pdf which
is Figure 8 in the paper.

A.5 Notes on Reusability
A.5.1 How to train and evaluate under different param-

eters

If you want to train and evaluate BotScreen with different
model parameters, you can try it by changing the correspond-
ing parameter values defined in makefile such as number of
hidden units, number of layers, and more. We refer to our pa-
per for a detailed explanation on what each parameter means.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: <HorusEye: A Realtime IoT Malicious
Traffic Detection Framework using Programmable Switches>

Yutao Dong1,2, Qing Li *2*, Kaidong Wu1,2, Ruoyu Li1,2, Dan Zhao2, Gareth Tyson3, Junkun Peng1,2,
Yong Jiang1,2, Shutao Xia1,2, and Mingwei Xu4

1Tsinghua Shenzhen International Graduate School, Shenzhen, China
2Peng Cheng Laboratory, Shenzhen, China

3Hong Kong University of Science and Technology (GZ), Guangzhou, China
4Tsinghua University, Beijing, China

A Artifact Appendix

A.1 Abstract

In this artifact, we provide datasets and prototype related to
our paper. Specifically, We use Python to implement iForest
training and rule generation. We use P4 programming lan-
guage to deploy Gulliver Tunnel on a H3C S9830-32H-H
data center switch with an Intel Tofino switch ASIC, and test
hardware performance. We use PyTorch to implement Magni-
fier and use TensorRT to implement quantization operations.
We deploy Magnifier on a GeForce RTX 2080 SUPER. The
artifact can reproduce all experimental results reported in the
main body of the paper.

Our source code is available at https://github.com/
vicTorKd/HorusEye.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

N/A.

A.2.2 How to access

We host our source code on GitHub at https://github.
com/vicTorKd/HorusEye. Specifically, we use this com-
mit for the artifact evaluation: https://github.com/
vicTorKd/HorusEye/releases/tag/v1.0.1.

A.2.3 Hardware dependencies

CPU, GeForce RTX 2080 SUPER GPU (for Magnifier), H3C
S9830-32H-H data center switch with an Intel Tofino switch
ASIC (for Gulliver Tunnel hardware performance, optional).

*Corresponding author: Qing Li (liq@pcl.ac.cn)

A.2.4 Software dependencies

The artifact is based on Python, PyTorch, TensorRT, sklearn
and other Python packages. All packages can be easily in-
stalled with pip; we provide a list of required packages in
iot.yaml

A.2.5 Data Set

The extracted data set (used in the article experiment) can be
downloaded at link (The compressed file needs to be extracted
under the DataSets folder to get HorusEye/DataSets/Pcap).

Also, we can download the original Pcap file at link and
re-do the feature extraction. For burst level feature extraction,
in pcap_process packet, python files should be executed in the
following order (You need to manually change the datasets
path in .py files and more detail can be found in README):

1. cd pcap_process

2. python3 pcap2csv_attack.py

3. python3 csv_process_attack.py

4. python3 extract_flow_size.py

For flow level feature extraction:

1. cd HorusEye

2. python3 FE.py.

A.2.6 Models

Our model is placed in AE.py under the model folder, which
implements our Magnifier model. In the repository, we also
include our baseline model Kitsune.
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A.3 Set-up
This section should include all the installation and configura-
tion steps required to prepare the environment to be used for
the evaluation of your artifact.

A.3.1 Installation

1. conda install -c anaconda conda-env (anaconda or mini-
conda is needed)

2. Clone the source code from https://github.com/
vicTorKd/HorusEye.

3. conda env create -f iot.yaml

4. If the TensorRT installation fails during the above instal-
lation process, you need to install it manually (TensorRT-
8.2.1.8).

5. Download extracted datasets.

A.3.2 Basic Test

After downloading the data and ensuring that the data path is
correct, you can run the main function in the iForest_detect.py
file, which is a simple demo of the rule generation algorithm
in Gulliver Tunnel (no GPU required). After ensuring that
TensorRT is installed and you have a GPU, you can run the
control_plane.py file to get all the experimental results except
hardware performance. If there is a programmable switch,
you can compile iot_dect_waterflow8.p4 to the switch, and
check the hardware performance through p4i.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): HorusEye notably outperforms the Kitsune model in
most attacks on both our and public datasets, especially
in low false positive scenarios. Additionally, Horus-
Eye and Magnifier achieve comparable detection perfor-
mance, while HorusEye is even slightly better at detect-
ing most anomalies than Magnifier. This is proven by the
experiment (E1) and (E2) described in section 6.7 whose
results are illustrated in Table 5 and Table 10.

(C2): Rule generation algorithm can convert hundreds of
iTrees into whitelists. Then, the whitelists can offload
76% of normal traffic on our dataset, i.e., the throughput
gains are 4.13x. This is proven by the experiments (E1)
in sections 6.4 and 6.9 whose results are illustrated in
Table 1 and Figure 8(a).

(C3): Magnifier (fp32) has significantly better packet
throughput than Kitsune. Additionally, quantizing Mag-
nifier from 32-bit float (fp32) to 8-bit int (int8) brings
about a 2.5x throughput gain while the TPR only slightly
drops from 0.675 to 0.636 on our dataset. This is proven

by the experiments (E1) and (E3) in sections 6.9 whose
results are illustrated in Figure 8.

(C4): Gulliver Tunnel is fairly robust to three common black-
box attacks: injection attack, low-rate attack and poison
attack. This is proven by the experiments (E4) in section
6.8 whose results are reported in Figure 7.

(C5): Gulliver Tunnel deployed on the switch can reach
100Gbps and occupies very little TCAM and SRAM. This
is proven by the experiments (E5) in section 6.6 whose
results are reported in Table 3 and Table 4.

A.4.2 Experiments

(E1): [Experiment on our dataset] [30 human-minutes + 30
compute minutes + 20GB disk]: evaluate the detection
performance and throughput of the model on our dataset.
Preparation: After cloning the source code, configure
the conda environment according to "iot.yaml", down-
load the extracted dataset zip and extract it to the root
directory of the source code project, and use the model
files packaged in the source code project to evaluate it
directly without training.
Execution: To evaluate HorusEye (Magnifier (fp32)
+ Gulliver Tunnel), run "python control_plane.py - -
train False - -experiment A - -horuseye True" in the
root of the source code project. To evaluate Magnifier
(fp32) only, run "python control_plane.py - -train False
- -experiment A - -horuseye False". You can run "python
control_plane.py - -help" for more detailed instructions.
Results: For the evaluation of HorusEye, the detec-
tion performance of HorusEye, the throughput of Mag-
nifier (fp32) and the throughput gain of Gulliver Tun-
nel will be displayed in the terminal and the detection
performance results will also be saved in the csv file
located at ". /result/HorusEye/record_attack.csv". For
the evaluation of Magnifier (fp32), the detection perfor-
mance and the throughput of Magnifier (fp32) will be
displayed in the terminal and the detection performance
results will also be saved in the csv file located at ".
/result/Magnifier/record_attack.csv".

(E2): [Experiment on public dataset] [30 human-minutes +
30 compute-minutes + 20GB disk]: evaluate the detec-
tion performance of the model on public dataset.
Preparation: Same as that of (E1).
Execution: To evaluate HorusEye (Magnifier (fp32) +
Gulliver Tunnel), run "python control_plane.py train
False experiment B horuseye True" in the root of the
source code project. To evaluate Magnifier (fp32) only,
run "python control_plane.py train False experiment B
horuseye False". You can run "python control_plane.py
help" for more detailed instructions.
Results: For the evaluation of HorusEye, the detection
performance of HorusEye will be displayed in the ter-
minal and further saved in the csv file located at ".
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/result/Open-Source/HorusEye/record_attack.csv". For
the evaluation of Magnifier (fp32), the detection per-
formance of Magnifier (fp32) will be displayed in the
terminal and further saved in the csv file located at ".
/result/Open-Source/Magnifier/record_attack.csv".

(E3): [Experiment with int8 model] [30 human-minutes +
20 computeminutes + 20GB disk]: evaluate the detec-
tion performance and throughput of the int8 model after
quantizing on our dataset.
Preparation: In addition to the same as that of (E1), an
additional configuration of TensorRT-8.2.1.8 is required.
Execution: To evaluate HorusEye (Magnifier (int8) +
Gulliver Tunnel), run "python control_plane.py train
False experiment C horuseye True" in the root of the
source code project. To evaluate Magnifier (int8) only,
run "python control_plane.py train False experiment ho-
ruseye False". You can run "python control_plane.py
help" for more detailed instructions.
Results: For the evaluation of HorusEye, the detection
performance of HorusEye and the throughput of Mag-
nifier (int8) will be displayed in the terminal and the
detection performance results will also be saved in the
csv file located at ". /result/HorusEye/record_attack.csv".
For the evaluation of Magnifier (int8), the detection per-
formance and the throughput of Magnifier(int8) will be
displayed in the terminal and the detection performance
results will also be saved in the csv file located at ".
/result/Magnifier/record_attack.csv".

(E4): [Experiment on robustness] [30 human-minutes + 10
compute-minutes + 20GB disk]: evaluate the detection
performance (robustness) of Gulliver Tunnel under three
common black-box attacks.
Preparation: Same as that of (E1).
Execution: Run "python control_plane.py train False
experiment D horuseye False" in the root of the source
code project. Note that after running this experiment,
the parameters of Gulliver Tunel will be modified, and
retraining is required when re-running other experi-
ments. You can retrain by setting "train" to True, as
in "python control_plane.py train True experiment A
horuseye True". You can run "python control_plane.py
help" for more detailed instructions.
Results: The detection performance of Gulliver Tun-
nel will be displayed in the terminal and the detec-
tion performance results of each type of black-box
attacks will be saved in the csv file located at "./re-
sult/df_robust_result_robust_type.csv".

(E5): [Hardware performance] [30 human-minutes + 10
compute-minutes + 20GB disk]: evaluate the hardware
performance of Gulliver Tunnel after deployment on the
programmable switch. (optional)
Preparation: An Intel Tofino switch ASIC and a traffic
generator (e.g., SPIRENT N11U).
Execution: (1) Use winscp to log in to

the switch, and put p4 file into the switch,
e.g., /mnt/onl/data/bf-sde-9.1.0/pkgsrc/p4-
examples/p4_16_programs/iot/iot_dect_waterflow8.p4.
(2) Use ssh to log in switch, cd
$SDE/pkgsrc/p4-build. (3) ./configure –
prefix=$SDE_INSTALL –with-tofino –with-bf-runtime
P4_NAME=iot_dect P4_PATH=$SDE/pkgsrc/p4-
examples/p4_16_programs/iot/iot_dect_waterflow8.p4
P4_VERSION=p4-16 P4C=p4c. (4) make. (5) make
install. (6) Use a traffic generator to test forwarding.
Results: The resource occupation performance of Gul-
liver Tunnel will be displayed in $SDE/pkgsrc/p4-
build/tofino/iot_dect/pipe/log. The single port forward-
ing performance can be shown in Traffic Analyzer.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926.
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A Artifact Appendix

A.1 Abstract

We release the image reconstruction and explainability-based
image obfuscation code that was used in our paper’s experi-
ments.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

We do not release the datasets used in our paper due to various
privacy and ethical reasons.

A.2.2 How to access

Stable Reference: https://github.com/
SecureAIAutonomyLab/uGuard/tree/
dbd98a38611af486d992b36024f78a96f99d43cc

A.2.3 Hardware dependencies

We ran our experiments on a desktop system with an Nvidia
1080 ti GPU, and 64 GB RAM. CUDA compatible GPU’s are
required for our project.

A.2.4 Software dependencies

The project was designed to be run in a conda environment
using python. An extensive list of software dependencies is
contained within the the environment.yml file on the project
repository.

A.2.5 Benchmarks

We do not release datasets or model weights, though our code
is extendable to other datasets.

A.3 Set-up
A.3.1 Installation

To set up the system, users should first install conda to their
system, clone the code repository, navigate to the repository,
being building the environment using "conda env create -f
environment.yml" and then activate the conda environment
using "conda activate uGuard".

A.3.2 Basic Test

To run the code, users can navigate to the scripts directory.
Users would need to add their own datasets to the datasets
directory and edit the scripts so that they point to the correct
datasets, save paths, etc.

To test that all packages are correctly installed, users can
simply run the scripts. If the only errors received are related
to missing files due to missing folders or model weights, this
indicates that the environment is functioning correctly.

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

This work explores the privacy implications that Web3 tech-
nologies such as decentralized applications and wallets have
on users. To this end, we build a framework that measures
exposure of wallet information. First, we study whether in-
formation about installed wallets is being used to track users
online. We analyze Tranco’s top 100K websites and find evi-
dence that 1,325 websites run scripts to probe whether users
have wallets installed in their browser. Second, we measure
whether decentralized applications and wallets leak the user’s
unique wallet address to third-parties. We intercept the traf-
fic of decentralized applications and wallets and find over
2000 leaks across 211 applications and more than 300 leaks
across 13 wallets. This appendix details how to access our
artifact (implementation of framework and our dataset) and
to reproduce our results.

A.1 Abstract
Our artifact consists of source code, datasets, and scripts to
generate the results of our paper. We aim for Artifacts Avail-
able, Artifacts Functional, and Results Reproduced badges. In
more detail, we open-source the implementation of our frame-
work via GitHub. We also provide our dataset of collected
site snapshots on the Top 100K websites, DApps and wallet
extensions, which can be utilized to reproduce the figures and
tables included in our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

At its core, our framework visits websites and interacts with
wallet extensions automatically while recording any outgoing
traffic such as HTTP requests, WebSocket requests and cook-
ies. Hence, there may be security issues if the user provides a
malicious website or wallet extension to interact with. We ad-
vise testing our framework on websites and wallet extensions
that the user trusts. However, as part of our reproducibility
experiments, our framework tries to crawl some of the top
websites provided by Tranco. Hence, it might be that the users

visit illegal websites or websites with adult content, depending
on which country they reside. In terms of privacy, websites
may fingerprint or track the utilization of our framework.

A.2.2 How to access

Code: The code of our artifact is available via
the following GitHub repository: https://github.
com/christoftorres/Web3-Privacy/commit/
d5884c73dba5783ea3dc419433680596ea90e882. The
repository provides a detailed README.md file on how to
set up our framework and how to use it to reproduce our
results. For artifact evaluation, please checkout the branch
"artifact-review".
Data: The GitHub repository contains mainly the code. Most
of the data that is necessary to reproduce our results needs to
be downloaded via Zenodo: https://zenodo.org/record/
8071006.

A.2.3 Hardware dependencies

Our framework has been evaluated using an Apple MacBook
Pro with an Apple M1 Pro chip containing 10 cores and 32
GiB of memory. However, we also tested our framework on
a machine with a 12th Gen Intel(R) Core(TM) i9-12900K
containing 16 cores. We recommend using something similar.
Going as low as 16 GiB of memory and 30 GiB of storage
should work as well.

A.2.4 Software dependencies

Our framework has been tested on MacOS Monterey version
12.6 and on 64 bit Ubuntu 22.04.2 LTS (GNU/Linux 5.15.0-
67-generic). The framework leverages Node.js, Python, and
MongoDB.

A.2.5 Benchmarks

This artifact already provides all the necessary data (e.g.,
Tranco top 100K websites, blocklists, etc.) that is required to
test its functionality and reproduce the results from our paper.
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A.3 Set-up
For more details and easy to use copy and paste commands,
we refer to the README.md of https://github.com/
christoftorres/Web3-Privacy.

A.3.1 Installation

1. Git clone our repository: https://github.com/
christoftorres/Web3-Privacy. The rest of the in-
structions assume you are in the project directory using
a terminal window.

2. For artifact reviewers: “git checkout artifact-review”

3. Install Python3 and its dependencies:

(a) apt-get update -q && apt-get install -y wget curl un-
zip software-properties-common python3-distutils
python3-pip python3-apt python3-dev

(b) python3 –version

(c) pip3 install -r requirements.txt

4. Install Node.js and its dependencies:

(a) curl -sL https://deb.nodesource.com/setup_18.x |
bash -

(b) apt-get update -q && apt-get install -y nodejs

(c) node –version && npm –version

(d) cd framework/tracker-radar-collector && npm in-
stall

(e) cd framework/request-interceptor && npm install

5. Install MongoDB:

(a) wget -qO - https://www.mongodb.org/static/pgp/server-
4.4.asc | apt-key add && echo
"deb [ arch=amd64,arm64 ]
https://repo.mongodb.org/apt/ubuntu
bionic/mongodb-org/4.4 multiverse" | tee
/etc/apt/sources.list.d/mongodb-org-4.4.list &&
apt-get update && apt-get install -y mongodb-org

A.3.2 Basic Test

We can perform the following two basic tests to test whether
our framework is installed properly:

1. Test Web3-based browser fingerprinting detection:

(a) cd framework/tracker-radar-collector

(b) npm run crawl – -u "https://www.nytimes.com" -o
./data/ -f -v -d "requests,targets,apis,screenshots"

(c) cat data/www.nytimes.com_89db.json | grep
ethereum -C 10

(d) The terminal should display “window.ethereum”
along with other JavaScript properties.

(e) In case nytimes.com does not return any results, it
might be that they updated their script. In this case
you can try “https://xhamster.com”, however, be
aware that this is a website with adult content.

2. Test wallet address leakage detection:

(a) cd framework/request-interceptor

(b) node run –interactive -u
https://notional.finance/portfolio –debug ver-
bose -w metamask-chrome-10.22.2 -t 30

(c) cat notional.finance.json | grep
7e4abd63a7c8314cc28d388303472353d884f292

(d) The terminal should display several entries which
highlight that the wallet address is being leaked by
the DApp to third-parties.

A.4 Evaluation workflow

Disclaimer. The web is constantly changing, websites may
remove or add scripts from one day to the other. Hence, it
might be that some websites that were found to be probing
user’s wallets in the past, might not be doing so anymore.
Moreover, our framework is only as good as the components
that is uses (e.g., TRC, Puppeteer, etc.). Thus, if Puppeteer is
not able to intercept a request or if TRC is not able to load
a website properly, then our framework might not be able to
detect JavaScript calls to wallet APIs or detect leaks.

A.4.1 Major Claims

(C1): There are at least 10 websites among Tranco’s top 1K
websites that probe whether their users have a wallet
extension installed in their browser. This is proven by the
experiment (E1) described in Section 4.2 whose results
are reported in Table 3.

(C2): While most websites only probe for the win-
dow.ethereum object, there are also websites that probe
for different combinations of wallet APIs. This is proven
by the experiment (E1) described in Section 4.2 whose
results are reported in Table 4.

(C3): Wallet extension probing is being performed mostly
by websites categorized as adult content. This is proven
by the experiment (E1) described in Section 4.2 whose
results are reported in Table 5.

(C4): The top 10 third-party scripts that probe for wallet
APIs also collect other information that is required to
perform browser fingerprinting. This is proven by the
experiment (E1) described in Section 4.2 whose results
are reported in Table 6.
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(C5): The combination of five popular blocklists results in
56% of the third-party scripts being blocked. This is
proven by the experiment (E1) described in Section 4.2
whose results are depicted in Figure 5.

(C6): We detect more leaks than Winter et al. [66] due to the
fact that we also analyze HTTP POST requests and Web-
Socket requests. This is proven by the experiment (E2)
described in Section 4.3.1 whose results are reported in
Table 7.

(C7): Infura is the most widespread third-party towards
where wallet addresses are leaked. This is proven by
the experiment (E3) described in Section 4.3.1 whose
results are reported in Table 8.

(C8): Exchanges leak the most often the user’s wallet address
to third-parties. This is proven by the experiment (E3)
described in Section 4.3.1 whose results are reported in
Table 9.

(C9): 13 out of 100 wallet extensions leak the user’s wallet
address to third-parties. This is proven by the experi-
ment (E4) described in Section 4.3.2 whose results are
reported in Table 10.

A.4.2 Experiments

(E1): [Analyze Web3-Based Browser Fingerprinting] [5
human-minutes + 5 compute-minutes]: This experiment
analyses the data that was gathered through our crawl
on the top 100K websites in November 2022 and parsed
via our browser fingerprinting detection script.
How to: Performing the entire crawl from scratch on
the top 100K websites would take very long and re-
sult in different results as the web keeps on changing.
Therefore, we provide a dump of our MongoDB collec-
tion which already contains the data processed by our

“detect_fingerprinting.py” script. The dump can be im-
ported to analyze our findings. However, for reproducibil-
ity purposes we also provide a raw snapshot of all the
requests and JavaScript calls that were collected via our
crawl in November 2022.
Preparation: Download the browser
fingerprinting datasets using “wget
https://zenodo.org/record/8071006/files/browser-
fingerprinting-datasets.zip && unzip
browser-fingerprinting-datasets.zip && mv
datasets browser-fingerprinting/ && rm
browser-fingerprinting-datasets.zip” and the
browser fingerprinting results using “wget
https://zenodo.org/record/8071006/files/browser-
fingerprinting-results.zip && unzip browser-
fingerprinting-results.zip && mv results browser-
fingerprinting/ && rm browser-fingerprinting-
results.zip”. Change the working directory using

“cd browser-fingerprinting/results”. Import the Mon-
goDB dump by first creating a temporary directory

using “mkdir db”. Afterwards, run MongoDB locally
using the temporary directory: “mongod –dbpath
db” and import the collection using “mongoimport
–uri="mongodb://localhost:27017/web3_privacy"
–collection fingerprinting_results –type json –file
fingerprinting_results.json.
Execution: After having imported the MongoDB dump
and making sure that MongoDB is running, we can
run the analysis script by first chaining our work-
ing directory using “cd browser-fingerprinting/analysis”
and running the analysis script using “python3 ana-
lyze_detected_fingerprinting.py”.
Results: The terminal will display Tables 3, 4, 5, and
6, which should be equivalent to the tables included in
the paper. Moreover, the script will also output in the
same directory as the analysis script a PDF file named

“blocklists.pdf” which should be equivalent to Figure 5 in
the paper. Please note, in order to be able to plot the file

“blocklists.pdf” you are required to have LaTeX installed
on your system.

(E2): [Analyze Wallet Address Leakage] [5 human-minutes
+ 5 compute-minutes]: This experiment analyzes the
requests collected via our interceptor on the 66 DApps
by Winter et al. and compares them to the results of
Winter et al.
How to: Performing the entire crawl from scratch on
66 websites would take very long and result in different
results as the web keeps on changing. Therefore, we
provide a snapshot of all the requests that we intercepted
during our crawl.
Preparation: Download the wallet ad-
dress leakage datasets using “wget
https://zenodo.org/record/8071006/files/wallet-
address-leakage-datasets.zip && unzip wallet-address-
leakage-datasets.zip && mv datasets wallet-address-
leakage/ && rm wallet-address-leakage-datasets.zip”
and the wallet address leakage results using “wget
https://zenodo.org/record/8071006/files/wallet-
address-leakage-results.zip && unzip wallet-address-
leakage-results.zip && mv results wallet-address-
leakage/ && rm wallet-address-leakage-results.zip”.
Change the working directory using “cd wallet-address-
leakage/analysis”.
Execution: Run the comparison script us-
ing “python3 find-leaks-and-scripts-winter-
et-al.py ../results/whats_in_your_wallet/crawl
../datasets/whats_in_your_wallet”.
Results: The terminal will display at the end Table 7,
which should be equivalent to Table 7 included in the
paper.

(E3): [Analyze Wallet Address Leakage] [5 human-minutes
+ 60 compute-minutes]: This experiment analyzes the
requests collected via our interceptor on the DAp-
pRadar.com dataset.
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How to: Performing the entire crawl from scratch on
DAppRadar.com dataset would take very long and result
in different results as the web keeps on changing. There-
fore, we provide a snapshot of all the requests that we
intercepted during our crawl.
Preparation: Change the working directory using “cd
wallet-address-leakage/analysis”.
Execution: Run the analysis script using “python3 find-
leaks-and-scripts-dapps.py”.
Results: The terminal will display at the end Tables 8
and 9, which should be equivalent to Tables 8 and 9
included in the paper.

(E4): [Analyze Wallet Address Leakage] [5 human-minutes
+ 5 compute-minutes]: This experiment analyzes the
requests collected via our interceptor on 100 popular
wallet extensions.
How to: Performing the entire crawl from scratch on
the wallet extensions dataset would take very long as it
requires a large amount of manual interaction with each
wallet extension. Therefore, we provide a snapshot of all
the requests that we intercepted during our crawl.
Preparation: Change the working directory using “cd
wallet-address-leakage/analysis”.
Execution: Run the analysis script using “python3 find-
leaks-and-scripts-wallet-extensions.py”.
Results: The terminal will display at the end Table 10,
which should be equivalent to Table 10 included in the
paper.

A.5 Notes on Reusability
The folder “browser-fingerprinting/datasets/tranco” contains
the list of websites that have been crawled during our study.
Researchers can reuse this list to try to reproduce the re-
sults or perform followup studies. The folder “browser-
fingerprinting/results/crawl” contains snapshots of all the
JavaScript calls and requests that we collected during our
study. Researchers can reuse these snapshots to compare
to reproduce our results and compare their own results to
ours. Researchers can easily extend our framework to analyze
other wallet APIs by modifying the files “walletSimulator.js”
and “walletSimulatorWithAntiBotDetection.js” contained in
“framework/tracker-radar-collector/helpers”.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

28    Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2023/


USENIX’23 Artefact Appendix: CAPSTONE: A Capability-based
Foundation for Trustless Secure Memory Access

Jason Zhijingcheng Yu
National University of Singapore

Conrad Watt
University of Cambridge

Aditya Badole
National University of Singapore

Trevor E. Carlson
National University of Singapore

Prateek Saxena
National University of Singapore

A Artefact Appendix

A.1 Abstract
This artefact includes the following components:

• Functional prototypes of CAPSTONE. More specifically,
those include the emulator CAPSTONEEmu, the compiler
CAPSTONECC, and the library CAPSTONELib, along
with sample source codes for the case studies discussed
in the paper that are runnable with the aforementioned
tools. This part resides under the functional subfolder.

• The GEM5 model used for evaluating CAPSTONE. This
includes the source code and the scripts for building both
the model and the benchmarks as well as for running
the experiments presented in the paper. This part resides
under the gem5 subfolder.

All the artefact components have been made publicly available
in the source format. To improve portability, reduce the impact
on the artefact user’s own system, and ease the process of
using the artefact itself, we provide the option of building and
running the artefact inside Docker containers.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Building and running this artefact are not expected to cause
security or privacy risks to the artefact user. Nor is it expected
to raise ethical concerns.

A.2.2 How to access

The artefact is available on Github at https://github.com/
jasonyu1996/capstone (revision hash: 9b5319c). Note that
this Github repository includes submodules. To download
all the included components, make sure that you supply
--recurse-submodules when you clone it, or run

git submodule update --init --recursive

afterwards.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

The platform to use this artefact on is expected to have Bash in-
stalled and support running x86-64 Docker containers (Docker
version 20 or later recommended).

A.2.5 Benchmarks

For copyright reasons, we have not included SPEC CPU 2017,
the benchmark suite used for the evaluation experiments with
the GEM5 model. The user needs to supply the benchmark
suite by themselves if they wish to run those experiments.

A.3 Set-up
We have included detailed instructions in the README.md files
in the Github repository. Below we only reproduce the brief
steps.

A.3.1 Installation

Functional prototypes Change the working directory to
functional. Build the Docker image with

./build

GEM5 model Change the working directory to gem5. Build
the GEM5 model for Capstone and the baseline model with

./run-docker build

Note that the above command will pull corank/gem5-dev
if the Docker image does not exist locally. You can pull it
manually with

docker pull corank/gem5-dev

or alternatively, build it on your own machine
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cd docker-build
docker build . -t corank/gem5-dev

To build SPEC CPU 2017, place it under ./spec and apply
a patch before running the build script

(cd spec && patch -p1 \
< ../tests/capstone/speckle/spec17.patch)
./run-docker build-spec

A.3.2 Basic test

Functional prototype Test with

./run compiler/samples/dummy.c

You should be able to see the output which starts with

18: GPR 1 = Value 0
19: halted

followed by runtime statistics.

GEM5 model Run

./run-docker run-hello

The output should include

Hello gem5!

A.4 Evaluation Workflow
The evaluation workflow applies to the GEM5 model only.

A.4.1 Major Claims

(C1): In comparison to the baseline RISC-V model, the
GEM5 model for CAPSTONE exhibits overhead that
ranges from 0 to 50% across SPEC CPU 2017 work-
loads (as shown in Figure 3 in the paper).

A.4.2 Experiments

(E1): estimated 30 compute-hours (when running workloads
in parallel):
How to: Please follow the following steps to run this
experiment.
Preparation: Build both the GEM5 model and the
benchmark suite SPEC CPU 2017 following the steps
described in Section A.3.1.
Execution: Run SPEC CPU 2017 with the GEM5
model for CAPSTONE first
./run-docker run-capstone --multiproc

followed by the baseline RISC-V model
./run-docker run-baseline --multiproc

Note that the --multiproc flag can be omitted, but that
will result in the experiments being run on a single CPU
core, which would be slow and hence not recommended.
Results: The logs are available in ./outputs. To parse
the logs and produce the data shown in Figure 3 in the
paper,
./run-docker collect-results

which prints to the standard output the parsed results in
the LATEX table format.

A.5 Notes on Reusability
The behaviours of the compiler CAPSTONECC can be ad-
justed through command line flags. Please read the source
code compiler/src/main.rs or README.md for details.

For the GEM5-based evaluation, it is possible to change
the number of fast-forwarded instructions, and the num-
ber of instructions to simulate after fast-forwarding. This
is achieved by adjusting the variables GEM5_SKIP and
GEM5_LIM in scripts docker-scripts/run-capstone and
docker-scripts/run-baseline. Similarly, the size of the
node cache can be set through the variable GEM5_NCACHE.
To print more data, set GEM5_FLAGS to --debug-flags=...
with the debug flags defined in GEM5.

A.6 Version
Based on the LaTeX template for Artefact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artefact can be found at
https://secartefacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
In this artifact we provide the means to reproduce our main
results. Specifically, we show that our memory sanitizer, Float-
Zone, can detect memory errors, and that FloatZone’s perfor-
mance is higher than traditional comparison-based solutions.
We have validated the artifact using an Intel i9-13900K CPU
running Ubuntu 22.04 with a stock v5.15 Linux kernel. Our
source code is available at: github.com/vusec/floatzone.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

We require the evaluators to obtain the SPEC CPU bench-
marking suites themselves, since we cannot distribute the
licensed software. As a memory sanitizer, FloatZone poses
no risks to the security of the target machine.

A.2.2 How to access

The files for the artifact evaluation are available at:
https://github.com/vusec/floatzone/releases/
tag/ae-final.

A.2.3 Hardware dependencies

While FloatZone has no strict hardware requirements (we
assume x86-64), we highly recommend using a modern Intel
CPU, since FloatZone’s performance depends on the through-
put of the floating point unit. We have ran benchmarking
experiments on various CPUs (see Figure 6 for more informa-
tion).

A.2.4 Software dependencies

Some packages from the Ubuntu package manager are re-
quired to be installed to accomodate for the build process of

FloatZone (e.g., for building LLVM). These are described in
the Set-up section.

A.2.5 Benchmarks

For this artifact we benchmark using the SPEC CPU2006
benchmarking suite.

A.3 Set-up
We recommend using a bare-metal desktop system with 32GB
of RAM, running Ubuntu 22.04, glibc 2.35, and a stock v5.15
Linux kernel.

A.3.1 Installation

1. Obtain the artifact source:
git clone \
https://github.com/vusec/floatzone.git \
--recurse-submodules

cd floatzone

2. Install some standard dependencies:

sudo apt install ninja-build cmake gcc-9 \
autoconf2.69 bison build-essential flex \
texinfo libtool zlib1g-dev

3. Configure the FloatZone environment by editing the
env.sh file and modifying the FLOATZONE_TOP variable to
reflect the working directory of the system, and then run:

source env.sh

4. Install the FloatZone infrastructure by running:
./install.sh

NOTE: installing LLVM can take up a lot of RAM when
using multiple cores. If the compilation process crashes, use
the ninja -j <cores> parameter inside install.sh to use
less cores.
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A.3.2 Basic Test

To test the functionality of FloatZone, we provide a test case
in the example directory. Run make to obtain three versions
of the buggy binary: uninstrumented, instrumented by Float-
Zone, and instrumented by ASan. The program contains a
buffer of size 16, and the command line argument is used as
an index in this array. Confirm that executing:

./buggy_floatzone_run_base 16

results in an error report containing a faulting address, while
using index 15 does not. See the README on GitHub for
the exact expected output format.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): FloatZone can detect spatial and temporal memory
errors bounded by its security guarantees (as described
in Section 5). This is proven by experiment E1.

(C2): FloatZone provides high performance in terms of run-
time and memory overhead (see Sections 7.3 and 7.4).
This is proven by experiment E2.

A.4.2 Experiments

(E1): [1 human-hour]: Confirming memory error detection.
How to: The Juliet Test Suite can be used to confirm
that FloatZone detects memory errors. This suite con-
tains test cases for spatial and temporal memory errors.
Preparation: Make sure that SEGFAULTS are re-
ported: in the runtime directory, edit wrap.c and
ensure that CATCH_SEGFAULT is set to 1. Run make
inside this directory to ensure the shared object file is
up-to-date. No further preparation is required if the
env.sh and install.sh scripts have been used. If
interested, FloatZoneExt (with partial overflow detection
capabilities, see Section 5 and Figure 5) can be tested
by modifying the FLOATZONE_MODE variable to also
contain the term ‘just_size’ in env.sh.
Execution: python3 run.py run juliet \
floatzone_O0 --build --cwe 121 122 \
124 126 127 415 416

Results: FloatZone and FloatZoneExt can detect most
of the spatial and temporal memory errors present in
the Juliet Test Suite. The expected results are reported in
Table 1 and Section 7.2.

(E2): [15 human-minutes + 5 compute-hours]: Confirming
runtime and memory performance

How to: Run the SPEC CPU2006 benchmarking suite in-
strumented by FloatZone and ASan, and observe the
performance overhead.

Preparation: SPEC CPU2006 needs to be available on the
system and the FLOATZONE_SPEC06 variable in env.sh

needs to point to the directory where it is installed.
For the artifact evaluators, if they cannot obtain SPEC
CPU2006, we can provide access to a machine ready
to run SPEC. In order to run SPEC CPU and its bench-
marks, we make use of a public infrastructure under the
infra directory. The infra also makes sure the SPEC bi-
naries run pinned to core 0. Make sure that the necessary
python packages are installed:
pip3 install psutil terminaltables
Then, since some of the SPEC binaries contain false
positives (see Table 3), in the runtime directory, edit
wrap.c and ensure that SURVIVE_EXCEPTIONS is set to
1. Run make inside this directory to ensure the shared
object file is up-to-date. As can be seen in the wrap.c
source file, this only ensures that exceptions do not abort,
and the program continues executing where it left off.

Execution: We make use of the run.py script to run SPEC
CPU2006 along with the intended instrumentations.
Execute the following command, which runs SPEC
CPU2006 for three runs: the baseline, one with ASan,
and one with FloatZone, and hence takes multiple hours:
python3 run.py run spec2006 default_O2 \
asan_O2 floatzone_O2 --build \
--parallel=proc --parallelmax=1

Results: To obtain the results from the SPEC CPU2006
runs, we again make use of the run.py script.
Find the corresponding output folder in the results
directory that matches the start timestamp (e.g.:
results/run.2023-06-19.13-56-59). Then execute
the following command, replacing the directory with the
one just obtained:
python3 run.py report spec2006 \
results/run.2023-06-19.13-56-59 \
--aggregate geomean --field runtime:median \
maxrss:median
The output of this command can then be used to calculate
the runtime and memory overheads for each individual
binary, as well as for the geomean. As reported in Table 4:
if ran on the i9-13900K machine, the expected runtime
overhead for FloatZone is 36.4%, and 77.8% for ASan,
while the memory overhead is expected to be 182% and
237%, for FloatZone and ASan, respectively.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
The artifact is a code repository (with supporting documen-
tation) for PUMM, a runtime Linux defense that prevents
use-after-free vulnerabilities from being exploitable. PUMM
consists of an offline profiling phase that generates a secu-
rity profile for an online monitor that wraps libc’s memory
management functions (e.g., malloc, free, etc.).

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact should not pose any inherent security, privacy, or
ethical concerns. No preexisting data is read or transmitted
and no preexisting defenses are disabled or bypassed. If the
user decides to install software containing use-after-free vul-
nerabilities for the purposes of verifying PUMM’s security
claims, they do so at their own risk. For security and ethical
reasons, the artifact does not include any vulnerable programs.

A.2.2 How to access

The artifact is a code repository and documen-
tation that can be accessed on Github: https:
//github.com/carter-yagemann/PUMM/tree/
91e58cd5d929e25d0b83fdfd0ec3c5517e2a32e7.

A.2.3 Hardware dependencies

PUMM requires a baremetal Linux computer (virtual ma-
chines are not supported) running an Intel Core processor
(e.g., i3, i5, i7, etc.).

A.2.4 Software dependencies

The preferred environment for running PUMM is Debian
Buster, however PUMM should work with any recent version

*Work done while at the Georgia Institute of Technology.

of Debian or Ubuntu. PUMM has several software depen-
dencies, including cmake, gawk, Graph-Tool, and Linux Perf.
Users should follow the Setup section in the README.

A.2.5 Benchmarks

The primary benchmark used in the paper is a collection of
open source programs with known use-after-free vulnerabil-
ities and publicly reported steps for triggering these issues.
Reference IDs are provided in Table 1 of the paper and sup-
porting artifacts can be located by looking up the CVE in the
National Vulnerability Database1 or the issue number in the
affected program’s bug tracking website.

Additionally, performance and memory overheads are mea-
sured using the SPEC CPU 2006 standard benchmark. FFmal-
loc and MarkUs are used as baseline defenses for comparison.

A.3 Set-up
A.3.1 Installation

Users should follow the Setup section of the README.

A.3.2 Basic Test

Users should follow the Usage section of the README,
which will cover all core components of PUMM, using /bin/ls
as the target program to be protected:

1. Collecting runtime traces of the target program.

2. Generating a security profile for the target program.

3. Using PUMM’s runtime monitor (and generated profile)
to protect the target program during execution.

The README provides example terminal outputs for each
step for users to verify success. Notice that because the basic
test does not involve launching an exploit, the expected out-
come of using the online portion of PUMM is no observable
change to the target program’s behavior.

1https://nvd.nist.gov/
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A.4 Evaluation workflow

A.4.1 Major Claims

(C1): PUMM is able to prevent 40 real-world use-after-free
exploits targeting 26 popular open source programs. This
is proven by experiment (E1) described in Section 4.1 of
the paper and illustrated in Table 2.

(C2): PUMM prevents the same vulnerabilities as FFmal-
loc and MarkUs while aborting in fewer cases. This is
proven by experiment (E2) described in Section 4.1 of
the paper and illustrated in Table 3.

(C3): PUMM incurs 2.74% less performance overhead
than FFmalloc and 52.0% less memory overhead than
MarkUs on the SPEC CPU 2006 standard benchmark.
This is proven in experiment (E3) described in Section
4.2 of the paper and illustrated in Figures 4 and 5.

(C4): PUMM is able to prevent use-after-free exploitation in
all but 4 cases out of 3,000 synthetically generated vul-
nerabilities. This is proven by experiment (E4) described
in Section 4.3 of the paper and illustrated in Figures 8,
9, and 10.

A.4.2 Experiments

(E1): [5 human-days + 3 compute-days + 300GB storage]:
Collected vulnerable programs and triggering inputs,
record traces, generate profiles, and verify that the vul-
nerability is triggered without PUMM’s defense and then
prevented with PUMM.
Preparation: For each vulnerability in Figure 2 of the
paper, the affected software must be downloaded and
compiled. A triggering input for the program must also
be downloaded and verified to be working (e.g., by caus-
ing a segmentation fault).
Execution: PUMM should be used to generate a secu-
rity profile for the target program, using the recorded
traces.
Results: Running the target program with the trigger-
ing input and PUMM’s online monitor activated should
prevent the use-after-free from being exploitable. Notice
that the target program may still crash, so verification
requires debugging.

(E2): [4 human-hours + 30 compute-minutes + 1GB storage]:
Collected vulnerable programs and triggering inputs
should be executed with PUMM, MarkUs, and FFmalloc
to observe whether the vulnerability is exploitable.
Preparation: Download and compile FFmalloc and
MarkUs. Dataset preparation is covered in E1.
Execution: The vulnerable program should be executed
with the triggering input for each defense.
Results: Running the target program with the trigger-
ing input and PUMM’s online monitor activated should
prevent the use-after-free from being exploitable. Notice
that the target program may still crash, so verification

requires debugging.
(E3): [2 human-hours + 2 compute-hours + 50GB stor-

age]: Compare the runtime and memory overheads of
PUMM, FFmalloc, and MarkUs using the SPEC CPU
2006 benchmark.
Preparation: Download and compile SPEC CPU 2006.
Execution: Run the benchmark with no evaluated de-
fenses enabled to establish a baseline. Then rerun the
benchmark with PUMM, FFmalloc, and MarkUs enabled
and calculate overheads.
Results: PUMM should have a lower average runtime
and storage overhead than FFmalloc and MarkUs.

(E4): [1 human-day + 2 compute-hours + 2GB storage]: Syn-
thetically generate use-after-free vulnerabilities using
the monkey scripts provided in PUMM’s code repository
and verify whether PUMM prevents their exploitation.
Preparation: Compile the vulnerable programs de-
scribed in E1.
Execution: For each vulnerable program, run the mon-
key script provided in the Scripts directory of the code
repository, with and without PUMM’s runtime monitor
enabled.
Results: Without PUMM, a subset of the vulnerabilities
generated with the monkey script should yield observ-
able behaviors like segmentation faults. With PUMM,
there should be fewer of these adverse behaviors.

A.5 Notes on Reusability

The scripts directory of the code repository contains scripts for
using and evaluating PUMM. The scripts and their intended
purposes are as follows:
build.sh : Build script to help compile PUMM. See the

README in the code repository for full build steps.
dump-vdso.py : Helper script invoked by trace.sh to copy

the system’s vDSO object. Users should not need to call
this script directly.

hook-debug.sh : Runs a target program with PUMM’s pro-
tection activated. Uses a debug build of PUMM’s run-
time hooks with extra verbosity.

hook-monkey.sh : Runs a target program with PUMM’s pro-
tection activated and additional code to synthetically
inject use-after-free vulnerabilities for evaluation. Users
should use monkey.sh instead of calling this script di-
rectly.

hook.sh : Runs a target program with PUMM’s protection ac-
tivated. Uses the optimized production build of PUMM’s
runtime hooks.

monkey-debug.sh : Runs a target program with PUMM’s
protection activated and synthetically injects a use-after-
free vulnerability for evaluation. Whereas monkey.sh is
the primary script for batch evaluation, this script allows
the user to specify a specific seed to make it easier to
investigate a particular trial. A typical workflow is to
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use monkey.sh first and then use monkey-debug.sh to
investigate interesting cases.

monkey.gdb : A helper script used by monkey.sh to automate
GDB. Users should not need to call this script directly.

monkey.sh : Evaluation script for producing the results in
Subsection 4.3 of the conference paper. Specifically,
this script runs the target program several times with
PUMM’s protection activated, but also tries to randomly
inject synthetic use-after-free vulnerabilities. The pur-
pose of doing this is to evaluate PUMM at a larger scale
than what is feasible using only real-world vulnerabili-
ties.

procmap.sh : Helper script for extracting memory layout
information from Perf recordings. Users should not need
to use this script directly.

profile-name.sh : Helper script for determining the profile
name for a given target program. This script is intended
to help users locate a saved PUMM profile. For example,
a user can provide this script with the name of a program
that PUMM has already analyzed, and then they can look
in PUMM’s profile directory for the matching profile file.

ptdump.sh : A helper script to decode a Perf trace into a
human-readable log of the Intel PT packets. Users should
not need to call this script directly and is intended for
debugging.

ptxed.sh : A helper script for decoding a Perf trace into the
sequence of executed instructions. Users should not need
to call this script directly.

trace.sh : The script for recording execution traces using
Perf. See the README in the code repository for usage
instructions and examples.

eval : Contains 3 additional scripts to help with evaluation.
Specifically, these scripts accept a directory containing 1
or more decoded traces and calculate the number of exe-
cuted instructions, total size of the traces, and estimate
code coverage of the target program.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220912. Submission, reviewing and badging method-
ology followed for the evaluation of this artifact can
be found at https://secartifacts.github.io/usenix%
20sec2023/.
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A Artifact Appendix

Unique Identification of 50,000+ Virtual Reality Users from
Head & Hand Motion Data
rdi.berkeley.edu/metaverse/identification

A.1 Abstract
We present source code and data that can be used to replicate
our result of uniquely identifying over 55,000 users based on
head and hand motion data in VR. Our source code includes
Python scripts for training and testing a LightGBM-based
identification model using our novel hierarchical approach.
Our dataset includes both 4.7 TB of raw motion data from
over 100,000 VR users, as well as about 20 GB of prepro-
cessed features using our described featurization approach.
Together, the scripts and data can be used to reproduce the
main experiments, results, and figures presented in our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our artifact is non-destructive, but requires careful ethical
consideration as it involves real user data from over 55,000
users. We have taken steps to anonymize these users before
publishing our dataset. Evaluators should be careful to respect
the privacy of these users by not attempting to deanonymize or
contact these users, to infer sensitive attributes, or to otherwise
violate our ethical data use guidelines available at https:
//rdi.berkeley.edu/metaverse/boxrr-23/dua.pdf.

A.2.2 How to access

The source code and processed features are available on
Zenodo at https://zenodo.org/record/7935034.

The raw data from over 100,000 users can be found at https:
//rdi.berkeley.edu/metaverse/boxrr-23/. It cannot
be uploaded to a standard repository due to its size (4.7 TB).

A.2.3 Hardware dependencies

The training and testing code for our machine learning models
can be run on any machine or cluster with at least 96 GB of
RAM per node. We performed our main evaluation using a
distributed machine learning cluster of 10 nodes, each with
16 vCPU cores and 128 GB of RAM. LightGBM also supports
CUDA acceleration, and performs slightly better with a GPU.
On a single machine with a RTX 3090 GPU, Ryzen 9 5950X
CPU, and 128 GB of RAM, the execution time was as follows:

• Training (Layer 1): 1d 7h 38m 43s

• Training (Layer 2): 1d 9h 16m 27s

• Clustering: 4d 16h 42m 49s

• Training (Layer 3): 1h 7m 26s

• Testing: 4d 16h 43m 37s

Finally, we recommend at least 128 GB of free disk space.
Alternatively, the subset evaluation (E5) can be run with as
little as 8 GB of RAM and 4 GB of disk.

A.2.4 Software dependencies

A wide variety of operating systems are supported; our main
cluster used Ubuntu 20.04, while the single-note benchmark-
ing machine used Windows 10. Our scripts were designed for
Python 3.10.2 with the following required Python packages:

• PyTorch (torch) v1.13.1

• pandas v1.5.2

• tqdm v4.64.1

• scikit-learn (sklearn) v1.2.0

• NumPy (numpy) v1.24.0

• LightGBM (lightgbm) v3.3.3

• Joblib (joblib) v1.2.0

• NetworkX (networkx) v3.0

• Matplotlib (matplotlib) v3.6.2
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A.2.5 Benchmarks

Our evaluation is based on 3.96 TB of raw motion-tracking
data from over 2.65 million recordings of over 55,000 virtual
reality users. The dataset has since grown in size to 4.71 TB
and now includes over 100,000 users, and can be accessed at
https://rdi.berkeley.edu/metaverse/boxrr-23/.

To help evaluators reproduce our results without downloading
the entire 4.71 TB dataset, we have also provided the pre-
processed engineered features according to the featurization
technique described in our papers. These features are provided
in our Zenodo archive as four separate PyTorch (.pt) data files:

• train.pt (14.4 GB): 55540 Users, 150 Events per User

• validate.pt (0.5 GB): 55540 Users, 5 Events per User

• cluster.pt (4.8 GB): 55540 Users, 50 Events per User

• test.pt (4.8 GB): 55540 Users, 50 Events per User

Additionally, we have provided our trained model files and
pre-computed identification results at https://boxrr-23.
mfkdf.com/?identification-supplemental=1. These
files cannot be uploaded to Zenodo due to their size (90 GB).

A.3 Set-up

A.3.1 Installation

1. Download and install version 3.10.2 of Python from
https://www.python.org/downloads/.

2. Use pip install to download the suggested version of
each of the packages listed in §A.2.4 above.

3. Download the source code and data from Zenodo at
https://zenodo.org/record/7935034.

4. Optionally, follow the instructions to set up GPU
acceleration for LightGBM: https://lightgbm.
readthedocs.io/en/latest/GPU-Tutorial.html.

(a) If you prefer to use CPU, change
device_type=’gpu’ to device_type=’cpu’ in
all three training scripts (scripts 1, 2, and 5).

(b) Change n_jobs=16 to n_jobs=N where N is the
number of physical CPU cores in your machine.

5. Optionally, download the supplemental data (trained
models and inference results) at https://boxrr-23.
mfkdf.com/?identification-supplemental=1.

6. Optionally, download the subset data (scripts and
datasets) at https://zenodo.org/record/8137817.

A.3.2 Basic Test

After installing the required software, unzip the supplemental
data into the same folder as the source code and data from
Zenodo, then run this command: py 7-stats_final.py

If everything is correctly setup, the script should run without
errors, and will calculate the identification accuracy of around
95%. The estimated run time is around 2 minutes.

A.4 Evaluation workflow
Note: A full replication of our main result (C1) requires over
12 days of computing time on a high-end workstation PC.
While this is certainly an option (E1), we have also provided
an alternative (E2) that allows evaluators to reproduce each
step of our training and testing pipeline within a day with-
out completely re-computing every intermediate result for all
55,540 users. Either way, evaluators will be able to efficiently
conduct E3 and E4 to validate claims C2 and C3. A third
option (E5) allows evaluators with limited computational re-
sources to validate C1, C2, and C3 on a representative subset
of the data, which can be extrapolated to the full 55,540 users.

A.4.1 Major Claims

(C1): Our system can uniquely identify over 50,000 VR users
with over 90% accuracy from head and hand motion.

(C2): Over 50% of the information used to identify users
comes from actual motion rather than static features.

(C3): Our system can correctly classify whether a given user
has previously been seen or not with over 90% accuracy.

A.4.2 Experiments

In all experiments, these warnings can be safely ignored:

• [Warning] min_data_in_leaf is set=20,
min_child_samples=20 will be ignored.

• LineSearchWarning: The line search
algorithm did not converge

• UserWarning: Line Search failed

(E1): [Full Reproduction] [1 human-hour + 320 compute-
hour + 128GB disk]: re-run our entire training and testing
pipeline to validate our main identification result (C1).
Preparation: Complete steps 1–4 of the installation
instructions given in §A.3.1. Do not complete step 5.
Execution: Run the first seven Python scripts in labeled
numerical order, starting with 1-train_layer_1.py
and ending with 7-stats_final.py. See §A.2.3 above
for the estimated execution time of each step.
Results: After running 7-stats_final.py, a results
table will be displayed. The final identification accuracy,
as shown in the last row, should be 90% or higher.
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(E2): [Partial Reproduction] [1 human-hour + 8 compute-
hour + 128GB disk]: re-run part of each step of our
pipeline on a subset of users to validate our main identi-
fication result (C1); a reasonable alternative to (E1).
Preparation: Complete steps 1–5 of the installation
instructions given in §A.3.1. Unzip the supplemental
data and source code from Zenodo into the same folder.
Execution:

1. Run py 1-train_layer_1.py to train the first
layer, but only train the first model (you can write
exit() at the end of the main loop to do so).
(a) This step should take around 3 hours.
(b) After running, the final epoch should display

a validation error (valid_0’s multi_error)
of 0.40 or less. If so, this step is verified, and it
is safe to use our models for the rest of layer 1.

2. Run py 2-train_layer_2.py to train the second
layer, but only train the first model (you can write
exit() at the end of the main loop to do so).
(a) This step should take around 3 hours.
(b) After running, the final epoch should display

a validation error (valid_0’s multi_error)
of 0.40 or less. If so, this step is verified, and it
is safe to use our models for the rest of layer 2.

3. Run py 3-test_and_cluster.py to test the first
two layers. When you see Testing Accuracy...,
wait a few minutes for the accuracy to stabilize.
(a) This step should take around 10 minutes.
(b) The accuracy value should be around 85.0% or

higher. If so, this step is verified, and the models
in layers 1 and 2 are performing as expected.

4. Run py 4-generate_groups.py to cluster users
into groups based on the test results.
(a) This step should take around 5 minutes.
(b) If you see Created N groups of size [...],

this step was successful and you can proceed.
5. Run py 5-train_layer_3.py to train all models

in the third and final layer.
(a) This step should take around 1 hour.
(b) The final epoch of each model should display

a validation error (valid_0’s multi_error)
of 0.50 or less on average. If so, this step is
verified, and layer 3 is performing as expected.

6. Run py 6-test_layer_3.py to test the accuracy
of all models in the third layer.
(a) This step should take around 5 minutes.
(b) The accuracy of each model should be around

75.0% or higher on average. If so, this step is
verified, and layer 3 is performing as expected.

7. Run py 7-stats_final.py to test final accuracy.
(a) This step should take around 5 minutes.

Results: After running 7-stats_final.py, a results
table will be displayed. The final identification accuracy,
as shown in the last row, should be 90% or higher.

(E3): [Feature Importance] [5 human-minutes + 5 compute-
minutes + 128GB disk]: run our model explainability
script to validate our motion feature importance (C2).
Preparation: Complete steps 1–5 of the installation
instructions given in §A.3.1. Unzip the supplemental
data and source code from Zenodo into the same folder.
Execution: Run py 8-explain.py. This script should
take at most 3 to 5 minutes to execute.
Results: After running 8-explain.py, a graph of the
results is stored in stats/features.pdf. This should
be similar to Figure 16 in our paper, and motion features
(blue) should constitute most of the area of the graph.

(E4): [Open World] [5 human-minutes + 3 compute-minutes
+ 128GB disk]: run our secondary evaluation to validate
our open-world performance claims (C3).
Preparation: Complete steps 1–5 of the installation
instructions given in §A.3.1. Unzip the supplemental
data and source code from Zenodo into the same folder.
Execution: Run py 9-open_world.py. This script
should take at most 1 to 3 minutes to execute.
Results: After running 9-open_world.py, the value of
Overall Accuracy shown should be at least 0.90.

(E5): [Subset] [5 human-minutes + 1 compute-hour + 4GB
disk]: evaluate claims C1–C3 on a subset of users.
Preparation: Complete steps 1, 2, and 6 of the installa-
tion instructions given in §A.3.1; unzip subset scripts.
Execution: Run C1.py, C2.py, and C3.py in sequence.
These scripts should take about 30 minutes to execute.
Results: For C1, the projected identification accuracy
should be at least 90%. For C2, the motion features
should account for more than 50% of the entropy gained.
For C3, the overall accuracy should be at least 90%.

A.5 Notes on Reusability
We encourage researchers to build upon and improve our
work, and to this end have released our entire source code
under an MIT license. We further created the “BOXRR-23”
dataset, the largest known motion capture dataset, to help
researchers try new featurization techniques and model archi-
tectures beyond those included in our code. We encourage
researchers interested in any topic involving human motion
data to consider using the BOXRR-23 dataset, found here:

https://rdi.berkeley.edu/metaverse/boxrr-23/

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: Erebus: Access Control for Augmented
Reality Systems

Yoonsang Kim* and Sanket Goutam*, Amir Rahmati, Arie Kaufman
Stony Brook University

{yoonsakim, sgoutam, amir, ari}@cs.stonybrook.edu

A Artifact Appendix

A.1 Abstract
The core components of Erebus can be separated into 3 sepa-
rate modules: (1) Policy Engine that generates Erebus policies
from Natural Language inputs. (2) Language Transpiler that
converts the intermediate Erebus language into the target plat-
form code (in this implementation C#). (3) Native library
implementation (in C#) that is used to build Android APKs
for testing.

For reproducibility, we separate our implementation into
these separate components and provide instructions on how
to reproduce our results. In this Artifact, we provide instruc-
tions to reproduce the policy engine and policy generation
of Erebus (components 1 and 2). We also open-source our
implementation of the Erebus framework itself, developed
using Unity and C#. However due to the complexity of setup
required, and the number of platform-specific dependencies
required to recompile the Android APK files, we skip these
components for reproducibility and provide all necessary in-
formation to be used as reference.

A.2 Description & Requirements
The two components of the Policy Engine framework, in-
cluded in this artifact, can be evaluated with the following
system requirements.

Run-time requirements Ubuntu 20.04, Python 3.8.10, Dot-
net 6.0

Hardware Minimum requirements: 2GB RAM

Expected output Policy code generated by each module
into their respective text files. Module-specific instructions
are provided in the README under each module.

A.2.1 Security, privacy, and ethical concerns

None
*These authors contributed equally to this work.

A.2.2 How to access

Stable Github Commit: https://github.com/
Ethos-lab/erebus-AR_access_control/tree/
artifact-final-release-v2

Github Repo: https://github.com/Ethos-lab/
erebus-AR_access_control

A.2.3 Hardware dependencies

None

A.2.4 Software dependencies

All necessary software dependencies and install directions are
provided in the README file.

A.2.5 Benchmarks

Any necessary data sets used for the experiements are in-
cluded with the Repo. For the natural language policy gen-
erator module, we tweaked a publicly available NLP model
using a custom training data set. The custom data and the
final trained model are included in the repo. For evaluation,
there is no need to re-train the model.

A.3 Set-up

Detailed instructions are provided in the README.

A.3.1 Installation

Detailed instructions are provided in the README.

A.3.2 Basic Test

The steps to test each module is provided in the README
file under each subsection for the specific module.
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A.4 Evaluation workflow
For functional and reproducible evaluation, the README
file contains all the steps to evaluate the Policy Engine and
Policy Transpiler components of Erebus. In our framework,
these two components are sequentially chained together and
compiled into an Android APK. In this artifact, we provide
the steps to evaluate each of these components individually as
recreating the Android APK would require substantial setup
effort.

The Evaluation workflow can be summarized as below:

1. Download the Github Repo and make sure all the fold-
ers are available as per the documentation provided in
README.

2. Verify each component individually based on the instruc-
tions provided in README for each component.

3. The folders for erebus, prototype_apps, and survey con-
tain code and survey data used in our paper. But for the
purposes of this artifact, they do not need to be evaluated
for reproducibility (due to limitations of environment
setup).

4. The folders for policy_gen and policy_transpiler contain
the main contribution of our paper, which is the access
control framework. The README file contains all the
detailed instructions to verify these modules.

A.4.1 Major Claims

The main contribution of our paper is the design of an ac-
cess control framework for Augmented Reality systems. This
framework is designed based on a survey of existing systems,
and implemented for an Android system. The main claims of
our system (mainly the policy framework) include the follow-
ing:
(C1): We propose a novel access control framework using a

policy language design described in Section 5 and Table
3.

(C2): We also propose a mechanism to derive these poli-
cies using natural language input from developer’s app
descriptions, as shown in Figure 4 and Listing 3.

A.4.2 Experiments

Please refer to the README file for exact steps to test the
policy framework of Erebus. Detailed steps are provided for
each component, and sample policies that can be tested are
also provided in the README file.
(E1): Setup [30 human-minutes]: Set up the software pack-

ages and install all the dependencies.
(E2): Policy Engine [15 human-minutes]: Follow the instruc-

tions in README for Reproducing the Policy Engine
module. Test with additional sample policies provided,
if needed.

(E3): Policy Transpiler [15 human-minutes]: Follow the
instructions in README for Reproducing the Policy
Transpiler module. Ensure that the generate target code
matches the policy statement defined in (E2).

A.5 Notes on Reusability
Apart from the specific modules used for reproducibility, we
also release the overall implementation of our framework
in C# (refer erebus folder) that ties together each of these
modules. We advise readers to use this implementation as a
reference, along with the prototype_apps code released with
this artifact.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix
POLIGRAPH: Automated Privacy Policy Analysis

using Knowledge Graphs

Hao Cui, Rahmadi Trimananda, Athina Markopoulou, Scott Jordan

University of California, Irvine

A Artifact Appendix

A.1 Abstract
In our main paper, we proposed POLIGRAPH, a type of knowl-
edge graph, for the analysis of data collection statements in
a privacy policy. We developed POLIGRAPH-ER, an NLP
system to generate POLIGRAPH from the text of a given pri-
vacy policy. This appendix provides instructions on how to
access our artifacts, how to use POLIGRAPH-ER, and how to
reproduce main results in our paper.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Web scraping is restricted by certain websites. Inappropri-
ate use of crawlers (e.g., without rate limit) can lead to the
banning of your IP address. While building the benchmark
dataset, we limited our crawling to publicly accessible privacy
policy webpages and enforced an appropriate rate limit.

To our knowledge, no other artifacts associated with the
paper pose security, privacy and ethical risks to evaluators.

A.2.2 How to access

Source Code. The Git repository is at https://github.com/U
CI-Networking-Group/PoliGraph.git. The version for this
artifact evaluation is tagged as USENIX-AE-v1.
Dataset. Please see Section A.2.5.
Project Page. For up-to-date information, please check our
project page: https://athinagroup.eng.uci.edu/projects/auditin
g-and-policy-analysis/.

A.2.3 Hardware dependencies

We recommend using an x86-64 Linux machine with a min-
imum of 32 GiB of memory, 20 GiB free disk space (after
setting up conda) and an NVIDIA GPU with 24 GiB of video
memory for this artifact evaluation. A GPU is needed to run
transformer-based NLP models at a tolerable performance.

For artifact reviewers, we will offer SSH access to our
GPU server, which serves as the test machine. We will post
the login details on HotCRP.

A.2.4 Software dependencies

POLIGRAPH-ER is written in Python and requires several
Python libraries. We recommend using conda on Linux to
manage dependencies. All the code required for the artifact
evaluation has been tested on a Debian 11 GNU/Linux system
with Miniconda3 version 23.3.1.

For the full list of software dependencies, please refer to
environment.yml in our Git repository.

A.2.5 Benchmarks

POLIGRAPH-ER Extra Data. We provide an archive file
poligrapher-extra-data.tar.gz1, which contains the
NER model, purpose classification model and global entity
ontology required by POLIGRAPH-ER. These resources can
be generated using the scripts released in our Git repository.
We have released them for the ease of reproducibility.
Benchmark dataset. We used privacy policies from the
PoliCheck project as the benchmark dataset. The privacy poli-
cies, although publicly available, may be copyright protected.
Users must sign a consent form before accessing it. Please fol-
low the instructions at our project page to obtain the dataset.

For artifact reviewers, we provide the dataset directly on
our server (~/dataset). Please refer to README.md in the
directory for details about the content.

A.3 Set-up

We provide step-by-step instructions at docs/usenix-artif
act-evaluation.md in the Git repository2.

1poligrapher-extra-data.tar.gz: https://drive.google.com/file/d/1q
HifRx93EfTkg2x1e2W_lgQAgk7HcXhP/view?usp=sharing

2Document - Artifact Evaluation: https://github.com/UCI-Networking-G
roup/PoliGraph/blob/USENIX-AE-v1/docs/usenix-artifact-evaluation.md
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A.3.1 Installation

For artifact reviewers, we have set up the software environ-
ment. Please skip this step and continue to Section A.3.2. The
instructions below are provided for completeness.

1. Git clone the POLIGRAPH repository (see Section A.2.2
for the URL) and change to the cloned directory:
$ git clone <GITHUB_URL> -b USENIX-AE-v1
$ cd poligraph/

2. Download the extra-data tarball (see Section A.2.5) and
extract its contents to poligrapher/extra-data:
$ tar xf /path/to/poligrapher-extra-data.tar.gz \

-C poligrapher/extra-data

3. Create a conda environment named poligraph with all
the dependencies installed, and activate it:
$ conda env create -n poligraph -f environment.yml
$ conda activate poligraph

4. Initialize the Playwright library required by the crawler:
$ playwright install

5. Install POLIGRAPH-ER as a Python module:
$ pip install --editable .

A.3.2 Basic Test

Here we illustrate how to use POLIGRAPH-ER to generate a
POLIGRAPH from the text of a real privacy policy3.

1. Run the HTML crawler to download the privacy policy
webpage (see Footnote 3 for the full URL):
$ python -m poligrapher.scripts.html_crawler \

<PRIVACY_POLICY_URL> example/

2. Run the NLP pipeline on the privacy policy:
$ python -m poligrapher.scripts.init_document example/

3. Run the annotators to discover relations:
$ python -m poligrapher.scripts.run_annotators example/

4. Build the POLIGRAPH:
$ python -m poligrapher.scripts.build_graph \

--pretty example/

The argument --pretty is only needed if you would
like to generate the graph in GraphML format.

To view the generated POLIGRAPH, you may use a text
editor to open example/graph-original.yml. The YAML
file describes the graph in a human-readable format. For ex-
ample, the object below is an edge we COLLECT−−−−→statistical user
datum with a purpose “services” as the attribute.
- source: we
target: statistical user datum
key: COLLECT
text: ...
purposes:
services: ...

Please see docs/view-poligraph.md in the Git repository
for more instructions on how to view a POLIGRAPH.

3The privacy policy of “Puzzle 100 Doors”: https://web.archive.org/web/
20230330161225id_/https://proteygames.github.io/

A.4 Evaluation workflow

A.4.1 Major Claims

(C0): POLIGRAPH Generation. We show that POLIGRAPH-
ER is used to generate POLIGRAPHs for 6,084 privacy
policies in our benchmark dataset.

(C1): Comparison to Prior Policy Analyzers. In Section 4.2
of the main paper, we compared the collection relations
inferred from POLIGRAPHs to data collection tuples
extracted by PolicyLint. We claimed that our approach
identifies 40% more collection relations (tuples) than the
prior work, with 97% precision.

(C2): Policies Summarization: In Section 5.1 of the main
paper, we use POLIGRAPH to summarize a large corpus
of privacy policies and reveal common patterns among
them. We will reproduce main results reported in Figures
8a, 8b and 8c, and Findings 1 and 2.

(C3): Correct Definitions of Terms: In Section 5.2 of the
main paper, we use POLIGRAPH to access the correct-
ness of definitions of terms in privacy policies. We show
examples of different definitions in Table 5, and non-
standard terms in Table 6. We will reproduce the results.

A.4.2 Experiments

For easy copy and paste of commands, we recommend follow-
ing the link provided in Footnote 2. It also provides additional
details about the steps and results.
Estimated Time: We expect that the human time required
for each experiment is less than 10 minutes. The compute
time for E0 is about 4 hours. The compute time for other
experiments is negligible (a few minutes).

(E0): PoliGraph Generation. This generates POLIGRAPHs
for all privacy policies in our benchmark dataset. E1-E3
will be based on these generated POLIGRAPHs.
Preparation: Download and extract the benchmark
dataset (see Section A.2.5). For artifact reviewers, we
have already extracted the dataset to ~/dataset.
Execution: Do Steps 2-4 in Section A.3.2 on all privacy
policies in the benchmark dataset as follows:
$ cd ~/dataset
$ python -m poligrapher.scripts.init_document dedup/*
$ python -m poligrapher.scripts.run_annotators dedup/*
$ python -m poligrapher.scripts.build_graph dedup/*

On the test machine, init_document takes about 2.5
hours, run_annotators takes 40 minutes, and build_
graph takes 15 minutes to complete.
Results: After this experiment, each subdirectory un-
der ~/dataset/dedup, which corresponds to a privacy
policy, should have a generated POLIGRAPH in it:
$ ls dedup/*/graph-original.yml | wc -l
6084

You may optionally check the generated POLIGRAPHs
(graph-original.yml) as we explain in Section A.3.2.
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(E1): Comparison to Prior Policy Analyzers.
Preparation: This experiment requires manually la-
beled ground truth data and output from PolicyLint. For
artifact reviewers, we provided:

• Ground truth data at ~/dataset/external/manua
l-collection-relations.csv

• PolicyLint’s ext/ directory, which contains all the
input and output data of PolicyLint, at ~/dataset/
external/policylint-ext.

Please finish E0 before this experiment.
Execution:
1. The scripts needed for this experiment are in the ev
als/tuples/ directory in the Git repository. Copy it to
the dataset directory for convenience:
$ cd ~/dataset
$ cp -Tr ~/poligraph/evals/tuples ./eval-tuples

2. Convert collection relations inferred through POLI-
GRAPHs into tuples in a CSV file:
$ python eval-tuples/export_poligraph_tuples.py \

-o eval-tuples/result-poligraph.csv s_test/*

The contents in s_test/ link to a subset of 200 privacy
policies, which we use as the test set in the main paper.

3. Convert PolicyLint tuples that belong to the same set
of privacy policies into a CSV file:
$ python eval-tuples/export_policylint_tuples.py \

-e external/policylint-ext \
-o eval-tuples/result-policylint.csv s_test/*

4. Compare results from both sides to ground truth:
$ python eval-tuples/evaluate.py \

external/manual-collection-relations.csv \
eval-tuples/result-poligraph.csv

$ python eval-tuples/evaluate.py \
external/manual-collection-relations.csv \
eval-tuples/result-policylint.csv

Results: The output in Step 4 corresponds to the preci-
sions and recalls reported in Table 4 of our main paper.
You may open eval-tuples/result-poligraph.csv
and result-policylint.csv to view tuples inferred
through PoliGraph and those found by PolicyLint.

(E2): Policies Summarization.
Preparation: Please finish E0 before this experiment.
Execution:
1. The scripts needed for this experiment are in the an
alyses/summarization directory in the Git repository.
Copy it to the dataset directory for convenience:
$ cd ~/dataset
$ cp -Tr ~/poligraph/analyses/summarization ./summarization

2. Generate statistics over the entire dataset:
$ python summarization/collect-and-purpose-statistics.py \

-o summarization/ dedup/*

3. Generate figures of policies summarization results:
$ python summarization/plot.py \

summarization/ summarization/figure.pdf

Results: In Step 2, the script prints statistics that are
reported in Section 5.1 of the main paper. For example:

# of policies that disclose the collection of known
categories: 4093

It also produces CSV files in summarization/ con-
taining statistics of data collection, sharing and usage
purposes. In Step 3, the output PDF file summarizatio
n/figure.pdf reproduces Figure 8 in the main paper.

(E3): Correct Definitions of Terms.
Preparation: Please finish E0 before this experiment.
Execution:
1. The scripts needed here are in the analyses/term-d
efinitions/ directory in the Git repository. Copy it to
the dataset directory for convenience:
$ cd ~/dataset
$ cp -Tr ~/poligraph/analyses/term-definitions \

term-definitions

2. Run the script to find term definitions that do not align
with our global ontologies:
$ python term-definitions/check-misleading-definition.py \

dedup/*

3. Run the script to aggregate non-standard terms found
in privacy policies into a CSV file:
$ python term-definitions/check-self-defined-terms.py \

-o term-definitions/non-standard-terms.csv dedup/*

Results: Step 2 creates a misleading_definitions.c
sv file in each privacy policy’s subdirectory that contains
all the different definitions. We use xsv, a command-line
CSV parser, to obtain counts of different definitions in
Table 5 in the main paper. For example:
$ xsv cat rows dedup/*/misleading_definitions.csv \
| xsv search -s parent ’^non-personal information$’ \
| xsv frequency -s child

The output matches results in Table 5 in the main paper:
field,value,count
child,ip address,126
child,geolocation,123
......

Step 3 generates a CSV file non-standard-terms.csv,
which contains results in Table 6 in the main paper about
non-standard terms. The rows are like:
type,term,def_count,use_count,possible_meanings
DATA,technical information,126,311,advertising id|age|...

This row indicates that the data type “technical information”
is defined in 126 and used in 311 privacy policies, and possible
specific data types are listed in the last column.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: Calpric: Inclusive and Fine-grained
Labeling of Privacy Policies with Crowdsourcing and Active Learning

Wenjun Qiu David Lie Lisa Austin
University of Toronto

A Artifact Appendix

A.1 Abstract
The Calpric project leverages active learning and crowdsourc-
ing techniques to address the challenge of the cost of training
accurate deep learning models on privacy policies. In this
artifact appendix, we describe the two artifacts available to
the public: the Calpric Privacy Policy Corpus (CPPS) and the
source codes for Calpric’s major components.

We provide the source codes for Calpric as a reference,
including the category models and the action models, as well
as the privacy policy-based embedding PriBERT. We do not
include a full pipeline test for Calpric as the complete system
involves additional manual setup and accessing costs, such
as the AWS account used to actively crowdsource training
labels.

A.2 Description & Requirements
The CPPS data set includes privacy policy segment labels cov-
ering 9 data categories (contact, device, location, health, finan-
cial, demographic, survey, social media and personally iden-
tifiable information) with 3 data actions (collect/use, share,
and store). For clarity purposes, duplicated labels have been
removed, resulting in a total of 12,585 labels.

A.2.1 Security, privacy, and ethical concerns

The use of human annotators was approved by our institu-
tional review board (IRB). We do not include any personal
identifiable information in the publicly accessible dataset.

A.2.2 How to access

The artifacts are accessible via the Calpric GitHub page:
https://github.com/dlgroupuoft/Calpric.

A.2.3 Hardware dependencies

The CPPS dataset and PriBERT embedding do not require
any specific hardware feature. The source codes support both
CPU and GPU processing. Depending on the size of the active
querying pool, the required memory size may vary.

A.2.4 Software dependencies

To use the CPPS dataset, no other software dependencies
are needed except the Python standard library and the csv
package.

For the source code example, the following Python pack-
ages are required along with the Python standard library: re,
langdetect, numpy, pandas, keras, modAL and tensorflow.

A.2.5 Benchmarks

Data required by the artifacts: CPPS.

A.3 Set-up
A.3.1 Installation

No other installation is required other than the software de-
pendencies described above.

A.3.2 Basic Test

Run functionality_checks.py. The expected output from the
CPPS check should be:
number of health labels: {’health’: 1796}

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: Measuring and Characterizing
Non-Compliance of Apple Privacy Labels

Yue Xiao1, Zhengyi Li1, Yue Qin1, Xiaolong Bai2, Jiale Guan1, Xiaojing Liao1, Luyi Xing1

1Indiana University Bloomington, 2Orion Security Lab, Alibaba Group

A Artifact Appendix

A.1 Abstract
[Mandatory] The downloader is utilized to download the
app along with its corresponding privacy label. The static
analyzer is used to screen apps that make calls to iOS system
APIs. The dynamic analysis pipeline is employed to verify
whether an app’s code behavior complies with its privacy
label. To use the tool, you need to provide the binary code of
the app in .ipa format, as well as its privacy label from the
Apple store (if it is not present in our 366,697 app privacy
label dataset). The tool will then identify and output any
inconsistencies it detects. The dynamic analysis pipeline is
composed of three stages:

• End-to-end execution, which includes fully automated
app UI execution, dynamic instrumentation, and network
monitoring.

• Inferring data and purpose from the call trace and net-
work traffic information.

• Conducting a compliance check to identify any inconsis-
tencies

A.2 Description & Requirements
[Mandatory] To utilize the tool, the system requirements in-
clude Mac OS and a rooted iOS device. We have tested the
tool on Mac OS version 12.6.2, which is the minimum ver-
sion we recommend. Additionally, the iOS device must be
running version 12.2 or higher, although lower versions may
also be compatible with the tool. We have only listed the min-
imum versions we have tested, but other versions may still be
compatible.

A.2.1 Security, privacy, and ethical concerns

[Mandatory] Rooting an iOS device can create security, pri-
vacy, and ethical issues. It grants administrative access to the
device’s operating system, enabling customization and control
over the device’s functionality but bypassing built-in security

features, which may expose the device to security threats.
Rooting can also compromise privacy, granting unauthorized
access to personal information and data, particularly when
installing third-party software from untrusted sources. Addi-
tionally, rooting violates Apple’s terms of service, which may
lead to legal consequences and could undermine the efforts
of developers and manufacturers to create secure devices.

A.2.2 How to access

[Mandatory] You can access the source code in
github: https://github.com/xiaoyue10131748/
Lalaine/tree/LalaineStable

A.2.3 Hardware dependencies

[Mandatory] The tool requires a rooted iOS device to run,
which may present a hardware dependency issue.

A.2.4 Software dependencies

[Mandatory] We use Macaca, an open-source automation
testing framework that supports different types of applications
and provides automation drivers, environment support, pe-
ripheral tools, and integration solutions to handle challenges
such as test automation and client-side performance. We also
set up NoSmoke, a cross-platform UI crawler that scans view
trees, performs OCR operations, and creates and runs UI test
cases.

• install macaca https://macacajs.github.io/
guide/environment-setup.html#macaca-cli

• install nosmoke https://macacajs.github.io/
NoSmoke/guide/

We utilize Frida, a dynamic code instrumentation toolkit.
We inject snippets of JavaScript into native apps on iOS. We
built our hooking framework on top of the Frida API.

• install Frida’s CLI tools on MacOS: https://frida.
re/docs/installation/
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• configure Frida on your rooted iOS device: https://
frida.re/docs/ios/

We utilized Fiddler, which is a web debugging proxy tool
that monitors, analyzes and modifies the traffic on iOS device.

• install Fiddler in your MacOS: https://docs.
telerik.com/fiddler/configure-fiddler/
tasks/configureformac

• configure your rooted iOS device: https://docs.
telerik.com/fiddler/configure-fiddler/
tasks/configureforios

A.2.5 Benchmarks

[Mandatory] The privacy label of apps we crawled from app
store are needed to put it under data folder. Please download
it from https://drive.google.com/file/d/
1k3FulkLvOhgLV_hU-hkxnuvnP4FF3tXz/view?
usp=share_link. If the app you want to test is not on
the list, you can mannully add it to this file to allow further
complaince check.

A.3 Set-up
[Mandatory] This section should include all the installation
and configuration steps required to prepare the environment
to be used for the evaluation of your artifact.

A.3.1 Installation

[Mandatory] Please download the source code https:
//github.com/xiaoyue10131748/Lalaine.git
and follow the README to setup environment.

A.3.2 Basic Test

[Mandatory] Check that Macaca, Frida and Fiddler
are successfully installed. First, run the command
nosmoke -u <device id> , to see if nosmoke can

launch an app and automatically execute UI events. Second,
run the command frida-ps -U , to see if the frida can list
all the apps installed on the iPhone. Third, launch Fiddler and
open any app on the iPhone to see if the traffic generated by
the app can be captured.

A.4 Evaluation workflow
[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] This section should include
all the operational steps and experiments which must be per-
formed to evaluate if your your artifact is functional and to
validate your paper’s key results and claims. For that pur-
pose, we ask you to use the two following subsections and
cross-reference the items therein as explained next.

A.4.1 Major Claims

[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] Enumerate here the major
claims (Cx) made in your paper. Follows an example:

(C1): The tool is able to download the binary of app and its
privacy label.

(C2): The tool is able to screen apps that call sensitive iOS
system APIs.

(C3): The tool is able to gather call trace and network traffic
by dynamically executing an app in rooted device.

(C4): The tool is able to analyze call trace and network traffic
to extract (data, purpose) from code behavior.

(C5): The tool is able to perform complaince check.

A.4.2 Experiments

[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available]
(E1): [download app binary and crawl privacy label] [1

human-minutes + 3-4 compute-minutes + 10GB disk]:
In this step, the tool will crawl privacy label from apple
store and download its binary ipa file.
How to: Collect the info of app you want to test. And
execute the following down-loader command.
Preparation: Put the information of the app that you
want to download in app_info.json
Execution: (1) python privacy_label_crawler.py

-input_file ./app_info.json -result_dir

./label/ -driver_path ./chromedriver (2)
python app_binary_downloader.py -input_file

./app_info.json -result_dir ./ipa/

Results: The app binary will be in the folder /ipa/ and
the privay label will be in the folder /label/

(E2): [screen apps binary ipa file] [0.5 human-minutes +
0.5 compute-minutes + 10GB disk]: In this step, the tool
will screen apps that make calls to iOS system APIs.
How to: Execute the following static analyzer (SAF)
command.
Preparation: Put the binary of app (.ipa) you want to
static scan under the folder /app
Execution: (1) python find_in_decrypted_ipas.py

-f ./API_List.txt -i ./app/

Results: The results will be in the file
find_in_decrypted_ret.txt

(E3): [call trace and traffic gathering] [1 human-minutes +
3-4 compute-minutes + 10GB disk]: In this step, the tool
will gather call trace and network traffic by dynamically
executing an app in the rooted device.
How to: This step will take 3-4 mins. It takes three steps:
(1) launch the iPhone, network monitor, and Macaca
server for the reviewers. (2) the reviewers run the com-
mand python batch_ui_frida_test.py 0 . -i
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<device id> (3) close the iPhone and macaca server,
dump the traffic from the network monitor
Preparation: Make sure the iPhone, network monitor
and Macaca server are launched.
Execution: python batch_ui_frida_test.py 0 . -i

<device id>

Results: The results about are under result/0/
folder.

(E4): [(data, purpose) inference] [0 human-hour + 0.5
compute-minutes]: Analyze call trace and network traffic
to extract (data, purpose) from code behavior.
How to: Execute the following command.
Execution: python analyze_log.py 0 .
Results: Analyzing result can be found in
./result/0/prediction_output/

(E5): [Compliance check] [0 human-hour + 0.5 compute-
minutes]: Perform compliance check to find any incon-
sistencies between (data,purpose) extracted from call
trace and network traffic and privacy label in its privacy
label.
How to: Execute the following command.
Execution: python compliance_check.py 0 .
Results: Analyzing result can be found in
./result/0/inconsistency_output/
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Evading Provenance-Based ML Detectors with Adversarial System Actions

Kunal Mukherjee, Joshua Wiedemeier, Tianhao Wang, James Wei, Feng Chen, Muhyun Kim,
Murat Kantarcioglu, and Kangkook Jee

Department of Computer Science, The University of Texas at Dallas

A Artifact Appendix

A.1 Abstract

The artifact evaluation process is designed to validate the
repeatability and usability of the results presented in the re-
search paper "Evading Provenance-Based ML Detectors with
Adversarial System Actions." The paper introduces PROVN-
INJA, a novel framework designed to discover adversarial
samples, also known as gadgets, specifically tailored for path-
based Intrusion Detection Systems (IDS) and Graph Neural
Network-based IDS. The primary objective of PROVNINJA is
to identify actions that can successfully evade state-of-the-art
IDSs. The evaluation process comprises two main compo-
nents: training and testing the IDS and generating adversarial
examples to evade the IDSs. As a valuable resource, the au-
thors provide a GitHub link that grants access to the source
code, data, and scripts necessary for reproducing the results
described in the paper.

By offering these artifacts, the researchers enable fellow
researchers and practitioners to replicate and build upon their
work in provenance-based ML detectors. The artifacts include
comprehensive software, data, and scripts employed to gen-
erate the findings presented in the paper. The accessibility of
the GitHub repository ensures transparency. It fosters collab-
oration among researchers, facilitating advancements in the
domain of provenance-based ML detectors and contributing
to the overall improvement of security systems.

A.2 Description & Requirements

PROVNINJA is a system for generating evasive variants of
known attack chains by replacing rare system events with
chains of common system events that achieve the same ends.
To support the reproduction of our results, we have provided
the code, sample data, models, and intermediate files required
to produce evasive attacks from the evaluation. Although
our artifacts make no particular assumptions about compute
power, 25GB of disk space and 16GB of memory are required
to store and run the models, data samples, and software de-
pendencies.

A.2.1 Security, privacy, and ethical concerns

None. No destructive steps are taken, and no data is collected
during the evaluation process. The sample data provided is
from our local testbed environments, so real user data is not
exposed.

A.2.2 How to access

Our code, sample data, and sample results can
be accessed on GitHub at https://github.com/
syssec-utd/provninja/releases/tag/USENIX_23.
The sample data for the Supply Chain APT is
available at https://drive.google.com/file/d/
1Jz0ZuiZlUEZdAgqlnfmpN2_X0Cms6Sl8/view.

A.2.3 Hardware dependencies

Running our experiments requires 25GB of storage and 16GB
of memory for the data, code, and models.

A.2.4 Software dependencies

Our code is written in Python and uses Miniconda for
environment management. Miniconda can be installed
from https://conda.io/projects/conda/en/latest/
user-guide/install/index.html. Simply follow the in-
stallation directions for your machine architecture. Python
3.10 will be installed as part of the environment building
process. Our experiments were run on Ubuntu 18. Our Shade-
Watcher experiments use a Docker container; to install
Docker, please follow the instructions at https://docs.
docker.com/engine/install/.

A.2.5 Benchmarks

All the datasets and models required for use with this arti-
fact are provided in the GitHub repository and Google Drive
provided in A.2.4.

A.3 Set-up
These instructions assume that you have already installed
Miniconda and Docker.
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A.3.1 Installation

First, clone our code, data, and configuration files. Next, up-
date, build, and activate the Conda environment.
$ git clone \
https://github.com/syssec-utd/provninja \
--branch USENIX_23

$ cd provninja
$ conda update conda
$ conda env update -n provng -f provng.yml
$ conda activate provng

Next, build the Docker container for the ShadeWatcher ex-
periments.
$ cd intrusion-detection-system/shadewatcher
$ docker build . -t shadewatcher

A.3.2 Basic Test

Once the environment has been set up, you can verify that all
the packages have been installed correctly by running python
test_installation.py. This script will import all the rel-
evant modules and will print “INSTALLATION VERIFIED”
if the Conda environment has been installed correctly. Other-
wise, it will print “FAIL”, along with a brief exception mes-
sage. If the Docker build process finishes without issue, the
Docker environment is set up.

A.4 Evaluation workflow
We provide detailed instructions on how to reproduce support-
ing evidence for our major claims. In the README, we also
provide the exact commands to run for each major component.

A.4.1 Major Claims

(C1): PROVNINJA reduces detection rates of state-of-the-art
provenance-based IDS by up to 59%. This is proven by
experiments (E1), (E2) and (E3), as described in section
6.4 and presented in tables 2 and 3.

(C2): PROVNINJA is able to use event frequency data to
construct inconspicuous alternatives to rare events in
an attack chain. This is proven by experiment (E4); the
gadget chain generation process is discussed in section
4.6 and example gadget chains are presented in tables 1
and 9.

A.4.2 Experiments

(E1): [Path-based IDS] [10 human-minutes + 1 compute-
minute]: Run the trained path-based models on the orig-
inal attacks and the corresponding Ninja variants.
How to: In intrusion-detection-system/
path-based/, run python sigl.py and python
provdetector.py. Record the recall and F1 scores
for the original Enterprise APT and the “Gadget”

Enterprise APT. The expected results are provided in
the README.md file in this directory.
Preparation: To set the working directory, cd in
trusion-detection-system/path-based. No addi-
tional configuration beyond the Conda environment acti-
vation from A.3 is required.
Execution: Run python sigl.py and python
provdetector.py.
Results: Record the recall and F1 scores for the original
Enterprise APT and the “Gadget” Enterprise APT. The
recall and F1 scores for the “Gadget” Enterprise APT
should be significantly lower than those of the original
Enterprise APT.

(E2): [Graph-based IDS] [15 human-minutes + 5 compute-
minute]: Validate the graph-based IDS on the original
Supply Chain APT, then create ninja variants to evade
detection.
How to: In intrusion-detection-system/
graph-based/, run the S-GAT and Prov-GAT drivers;
observe that the weight averge recall and F1 scores
are acceptably high (>=0.88). Then, run python
provninjaGraph.py to generate adversarial examples
and observe the decrease in recall and F1 score.
Preparation: To set the working directory, cd
intrusion-detection-system/graph-based.
Download the sample Supply Chain APT data
from https://drive.google.com/file/d/
1Jz0ZuiZlUEZdAgqlnfmpN2_X0Cms6Sl8/view and
unzip it. To assist in this step, we have provided a shell
script download_sample_supply_chain_data.sh,
which will download and unzip the data (run ./down
load_sample_supply_chain_data.sh).
Execution: Run python gnnDriver.py gat -if 5
-hf 10 -lr 0.001 -e 20 -n 5 -bs 128 -bi -s
and python gnnDriver.py gat -if 768 -hf 10 -lr
0.001 -e 20 -n 5 -bs 128 -bi to validate the graph-
based IDS. Then, run python provninjaGraph.py to
create and evaluate the evasive attacks.
Results: From the classification reports, record the
weighted average recall and F1 scores for the original
Supply Chain APT and the evasive variants. The recall
and F1 scores for the evasive variants should be signif-
icantly lower than those of the original Supply Chain
APT.

(E3): [ShadeWatcher] [10 human-minutes + 20 compute-
minutes]: Demonstrate that PROVNINJA can evade
the SOTA provenance-based security detector, Shade-
Watcher.
How to: In the provided Docker con-
tainer, run shadewatcher_train.py and
shadewatcher_eval.py for the benign and anoma-
lous samples with and without gadgets to observe the
gadgets’ impact on detection rates.
Preparation: Execute the commands in order:
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$ docker run -it --mount type=bind,\
source="pwd",target=/data \
-e DATASET_DIR=/data \
--name shadewatcher shadewatcher

$ cd /ShadeWatcher
$ ./prepare_shadewatcher.sh
Execution: Run the script to start the evalaution,
run_shadewatcher_experiments.sh, which will
train and evaluate the ShadeWatcher model on the
provided benign and anomalous data with and without
gadgets. Finally, run python3.6 stat_eval.py
tests to summarize the results.
Results: Observe the true positive decreases by 35%,
demonstrating PROVNINJA’s ability to evade Shade-
Watcher.

(E4): [Gadget Finding] [10 human-minutes + 1 compute-
minute]: Using some sample frequency data, cre-
ate high-regularity gadgets for winord.exe executes
notepad.exe.
How to: Run gadget-finder/gadget-finder.py
to generate gadgets and measure their regularity scores.
Observe that several usable (regularity > 0.003) gadgets
are created for this event.
Preparation: cd gadget-finder. Once you are in the
right working directory, no additional configuration be-
yond the Conda environment activation from A.3 is re-
quired.

Execution: Run the command:
python gadget-finder.py -i input.csv -p
FrequencyDB/SAMPLE_WINDOWS_FREQUENCY_DB.csv
-o output/gadgets.txt.
Results: Read the output/gadgets.txt file and see
that five usable (regularity > 0.003) gadgets are provided.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

The artifact contains an executable specification of MLS, and
proofs for its TreeSync sub-protocol. It also contains code to
run the official MLS test vectors.

A.2 Description & Requirements

Running this artifact requires a computer with either Nix or
Docker installed. With Nix, the computer architecture must
be x86_64.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

https://github.com/Inria-Prosecco/treesync/
tree/7ea27ead0abc4e6bf47033f35a7eada233ac244e

A.2.3 Hardware dependencies

A computer with 8GB of RAM is enough to build and run the
artifact.

A.2.4 Software dependencies

All the dependencies are managed by Nix or Docker, hence
Nix or Docker are the only dependencies required to build the
artifact.

A.2.5 Benchmarks

As mentioned in the paper (section 5, table 2), we do run some
benchmarks. The benchmarks requires no additional data, and
they are executed at the same time as the tests, when running
the make check command.

A.3 Set-up

A.3.1 Installation

With Nix:

# This command will compile Z3, F* and
# other dependencies to the correct
# version, and start a shell with the
# correct environment.
nix develop

With Docker:

# Build the docker image.
# This will compile Z3 and F* to the
# correct version.
docker build . -t treesync_artifact
# Start the image and start a shell with
# the correct environment.
docker run -it treesync_artifact

A.3.2 Basic Test

In a shell with the correct environment:

cd mls-star
# This command will verify MLS*
make
# This command will run tests of MLS*
make check

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): MLS* can be used as a reference implementation of
MLS. This is proven in the experiment (E1) that runs the
official test vectors.

(C2): The security of TreeSync is formally proved. This is
proven by experiment (E2) where we link theorem stated
in the paper, and formal theorems in F*.

(C3): Doing formal proofs for TreeSync allowed us to pro-
pose improvements to the standard. This is proven in the
experiment (E3) where we give links to pull-requests.
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A.4.2 Experiments

(E1): [15 human-minutes + 1 compute-hour + 4 GB disk]:
Run official MLS test vectors.
Preparation: Set up a correct environment, either with
Nix or Docker.
Execution: Go in the mls-star repository and launch
make check.
Results: The tests should succeed. For each test vector,
it should print something similar to:
Secret Tree: running tests for 2/7 ciphersuites...
Secret Tree: success!

(E2): [30 human-minutes + 1 compute-hour + 4 GB disk]:
Check that the formal theorems correspond to the prose.
Preparation: Set up a correct environment, either with
Nix or Docker.
Execution: Go in the mls-star repository and launch
make: this will verify with F* all of our theorems. Every
theorem mentioned in the paper is listed in the README
file, organized by section, with a link to the correspond-
ing source code. Check that they correspond to the prose.
Results: the theorems mentioned in the paper and the
formal theorems should correspond.

(E3): [30 human-minutes + 0 compute-minutes]: Look at our
MLS pull-requests.
Preparation: Start your favorite web-browser.
Execution: Compare section 6 of our paper, and the
following pull-requests:

• (disambiguate signatures) https://github.com/
mlswg/mls-protocol/pull/526

• (use tree-hash in parent-hash) https://github.
com/mlswg/mls-protocol/pull/527

• (strengthen the parent-hash link) https://github.
com/mlswg/mls-protocol/pull/713

Results: the pull-requests and our claims of standard
improvement should match.

A.5 Notes on Reusability
This artifact can be used for various purposes.

As a reference implementation, it can serve as a companion
to the standard to help understanding it, and understand the
security guarantees given by TreeSync.

As a proved specification, it can serve to test changes to
the protocol, by modifying the F* specification and update
the TreeSync Authentication Theorem (section 4.5).

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

This artifact includes formal models and proofs of the Sig-
nal protocol with an abstraction of its session-handling layer
Sesame and ratcheting mechanism of the Double Ratchet.
We prove that Signal with a session-handling layer does not
achieve the Post-Compromise Security (PCS) guarantee, i.e,
the conversation is secure after a healing phase following
the compromise, although it holds in a single-session Sig-
nal. Following this, we propose and model a mechanism on
how to restore PCS, and in a second step how to detect clone
attackers in the conversation.

We provide four models of Signal: a) single-session Signal
from the literature, where the PCS guarantee holds, b) Signal
with its session-handling layer Sesame, where an attacker
breaks PCS, c) Signal with our PCS-fix, with the restored PCS
guarantee, and d) Signal with a clone detection mechanism,
that soundly detects the clone’s activity, i.e, detection without
any false positives.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Our models and proofs are accessible for inspec-
tion and reproduction at https://github.com/
sesame-symbolic-model/sesame-model. To clone
the repository, the user should run:

$ git clone --branch "sesame-model-v1"
https://github.com/sesame-symbolic-model/
sesame-model.git

A.2.3 Hardware dependencies

We have run our experiments on a Intel(R) Xeon(R) CPU E5-
4650L 2.60GHz server with 756GB of RAM, and 4 threads
per Tamarin call. The time of the experiments’ execution
might vary depending on your machine’s CPU and RAM.

A.2.4 Software dependencies

To evaluate our models, you need the Tamarin prover1 tool
version v1.7.1. As shown in Appendix A.3.1, either you can
download a docker image with the preinstalled Tamarin prover
version, or compile it from scratch using the provided source
files of the used version.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

The following instructions have been tested on a Linux ma-
chine, and there may be slight variations on how to install and
start the docker client on other systems. There are two ways
to install the Tamarin prover and reproduce our results:

• Using Docker We provide via dockerhub an anonymous
docker with the required preinstalled version of Tamarin.

1. The user should install the Docker Engine on their
machine as instructed in https://docs.docker.
com/engine/install.

2. Fetch the provided Tamarin image via:

$ docker pull sesameproof/tamarin

3. From the cloned repository, or one that has the
Sesame folder inside of it, run:

$ docker run -it -v "$PWD:/opt/case-studies"
sesameproof/tamarin bash

1https://tamarin-prover.github.io
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This should give you a shell, where the commands
tamarin-prover of the experiments can be exe-
cuted.

• Compiling Tamarin from source We provide in
the repository the folder tamarin-prover.zip
containing the source files for the correct ver-
sion of Tamarin, with installation instructions at
https://tamarin-prover.github.io/manual/
book/002_installation.html.

A.3.2 Basic Test

To test that the Tamarin Prover is installed correctly, run:

$ tamarin-prover test

You should see the following message in the terminal:
*** TEST SUMMARY ***
All tests successful.
The tamarin -prover should work as intended.
:-) happy proving (-:

A.4 Evaluation workflow
A.4.1 Major Claims

In the following we list the main properties of our formal
analysis:
(PCS in single-session): Single-session Signal (Double

Ratchet model) achieves the PCS guarantee in a
conversation between two users, i.e., the conversation
is secure after the healing phase and the clone attacker
cannot inject or decrypt new messages. In this case,
session-based and conversation-based PCS collapse and
are both proven by experiment (E1) and described in
Section 5.3.

(PCS violation in Sesame): Signal with the session-
handling layer Sesame (Sesame model) does not
achieve conversation-based PCS. We show an attack
where a clone can impersonate the victim by using the
compromised session, even though the honest parties
heal after the compromise. The violation is shown in
experiment (E2) and described in Section 5.4.

(Restored PCS): Signal with session-handling and proposed
PCS-fix from Section 4.1 (Sesame with sequential ses-
sions model) restores conversation-based PCS and locks
the attacker out of the conversation. The property is
proven in experiment (E3) and described in Section 5.5.

(Sound Clone Detection): In Sesame with sequential ses-
sions and the proposed clone detection mechanism in
Section 4.1 (Sesame with sequential sessions + warn-
ing message model), the parties can soundly detect a
clone attacker that impersonates the victim by initiating
new sessions with the compromise key. The property is
shown in experiment (E4) and described in Section 5.5.

A summary of the results is reported in Table 2 of our
paper.

A.4.2 Experiments

We now show the experiment steps needed to reproduce our
results and prove the main claims we listed in the previous
section.

Preparation Before running our experiments, the user
should have followed one of the installation steps from
Appendix A.3.1. In case of using Docker, the user runs
the command from the second step to get a shell for the
execution of tamarin-prover commands. In the second
case of compiling from source, the user opens a terminal
inside the Sesame folder in the cloned repository.

(E1): [5 human-minutes + ∼1 compute-minute]
We prove the session-based and conversation-based PCS
on the Signal model with a single-session restriction.
Execution: In the shell from the preparation step, the
user executes:
$ tamarin-prover --prove Sesame/
DoubleRatchet.spthy

Results: The user should see as a result a list with all the
proven properties of the model printed on the terminal.
In particular, notice the PCS and PCS_conversation

lemmas, which correspond to session-based and
conversation-based PCS. In addition, the results include
all other helper lemmas and sanity checks on the model.
We present in the following a snippet of the expected
output, while we provide the full results at the beginning
of the DoubleRatchet.spthy file in the repository.
====================================================
summary of summaries:
analyzed: DoubleRatchet.spthy

...
PCS (all-traces): verified (9 steps)
StartChainPreceededByAssociate (all-traces):

verified (119 steps)
SameTidKey (all-traces): verified (597 steps)
PCS_Conversation (all-traces): verified (61 steps)
====================================================

(E2): [5 human-minutes + 2.4 compute-seconds]
We show the attack on conversation-based PCS. An at-
tacker can perform a step in the protocol using the com-
promised session state, even though the parties have
healed after the compromise. This is possible since the
healing happens in another session of the conversation.
Execution: In the shell, the user executes:
$ tamarin-prover Sesame/
Sesame_PCSAttack.spthy

Note, that the file ./Sesame_PCSAttack.spthy con-
tains a stored proof of the attack, therefore we verify
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the proof without the --prove flag.
[Optional] [5 human-minutes + ∼1 compute-minute]
Using docker: To use Tamarin in the interactive mode,
the user needs to run docker with an additional parameter
that allows access to the IP address outside of docker:
$ docker run -p 3001:3001 -it -v "$PWD:/opt/
case-studies" sesameproof/tamarin bash

Then, run Tamarin with an extra argument to make the
tool listen on any IP address:
$ tamarin-prover interactive
Sesame_PCSAttack.spthy -i=’*4’

Compiling Tamarin from source: The user needs to
run the tool in interactive mode within the directory with
the file as follows:
$ tamarin-prover interactive
Sesame_PCSAttack.spthy

In the end, in both cases the user opens the interface at
127.0.0.1:3001, loads the theory sesame with origin
source ./Sesame_PCSAttack.spthy and clicks on the
SOLVED green keyword of the attack trace.
Results: The user should see as a result a list with the
proven attack_pcs lemma printed on the terminal. The
expected output is the following:
====================================================
summary of summaries:
analyzed: Sesame_PCSAttack.spthy

...
attack_pcs (exists -trace): verified (80 steps)
====================================================

[Optional] In Figure 1, we show the attack trace on
conversation-based PCS.

(E3): [5 human-minutes + ∼2 compute-minutes]
We prove the session-based and conversation-based PCS
on the Signal with sequential sessions model.
Execution: In the shell from the preparation step, the
user executes:
$ tamarin-prover --prove Sesame/
Sesame_Solution_RestoredPCS.spthy

Results: The user should see as a result a list of all the
proven properties of the model printed on the terminal.
The proven properties include the session-based PCS and
PCS_conversation lemmas, as well as other helper and
sanity lemmas. We present in the following a snippet of
the expected output, while we provide the full results at
the beginning of the Sesame_Solution_RestoredPCS.
spthy file in the repository.

====================================================
summary of summaries:
analyzed: Sesame_Solution_RestoredPCS.spthy

...
PCS (all-traces): verified (9 steps)

SameRootKeyForTid (all-traces): verified (18 steps)
StartPrev (all-traces): verified (78 steps)
distinct_tid (all-traces): verified (53 steps)
SamePartner (all-traces): verified (44 steps)
PCS_Conversation (all-traces): verified (146 steps)
====================================================

(E4): [5 human-minutes + ∼1 compute-minute]
We prove the soundness of the clone-detection mecha-
nism on Sesame with sequential sessions and warning
message model. Informally, if an honest party detects a
clone, there indeed was an attacker that cloned the honest
device.
Execution: In the shell from the preparation step, the
user executes:
$ tamarin-prover --prove Sesame/
Sesame_CloneDetection.spthy

Results: The user should see as a result a list of all the
proven properties of the model printed on the terminal. In
particular, notice the verification of the main guarantee
cd_soundness. We present in the following a snippet of
the expected output, while we provide the full results at
the beginning of the Sesame_CloneDetection.spthy
file in the repository.
====================================================
summary of summaries:
analyzed: Sesame_CloneDetection.spthy

...
current_origin (all-traces): verified (429 steps)
CompromiseBeforeStart (all-traces): verified (14

steps)
cd_soundness (all-traces): verified (115 steps)
====================================================

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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Figure 1: Tamarin output graph of the attack on conversation-based PCS. The attacker can forward the state of a compromised
session after the parties have healed in another session.
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A Artifact Appendix

A.1 Abstract
As introduced in the paper, MorFuzz discovers several new
bugs across open-source RISC-V processors with different
microarchitectures and significantly improves the efficiency
and effectiveness of processor fuzzing. Our artifact provides
binaries and scripts to reproduce those results. This appendix
describes the steps to set up our prototype and run our evalua-
tion experiments.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The artifact is available at https://github.com/
sycuricon/MorFuzz/releases/tag/usenix23. Both
MorFuzz pre-built binaries and the inputs gener-
ated by DifuzzRTL that we replayed are available at
https://zenodo.org/record/8055696.

A.2.3 Hardware dependencies

MorFuzz uses commercial EDA software, so an x86 proces-
sor is required. We evaluate MorFuzz on a 48-core dual Intel
Xeon Silver 4214 server with 256GB RAM. In addition, at
least 280 GB of storage is required. Storing the input gener-
ated by DifuzzRTL requires 270 GB, and the evaluation also
consumes about 10 GB of storage.

A.2.4 Software dependencies

Our prototype contains three components: an instruction
generator, a co-simulation library, and a top-level fuzzing

framework. We release the instruction generator and the co-
simulation library of MorFuzz as pre-built binaries, they are
compiled with GCC 10.2.1 on CentOS 7.9.2009. In order to
run MorFuzz the same operating system and compiler are re-
quired. MorFuzz uses the Synopsys VCS, a commercial RTL
simulator, to simulate processor designs. You need to purchase
licenses from Synopsys to use VCS. In addition, in order to
cross-compile RISC-V programs, a RISC-V toolchain is also
required, which is available at the official riscv-gnu-toolchain
repository on the GitHub.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

First, MorFuzz requires the following dependencies, and in or-
der to run the experiment you also need to set up dependencies
from riscv-dv and riscv-torture:

sudo yum -y groupinstall "Development Tools"
sudo yum -y install redhat -lsb libXScrnSaver

centos -release -scl dtc
sudo yum -y install devtoolset -10

Second, clone the repository and execute the setup script.

git clone https://github.com/sycuricon/MorFuzz.git
cd MorFuzz
git checkout usenix23
git submodule update --init --recursive
export ARTIFACT_ROOT=$(pwd)
./scripts/setup.sh

Next, download the MorFuzz pre-built binaries
morfuzz_bin.zip from https://zenodo.org/record/
8055696 and unzip it. You also need to place the decom-
pressed morfuzz_bin directory under the root directory of
the MorFuzz repository.
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Finally, download the input sets difuzzrtl_[0-4].zip
generated by DifuzzRTL from https://zenodo.org/
record/8055696 and unzip them. You do not need to copy
them into the repository, making the DIFUZZRTL_INPUT en-
vironment variable point to one of the input sets is enough.

The final directory structure of the project is as follows:
MorFuzz

dep
morfuzz_bin

cj
razzle

patch
scripts
src

A.3.2 Basic Test

Before executing each experiment, you need to point the
ARTIFACT_ROOT environment variable to the directory where
the MorFuzz repository was cloned and execute the env.sh
script to set up the other environment variables.

export ARTIFACT_ROOT=#absolute path to MorFuzz#
cd $ARTIFACT_ROOT
source ./scripts/env.sh

After executing the script if there are no complaints about
missing dependencies, you can execute the basic test script.
The script invokes Rocket, BOOM, CVA6, and Spike in turn
to execute a normal test case, and if the test passes the "***
PASSED ***" message will appear on the terminal.

./scripts/basic.sh

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): MorFuzz is compatible with different microarchitec-
tures and identified new bugs. This claim is supported
by experiment (E1).

(C2): MorFuzz can efficiently achieve better coverage than
DifuzzRTL and other techniques. This claim is supported
by experiment (E2).

(C3): MorFuzz is capable of generating more diverse inputs
than DifuzzRTL, and is comparable to riscv-dv. This
claim is supported by experiment (E3).

(C4): Instruction morphing and state synchronization can
help MorFuzz achieve better coverage. This claim is
supported by experiment (E4).

A.4.2 Experiments

(E1): Executing test cases that trigger discovered bugs on
the corresponding processors to prove that MorFuzz can
be used on different microarchitectures, for details see
src/table2/README.md.

Estimated time: less than 5 human-minute, and less
than 5 compute-minute.
Preparation: Go to the MorFuzz repository root di-
rectory, set up ARTIFACT_ROOT variable and execute
scripts/env.sh.
Execution: Execute scripts/tab2.sh.
Results: Trigger bugs in Table 2. For a detailed analysis
of each result, please refer to src/table2/README.md.

(E2): Evaluating coverage to prove that MorFuzz
achieves better coverage, for details see src/figure8
/README.md.
Estimated time: less than 5 human-minute, and 24
compute-hour.
Preparation: Go to the MorFuzz repository root di-
rectory, set up ARTIFACT_ROOT and DIFUZZRTL_INPUT
variables and execute scripts/env.sh.
Execution: Execute scripts/fig8.sh.
Results: Reproduce Figure 8, you can find the figure at
scripts/output/fig8.pdf.

(E3): Evaluating instruction diversity to prove that MorFuzz
generates instructions with good diversity, for details see
src/figure9/README.md.
Estimated time: less than 5 human-minute, and 24
compute-hour.
Preparation: Go to the MorFuzz repository root di-
rectory, set up ARTIFACT_ROOT and DIFUZZRTL_INPUT
variables, and execute scripts/env.sh.
Execution: Execute scripts/fig9.sh.
Results: Reproduce Figure 9, you can find three
heatmaps named heatmap_<name>.pdf in the
scripts/output directory.

(E4): Evaluating coverage to prove that MorFuzz’s subcom-
ponents can help MorFuzz achieve better coverage, for
details see src/figure10/README.md.
Estimated time: less than 5 human-minute, and 24
compute-hour.
Preparation: Go to the MorFuzz repository root di-
rectory, set up ARTIFACT_ROOT variable and execute
scripts/env.sh.
Execution: Execute scripts/fig10.sh.
Results: Reproduce Figure 10, you can find the figure
at scripts/output/fig10.pdf.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix:
FISHFUZZ: Catch Deeper Bugs by Throwing Larger Nets

Han Zheng, Jiayuan Zhang, Yuhang Huang, Zezhong Ren, He Wang,
Chunjie Cao, Yuqing Zhang, Flavio Toffalini, Mathias Payer

A Artifact Appendix

A.1 Abstract

The artifact of FISHFUZZ contains the source code, supportive
materials along with the documents and scripts to reproduce
the results. We release the artifact to help user reproduce the
two-stage evaluation results in the paper without too much
manual effort.

A.2 Description & Requirements

The FISHFUZZ artifact consists of the following components:

Source Code FISHFUZZ is a novel input prioritization
strategy, to demonstrate the generality, we implement FISH-
FUZZ based on AFL and AFL++ respectively (FFAFL and
FFAFL++). In this artifact, we release both of them and pro-
vide a wrapper to automate the compilation.

Supportive Materials Due to page limitation, we didn’t
include all raw data in the paper. In this artifact, we attach the
(1) raw data for p-value calculation (2) evaluation results for
different hyperparameters (3) full list of new bugs FISHFUZZ
found.

Reproduction Scripts In this artifact we provide the scripts
and the dockerfile that help users automatically build the
benchmark, start evaluations and analysis the results. The
benchmark included in the artifact is the two-stage benchmark
in the paper.

A.2.1 How to access

• The artifact is available at https://github.com/
HexHive/FishFuzz.

• The version we used for artifact evaluation is
https://github.com/HexHive/FishFuzz/commit/
911637cdf7448b97eccf1c9664ef318aff884b63.

A.2.2 Hardware dependencies

In the evaluation, we use a server equipped with Xeon Gold
5218(22M Cache, 2.30 GHz), 64 GB memory and 1TB disk
space. To reproduce this evaluation, more than 50GB disk
space is required.

A.2.3 Software dependencies

We plug this evaluation into the docker environment, therefore
the user only need to have a Linux server with docker and git
installed.

A.2.4 Benchmarks

The benchmark included in the artifact is two-stage bench-
mark in the paper, which consists of 7 real-world programs
that have various types of input format. We provide a docker-
file that automated the build process.

A.3 Set-up

We provide a detailed README in the folder ‘paper/artifact‘.
By following the instructions listed, the evaluation results
could be easily reproduced.

Tips: we allocate one cpu core for each fuzzer-benchmark
pair, and by default the evaluation contains 4 fuzzers * 7
benchmarks, which requires 28 cores to run all campaigns
at the same time. Therefore the users could remove some
programs or fuzzers according to their hardware bandwidth.

1
2 # f o r two−s t a g e
3 export BENCHMARK_NAME=two-stage
4 export IMAGE_NAME=fishfuzz:ae-twostage
5
6 git clone git@github.com/Hexhive/FishFuzz && \
7 cd FishFuzz/paper/artifact/$BENCHMARK_NAME
8
9 # b u i l d base do c k e r images

10 docker build -t $IMAGE_NAME .
11
12 # c r e a t e s c r i p t s f o r f u z z e r s t o run
13 python3 scripts/generate_script.py \
14 -b "$PWD/ r u n t i m e / f u z z _ s c r i p t "

Listing 1: Build Evaluation Image
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To prepare the artifact evaluation, user should first down-
load the repo and build the docker image, as depicted in List-
ing 1. This step is expected to take about 1.5h. Afterward, run
the generate_script.py to generate the scripts for fuzzers to
run.

Afterward, we provide a script to generate the docker com-
mands, considering many servers didn’t have enough cores
(>= 28 cores), we only print the command and the user could
copy-paste to run. After 24h, the evaluations are done and
we should follow the given instructions for post-processing
(Listing 2)

1
2 # g e n e r a t e command & copy −p a s t e
3 python3 scripts/generate_runtime.py \
4 -b "$PWD/ r u n t i m e "
5
6 # w a i t 24h and s t o p a l l
7 docker rm -f $(docker ps -a -q
8 -f " a n c e s t o r =$IMAGE_NAME")
9

10 # g i v e w / r p e r m i s s i o n
11 sudo chown -R $(id -u):$(id -g) runtime/out
12
13 # copy e v a l u a t i o n r e s u l t s t o r e s u l t s f o l d e r
14 mkdir results/
15 python3 scripts/copy_results.py \
16 -s "$PWD/ r u n t i m e " \
17 -d "$PWD/ r e s u l t s / " -r 0
18
19
20 ...

Listing 2: Run the Evaluation

Finally, create a new container, copy the results dir into
root dir and run the analysis scripts as follow (Listing 3)

1
2 # c r e a t e c o n t a i n e r and mount r e s u l t s
3 cp -r scripts/ results/
4 docker run -it -v $PWD/results/:/results \
5 --name validate_twostage $IMAGE_NAME bash
6
7 # run a n a l y s i s
8 python3 scripts/analysis.py -b /results \
9 -c scripts/asan.queue.json -r 0 -d /results/log/0

10 python3 scripts/analysis.py -b /results \
11 -c scripts/asan.crash.json -r 0 -d /results/log/0
12
13 # p l o t t h e r e s u l t s ,
14 python3 scripts/print_result.py \
15 -b /results/log/ -r 0 -t all
16
17 ...

Listing 3: Evaluation Results Analysis

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): FFAFL and FFAFL++ should achieve better coverage
than their origin prototype AFL and AFL++. This is

proven by experiment and the original results can be
found in Table 5 in the paper.

(C2): FFAFL and FFAFL++ should find more bugs than the
direct competitors (AFL and AFL++). This is proven by
the experiment and the original results are available in
Table 7 and Figure 5-b.

A.4.2 Experiments

In the analysis step in subsection A.3, a coverage report along
with bug reports are generated and can clearly demonstrate
our claims C1 and C2.

In the paper we conduct 10 rounds of evaluation to reduce
the possible variance, however, due to the time limitation, we
suggest reducing the round to run, and 3 rounds might be
sufficient. In that case the artifact evaluation can be finished
in 3 days given a server equipped with 2 Xeon Gold 5218,
64GB memory and 1TB disk.

Besides, the bug report only consider the callstack and
ASan bug type, which might still have lots of duplications,
therefore in the paper we manually compare some stack traces
to get the actual number of UNIQUE bugs. But the report itself
is sufficient enough to support our claim C2.

A.5 Notes on Reusability
To make FISHFUZZ more usable, we develop an all-in-one
wrapper that automated all the compilation steps for both
FFAFL and FFAFL++. Users can refer to the manual in the
README.

Besides, we’re also working on the FISHFUZZ fuzzbench
integration for better evaluating the capability of FISHFUZZ.
Given that lots of fuzzbench targets didn’t support LTO mode,
we’re working on implementing a non-LTO mode FISHFUZZ
for the intergration and we’re keeping pushing it forward. An
experimental fuzzbench configuration file can be found in
paper/fuzzbench folder.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: PolyFuzz: Holistic Greybox Fuzzing of
Multi-Language Systems

Wen Li, Jinyang Ruan, Guangbei Yi, Long Cheng, Xiapu Luo, and Haipeng Cai

A Artifact Appendix

A.1 Abstract
This artifact contains a functional version of PolyFuzz and the
necessary dataset for the evaluation. To facilitate the usage
of this artifact, we have prepared a Docker image with the
necessary components to execute the artifact and visualize the
result. Artifact users can compare the results obtained from
executing this artifact with those presented in our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There are no security, privacy, or ethical concerns with using
this artifact.

A.2.2 How to access

We provided three ways to access our artifact package:

1. DOI is provided through FigShare
https://doi.org/10.6084/m9.figshare.20022893.v1

2. An evolving version is maintained on GitHub
The GitHub repository is:
https://github.com/Daybreak2019/PolyFuzz.git
A specific tag is provided:
https://github.com/Daybreak2019/PolyFuzz/releases/tag/v6.0

3. A docker image is provided with PolyFuzz installed
docker pull daybreak2019/polyfuzz:v1.1

A.2.3 Hardware dependencies

The host machine may need at least 16GB memory and
256GB hard disk space.

A.2.4 Software dependencies

PolyFuzz is mainly developed and tested on LLVM 11.0, Soot
4.3.0, Python 3.8/9 (and Python3-dev), and OpenJDK 8/11.
For ease of use of PolyFuzz, we have prepared a Docker image
with all compilation and run-time dependencies installed.

Moreover, real-world benchmarks have their own partic-
ular/additional dependencies. Hence, to fully reproduce the
results in the paper, users should install these dependencies
successfully, which have been provided via relevant scripts in
the PolyFuzz repository on GitHub.

More specifically, we note that the Docker image includes
all the libraries/frameworks underlying PolyFuzz; thus it can
be used for experimenting with other real-world subjects as
well (i.e., saving the time/trouble for installing ubuntu, llvm,
etc.) On the other hand, since our real-world subjects are
sizable, including the complete compilation and run-time en-
vironment (e.g., all the third-party library dependencies) for
all of them in the single Docker image would make it clumsy
to deploy conveniently. Using a traditional virtual machine
would aggregate this concern since they are even heavier. This
is why we chose to include in the Docker image only the setup
for the subjects in which any vulnerabilities were discovered
by PolyFuzz at the paper submission time. Users can still use
the scripts in the repository to set up the environments for
other benchmarks; we have tested the scripts on our servers.

A.2.5 Benchmarks

For demonstration purposes, we use 5 multi-language bench-
marks with vulnerabilities detected as concrete examples and
have installed all of their dependencies in the Docker image.
Specifically, the installed benchmarks include 4 Python-C
benchmarks (i.e., Pillow, Libsmbios, Ultrajson, Bottleneck)
and 1 Java-C benchmark (i.e., Jansi).

A.3 Set-up

A.3.1 Installation

• Step 1: Config AFL++

git clone https://github.com/Daybreak2019/PolyFuzz.git

sudo PolyFuzz/AFLplusplus/afl-system-config

• Step 2: Download the Docker image and run a Docker
container based on the image

docker pull daybreak2019/polyfuzz:v1.1

docker run -it daybreak2019/polyfuzz:v1.1
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• Step 3: Update PolyFuzz to the latest version and build
the project within the container

cd /root/PolyFuzz
git pull
. build.sh

A.3.2 Basic Test

To validate whether the environment is ready, a simple test
can be run as follows:

cd /root/PolyFuzz/langspec/python/tests/case4
./build.sh
./sasg_entry.sh

The results should be similar as shown in Figure 1. Then
"CTRL + C" can be used to quit the fuzzing.

Figure 1: A basic test for PolyFuzz

A.4 Evaluation workflow
We provided scripts for automating all the experiments during
the evaluation. Specifically in this artifact, we setup the envi-
ronment for the experiments on 5 multi-language benchmarks,
including 4 Python-C benchmarks (i.e., Pillow, Libsmbios,
Ultrajson, Bottleneck) and 1 Java-C benchmark (i.e., Jansi).
For each benchmark, the expected fuzzing time is 24 hours.

A.4.1 Major Claims

For the 5 multi-language benchmarks, PolyFuzz should be
able to reproduce the vulnerabilities reported in Table 10 of
the paper.

A.4.2 Experiments

(E1): [Experiment on Pillow] [30 human-minutes + 24
compute-hour + 128GB disk]: users should rebuild Pil-
low in the container, then start fuzzing for 24 hours.
How to: Rebuild Pillow and run PolyFuzz on it.
Preparation: None

Execution: Run commands as follows:
1. Build Pillow
cd /root/PolyFuzz/benchmarks/script/multi-
benches/Pillow
./build.sh

2. Run fuzzing on Pillow
cd drivers/fig_process
./sasg_entry.sh

Results: PolyFuzz should report crashes/hangs in the
end. The corresponding test cases would be gener-
ated under the directory fuzz/out/default/crashes and
fuzz/out/default/hangs. As an example, Figure 2 shows
the fuzzing results of Pillow, which is a snapshot of the
fuzzing at 1 hour 41 mins. To validate whether these
hangs are true positives, we can use the following com-
mands to run the tests one by one:

• 1. entry the fuzz directory
cd /root/PolyFuzz/benchmarks/script/multi-
benches/Pillow/drivers/fig_process/fuzz

• 2. list the tests of hangs (results as shown in Fig-
ure 3.)
ll out/default/hangs/

• 3. run a single test with the driver (results as shown
in Figure 4.)
python ../fig_process.py out/default/hangs/id:...

Figure 2: Example of fuzzing result on Pillow

Figure 3: Hang tests of fuzzing result on Pillow

(E2): [Experiment on Libsmbios] [30 human-minutes + 24
compute-hour + 128GB disk]: users should rebuild Lib-
smbios in the container, then start fuzzing for 24 hours.

How to: Rebuild Libsmbios and run PolyFuzz on it.
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Figure 4: A single test result of Pillow with driver
fig_process.py

Preparation: None
Execution: Run commands as follows:

• Build Libsmbios
cd /root/PolyFuzz/benchmarks/script/multi-
benches/libsmbios
./build.sh

• Run fuzzing on Libsmbios
cd drivers/op_mem
./sasg_entry.sh

Results: PolyFuzz should report crashes/hangs in the end.

(E3): [Experiment on Ultrajson] [30 human-minutes + 24
compute-hour + 128GB disk]: users should rebuild Ul-
trajson in the container, then start fuzzing for 24 hours.

How to: Rebuild Ultrajson and run PolyFuzz on it.
Preparation: None
Execution: Run commands as follows:

• Build Ultrajson
cd /root/PolyFuzz/benchmarks/script/multi-
benches/ultrajson
./build.sh

• Run fuzzing on Ultrajson
cd drivers/encode
./sasg_entry.sh

Results: PolyFuzz should report crashes/hangs in the end.

(E4): [Experiment on Bottleneck] [30 human-minutes + 24
compute-hour + 128GB disk]: users should rebuild Bot-
tleneck in the container, then start fuzzing for 24 hours.

How to: Rebuild Bottleneck and run PolyFuzz on it.
Preparation: None
Execution: Run commands as follows:

• Build Bottleneck
cd /root/PolyFuzz/benchmarks/script/multi-
benches/bottleneck
./build.sh

• Run fuzzing on Bottleneck
cd drivers/random_shape2
./sasg_entry.sh

Results: PolyFuzz should report crashes/hangs in the end.

(E5): [Experiment on Jansi] [30 human-minutes + 24
compute-hour + 128GB disk]: users should rebuild Jansi
in the container, then start fuzzing for 24 hours.

How to: Rebuild Jansi and run PolyFuzz on it.
Preparation: None
Execution: Run command as follows:

• Build Jansi
cd /root/PolyFuzz/benchmarks/script/multi-
benches/jansi
./build.sh

• Build fuzzing drivers of Jansi
cd drivers
./build.sh

• Run fuzzing on Jansi
cd OutStream
./sasg_entry.sh

Results: PolyFuzz should report crashes/hangs in the end.

A.5 Notes on Reusability
Considering the time cost of fuzzing experiments, in the arti-
fact package, we only demonstrated 5 of the multi-language
benchmarks used in our paper. However, for all of the bench-
marks, we have provided similar scripts (under directory Poly-
Fuzz/benchmarks/script) to the ones demonstrated in the ap-
pendix; users can follow the steps above to run PolyFuzz on
other benchmarks.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: Not All Data are Created Equal: Data and
Pointer Prioritization for Scalable Protection Against Data-Oriented

Attacks

Salman Ahmed, Hans Liljestrand, Hani Jamjoom, Matthew Hicks, N. Asokan, Danfeng (Daphne) Yao

A Artifact Appendix

A.1 Abstract
This artifact provides a comprehensive guide on installing
and utilizing our proposed Data and Pointer Prioritization
(DPP) framework. The DPP framework incorporates rule-
based heuristics to automatically identify and prioritize/rank
sensitive memory objects from an application. Within this arti-
fact, we outline the necessary prerequisites, requirements, and
software dependencies for DPP, along with detailed instruc-
tions on accessing, setting up, and installing the framework.
Additionally, we delve into the usage of the DPP framework,
specifically focusing on prioritizing sensitive data objects
through a straightforward program.

A.2 Description & Requirements
The source code of DPP consists of a set of LLVM analysis
passes and modifications to the AddressSanitizer’s (ASan)
instrumentation mechanism. To generate the data-flow graph,
DPP utilizes the SVF tool (available at https://github.c
om/SVF-tools/SVF). We have made changes to LLVM’s
build script (CMakeFiles.txt) to include SVF’s source as an in-
tree build (as a library) during the compilation of the LLVM
source code. For ease of use, we provide the build script
(build.sh). Additionally, we have also modified SVF’s build
script and included a customized version of SVF in our repos-
itory. It’s important to note that compiling and building the
LLVM source code requires CMake and the Ninja build sys-
tems as prerequisites.

Regarding the datasets, most of them, such as the Juliet
Test Suite and the Linux Flaw Project, are publicly available.
Additionally, the source codes of other applications used in
our evaluation can also be accessed publicly. However, to
simplify access and ensure convenience, we have included all
of these datasets in our repository.

A.2.1 Security, privacy, and ethical concerns

No destructive steps are taken or no security mechanism are
disabled during the build process of DPP. One just needs to
install a compatible version (>= 3.13.4) of CMake.

A.2.2 How to access

The source code of DPP is available publicly on GitHub
at https://github.com/salmanyam/DPP with commit
53cbccb. The full URL is https://github.com/salmany
am/DPP/tree/53cbccb6e6eaab6eaabbb06ea21fd31dd8
3e6eff.

A.2.3 Hardware dependencies

None

A.2.4 Software dependencies

To compile and build the LLVM source code containing
DPP’s passes, we use Ubuntu 18.04. You will need CMake
version 3.13.4 or higher to successfully compile and build the
LLVM source code. Additionally, we suggest using the Ninja
build system for this process. Ideally, on a system with all
the necessary prerequisites, including Ninja and a compatible
CMake version, the build process should proceed smoothly
without any complications. It’s worth noting that while the
scripts have been tested on Ubuntu 18.04, they should also be
compatible with the latest Ubuntu distributions.

A.2.5 Benchmarks

All the datasets and source codes that have been used in our
evaluation are publicly available. However, we have provided
the datasets and source code in our repository.

• Juliet Test Suite: https://github.com/salmanyam/d
pp-data/tree/main/juliet-test-suite

• Linux Flaw Project: https://github.com/salmany
am/dpp-data/tree/main/linux_flaw_project

• Other applications’ source code: https://github.com
/salmanyam/dpp-data/tree/main/src

• Besides, we provide the LLVM IR files in https://gi
thub.com/salmanyam/dpp-data/tree/main/IRx86
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A.3 Set-up
To replicate the evaluation environment for DPP, we recom-
mend setting up an Ubuntu 18.04 distribution. To ensure a
compatible CMake version is installed, we provide a con-
venient script called install_cmake.sh. After running this
script, it is necessary to exit and restart the terminal to ap-
ply the installation changes effectively. Additionally, we offer
another script, prerequisites.sh, which installs all the nec-
essary prerequisites. If you have a fresh installation of the
Ubuntu 18.04 distribution, please follow these steps from the
root directory of our repository:

$ ./prerequisites.sh
$ ./install_cmake.sh

By following these steps, you can quickly set up the re-
quired environment for DPP and ensure all dependencies are
properly installed.

A.3.1 Installation

To compile and build DPP along with the LLVM source, one
needs to issue the build script (build.sh) provided in our
repository. This script will do an in-source compilation of
SVF and build LLVM binaries (clang, opt, llvm-ar, lld,
etc) under dpp-llvm/build/bin.

A.3.2 Basic Test

To show simple prioritization results, we provide a simple
program (dpp-data/example/example.c) and its LLVM
IR (dpp-data/example/example.opt). The following com-
mands give simple prioritization results.

$ LLVM_DIR=${PWD}/dpp-llvm/build/bin
$ ${LLVM_DIR}/opt -S -passes="print-dpp-global"

--dpp-rule="all" -disable-output < ${PWD}/
dpp-data/example/example.opt

The commands run all rules and prioritize/ranks the data
objects in the simple program. The output of the command is
the following:

######## SUMMARY: 4 data objects #############
AddrVFGNode ID: 17 AddrPE: [34<--35]

%9 = call noalias i8* @malloc(i64 %8) #6, !
dbg !25 { ln: 8 cl: 25 fl: example.c } 4
10

----------------------------------------------
AddrVFGNode ID: 15 AddrPE: [22<--23]

%4 = alloca i8*, align 8 { ln: 8 fl: example.
c } 2 10

----------------------------------------------
AddrVFGNode ID: 11 AddrPE: [6<--7]
@stdin = external dso_local global %struct.

_IO_FILE*, align 8 { Glob } 1 1

----------------------------------------------
AddrVFGNode ID: 14 AddrPE: [20<--21]

%3 = alloca [10 x i8], align 1 { ln: 6 fl:
example.c } 1 0

----------------------------------------------

As can be seen from the output, there are four data objects
prioritized by DPP for the simple program. Since the simple
program is small and most data objects are input-dependent,
almost all the data objects have been prioritized.

The following command is used to run the prioritization
using a single rule:

$ LLVM_DIR=${PWD}/dpp-llvm/build/bin
$ ${LLVM_DIR}/opt -S -passes="print-dpp-global"

--dpp-rule="rule9" -disable-output < ${PWD
}/dpp-data/example/example.opt

The output of the above command is as follows:

AddrVFGNode ID: 17 AddrPE: [34<--35]
%9 = call noalias i8* @malloc(i64 %8) #6, !

dbg !25 { ln: 8 cl: 25 fl: example.c }
----------------------------------------------

In addition to this simple program, we have provided
many LLVM IR files for real-world applications in https:
//github.com/salmanyam/dpp-data/tree/main/IRx86.
We can use the abovementioned command to obtain the prior-
itized data objects by changing the input to those commands.
For example, the following command takes the IR file of
wuftpd and runs the prioritization using all rules.

$ LLVM_DIR=${PWD}/dpp-llvm/build/bin
$ ${LLVM_DIR}/opt -S -passes="print-dpp-global"

--dpp-rule="all" -disable-output < ${PWD}/
dpp-data/IRx86/wuftpd-2.6.0.bc
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SAFER: Efficient and Error-Tolerant Binary Instrumentation

Soumyakant Priyadarshan, Huan Nguyen, Rohit Chouhan, and R. Sekar
Stony Brook University, NY, USA.
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A Artifact Appendix

A.1 Abstract

The artifact submission is for the paper titled "SAFER: Effi-
cient and Error-Tolerant Binary Instrumentation". Our tool
SAFER is an efficient and safe binary-instrumentation suite
that is capable of instrumenting complex programs. The tool
is compatible with both position independent (PIE) and po-
sition dependent (Non-PIE) executables and has a modest
overhead of ≈2%.

The artifact consists of software and will be submitted in
the form of a VM containing a pre-installed version of the
software and scripts needed to run the software. It will also
contain all the instrumented programs used during evaluation.
SAFER was used to instrument 15 real world programs along
with their shared libraries, customized coreutils binaries with
data embedded in code and SPEC 2006 and 2017 binaries.
The total size of all programs was about 1.1GB.

A.2 Description & Requirements

SAFER’s current prototype requires Ubuntu 20.04 operating
system. It further requires additional packages (Capstone and
Ocaml) for disassembly and static analysis. We are submitting
our artifact as an Oracle VirtualBox VM. SAFER is already
installed in the VM along with all the prerequisite packages.
The VM also contains SAFER’s source code.

Requirements to run artifact: A x86-64 system with Or-
acle VirtualBox is required to use our artifact. Importing the
virtual box image through Oracle Virtualbox running on a
x86-64 system will recreate the testing environment. The
virtual machine image is configured with 8GB of RAM and
100GB of secondary storage. So we recommend to run it on a
system with at least 16GB of memory and 256GB of storage
space.

Benchmarks like SPEC CPU 2006 and 2017 are already
installed and set up with instrumented binaries. Other datasets
like instrumented real-world applications and data-in-code
coreutils are also present in the virtual machine.

A.2.1 Security, privacy, and ethical concerns

Since we are providing our system in a virtual machine, there
is no risk for the host machine of the evaluator.

A.2.2 How to access

SAFER’s artifact http://seclab.cs.sunysb.edu/seclab/safer

A.2.3 Hardware dependencies

An x86-64 machine preferably with 16GB of RAM and
256GB of storage space.

A.2.4 Software dependencies

Oracle VirtualBox 6 is required to run the virtual machine.
The system setup in the virtual machine is complete and
requires no additional software installation.

A.2.5 Benchmarks

For testing the performance overhead we use SPEC CPU
2006 and SPEC CPU 2017 benchmark suites. For function-
ality evaluation we use 15 pre-built real-world programs and
custom-compiled coreutils with data-in-code.

A.3 Set-up
A.3.1 Installation

1. Download the virtual machine image file.
2. Install and open VirtualBox.
3. Select File, Import Appliance.
4. Select the virtual machine image.
5. Click import.

A.3.2 Basic Test

Instrumenting a program ls with its shared libraries.

1. Start the virtual machine.
2. Login with the password ‘safer’.
3. Copy the original ls binary to the test folder.
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> cp /usr/bin/ls ~/SBI/test

4. Find the dependencies of ls.

> cd ~/SBI/testsuite
> ./find_libs.sh /home/safer/SBI/test/ls
> truncate -s 0 randomized.dat

5. Run instrimentation on ls.

> cd ${HOME}
> ./instrument_prog.sh ls

6. Wait for the instrumentation to finish. Printed date means
the process is completed.

7. Go to the output directory.

> cd ${HOME}/instrumented_libs/

8. Run the instrumented ls. Contents of the directory should
be printed.

> ./ls

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): SAFER can handle disassembly errors in the presence
of complexities such as data embedded in code.

(C2): SAFER’s pointer encoding scheme can detect instru-
mentation errors at runtime and deterministically abort
(FAIL-CRASH).

(C3): SAFERis able to instrument position dependent (Non-
PIE) code.

(C4): SAFER’s pointer encoding and safe jump table trans-
formation helps in achieving safe instrumentation with a
fail-crash while having a modest overhead of ≈2%.

(C5): SAFERis able to instrument a wide variety of real world
programs.

A.4.2 Experiments

(E1): [Data-in-code test]: We use coreutils and its built-in
tests to ensure that SAFER is successfully able to instru-
ment binaries where data is present in the code section.
Generating the dataset: We make use of a linker-
script to compile a version of coreutils where
read-only data is embedded in the code. The
binaries and pre-built and available in the VM:
/home/safer/coreutils/coreutils-data/bin.
Test preparation: Pre-instrumented binaries with
SAFER’s different modes (Table 3 in the paper) are avail-
able in /home/safer/coreutils/coreutils-data
directory as below:

• bin_FN_PRLG: Function prologue based pointer
classification.

• bin_FULL_AT: run time address translation.
• bin_valid_ins: valid instruction boundary based

pointer classification.
• bin_ABI: ABI specification based pointer classifica-

tion.
To reuse the above pre-instrumented binaries, copy all
the binaries from one of the above mention directories
to /home/safer/coreutils/coreutils-8.30/src/.
Alternatively, binaries can be re-instrumented as follows:

> cd /home/safer
> ./instrument-coreutils.sh \

config=<FULL_AT/FN_PRLG/valid_ins/ABI>

Testing: Coreutils in-built testsuite is used to test cor-
rectness of instrumented binaries:

> cd /home/safer/coreutils/coreutils-8.30
> make check

Results: FN_PRLG and FULL_AT configurations re-
sult in 100% correct instrumented binaries. There
is 1 failure due to one of the test making use of
LD_PRELOAD to load a dynamically built library. The
library is built by the test case at the runtime and used.
SAFER requires all program modules to be instrumented
for correct execution. Since, this particular library is not
available to us during instrumentation time, it is left un-
changed and resulted in a crash.
Other approaches (valid_ins and ABI) specifications
result in failures that are detected by SAFER’s
fail-crash design. The test will not proceed un-
less the faulty binaries are replaced. The list of
failed binaries is in coreutils-data/ABI_fail.sh
and coreutils-data/valid_ins_fail.sh. Running
these scripts will replace the faulty binaries with cor-
rectly instrumented (with FULL_AT) ones and the test
can progress.

(E2): [Non-PIE binaries]: SPEC 2006 binaries are com-
piled as non-PIE and then instrumented. Successful
completion of SPEC tests ensure correct transformation.
Other non-PIE programs such as gcc and Python have
also been tested.
How to: We are providing the instrumented non-PIE
SPEC binaries to reduce the testing time. However, if
you want to instrument then again follow the steps in
the preparation section otherwise skip to the execution
section.
Preparation: Clean up and start the instrumentation.

> ./instrument-suite.sh \
/home/safer/spec-06/nopie
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Execution: • Change the directory to the spec-06
and run the command.
> cd /home/safer/spec-06/
> source shrc
> runspec --config=nopie.inst.cfg \

--noreportable \
--iterations=1 all

Wait for the SPEC run to complete. This may take
several hours to complete (≈ 4 hours).

• For real world programs (gcc and python), the test-
ing process is described in the subsequent section.

Results: After the SPEC run is completed check the
log file mentioned. There should be results for all the
binaries except wrf and gamess whose uninstrumented
versions fail on our setup.

(E3): [Runtime overhead with SPEC 2006]
How to: SPEC 2006 CPU benchmark suite is used to
test the runtime overhead caused by SAFER’s instrumen-
tation. Note that the below steps are time consuming.
Hence, they should be run in background (e.g., using
nohup). Furthermore, we are providing pre-instrumented
binaries. Hence, the preparation step can be skipped.
Preparation: Instrument the SPEC binaries.

> truncate -s 0
/home/safer/SBI/testsuite/randomized.dat
> cd /home/safer/
> ./instrument-suite.sh \

/home/safer/spec-06/pie/

Wait for the instrumentation to complete.
Execution: Run the testsuite with uninstrumented bina-
ries (base result).

> cd /home/safer/spec-06/
> source .shrc
> runspec --config=default.cfg \

--noreportable all

Wait till completion and save the result directory as base.
Then, run the instrumented binaries:

> cd /home/safer/spec-06
> runspec --config=inst.cfg \

--noreportable all

Save the instrumented version results.
Results: We computed the overhead by importing the
corresponding csv files onto a spreadsheet and compar-
ing the timings of instrumented run over base run.
We are also providing the results of our exper-
iments that have been published in the paper
( /spec-06/our_results).

(E4): [Performance vs optimization levels] We compiled
SPEC CPU 2017 benchmarks at 6 optimization levels
(O0, O1, O2, O3, Ofast, and Os) and measured the rum-
time overhead for each of them.
Preparation: Running the uninstrumented binaries:

> cd /home/safer/spec-17/
> source shrc
> runcpu --config=defaultO0.cfg \

--noreportable intspeed
> runcpu --config=defaultO0.cfg \

--noreportable fpspeed

Execution: Running the instrumented binaries:

> cd /home/safer/spec-17
> runcpu --config=default.inst.O0.cfg \

--noreportable intspeed
> runcpu --config=default.inst.O0.cfg \

--noreportable fpspeed

Results: Other optimizations could be tested by repeat-
ing the steps above with O0 replace by either O1, O2,
O3, Ofast, or Os. The results can be obtained in the same
manner as SPEC 2006.

(E5): [Safe jump table transformation]: SAFER’s safe
jump table analysis (Section 5 in paper), helps in im-
proving performance while maintaining correctness of
instrumentation by avoiding instrumentation of indirect
jumps related to jump tables.
Preparation: Safe jump table analysis code is present
in /home/safer/SBI/safe_jtable. Steps to build this
code are present in a README file in the same directory.
Execution: Safe jump table results (Figure 5 in paper)
were produced on SPEC 2006 binaries. Please follow
the steps in README to reproduce the results.
Results: In default mode (enable_ftype=0), no function
signature matching is done and it marks 55%jump ta-
bles as safe. Enabling the function signature matching
(enable_ftype=1) results in 85% safe jump tables.

(E6): [Real-world programs]: We used 15 real-world pro-
grams (/home/safer/real-world-instrumented) to
test SAFER’s applicability on real-world programs.
Preparation: Programs can be instrumented as men-
tioned in Section A.3.2. There is no need to generate
dependency list again (step 4). Some of the programs are
fairly large and cannot be instrumented with the limited
amount of RAM that the virtual machine is configured
to run with. Hence, we are providing instrumented pro-
grams to skip the preparation step.
Execution: Steps to execute test cases are present in
/home/safer/real-world-instrumented/README.
Results: The instrumented program produces desired
output. (e.g., gedit is able to open and edit files).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

REASSESSOR is a tool for finding errors in the implemen-
tations of existing reassemblers. This artifact includes the
source code of REASSESSOR, the dataset used in our paper,
and several scripts for reproducing the results in the paper.
As a preprocessing step, one needs to run three existing re-
assemblers on our dataset, including Ramblr, RetroWrite, and
Ddisasm. We provide a dockerized environment to run them.
The preprocessing step produces a re-assemblable assembly
file for each binary, and REASSESSOR uses those files to find
reassembly errors. The next section details each step to repro-
duce the results in our paper.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Not applicable.

A.2.2 How to access

The source code of REASSESSOR is accessible through
GitHub at https://github.com/SoftSec-KAIST/
Reassessor/tree/v1.0.0. We also provide our dataset at
https://doi.org/10.5281/zenodo.7178116.

A.2.3 Hardware dependencies

To reproduce the whole results, it requires at least 2.5TB of
disk space. In our experiments, we used a machine equipped
with 8 cores of CPUs and 128GB of RAM.

A.2.4 Software dependencies

REASSESSOR is designed to run on a Linux machine, and
we tested it on Ubuntu 18.04 and Ubuntu 20.04. Also, RE-
ASSESSOR is written in Python 3 (3.6), and it depends on
pyelftools (>= 0.29) and capstone (>= 4.0.2). Besides,

Docker needs to be installed on the same machine to run re-
assemblers within a Docker container. Our scripts assume that
you can run Docker commands as a regular (unprivileged)
user; thus, no need to run them with sudo.

A.2.5 Benchmarks

Our benchmark is accessible through Zenodo: https://doi.
org/10.5281/zenodo.7178116. We created our benchmark
with various combinations of compilers, linkers, target ISAs,
and compiler options.

• ISA: x86 and x86-64 (= 2)
• Compilers: GCC v7.5.0 and Clang v12.0 (= 2)
• PIE/non-PIE: produce a PIE or a non-PIE (= 2)
• Optimization: O0, O1, O2, O3, Os, and Ofast (= 6)
• Linkers: GNU ld v2.30 and GNU gold v1.15 (= 2)

Also, our benchmark was created by compiling two source
packages totaling 122 executable programs as follows.1

• GNU coreutils (v8.30): 107 executable programs.
• GNU binutils (v2.31.1): 15 executable programs.

A.3 Set-up
A.3.1 Installation

Once you download our source code from the GitHub reposi-
tory, you can install it using the following command:

$ pip3 install -r requirements.txt

$ python3 setup.py install -user

A.3.2 Basic Test

You can run REASSESSOR with a sample program as follows:
(Step 1): Build a sample program:

$ cd ./example

$ ./make

$ cd ..

1We exclude 31 programs in SPEC CPU 2006 from the dataset because
of a licensing issue. Instead, we provide SSH server to grant access to all
datasets we made.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium    77

https://github.com/SoftSec-KAIST/Reassessor/tree/v1.0.0
https://github.com/SoftSec-KAIST/Reassessor/tree/v1.0.0
https://doi.org/10.5281/zenodo.7178116
https://doi.org/10.5281/zenodo.7178116
https://doi.org/10.5281/zenodo.7178116


(Step 2): Run preprocessing.py to reassemble it:
$ mkdir -p output

$ python3 -m reassessor.preprocessing \

./example/bin/hello ./output

$ ls output/reassem/

ddisasm.s retrowrite.s

(Step 3): Run REASSESSOR to find reassembly errors
$ python3 -m reassessor.reassessor \

example/bin/hello example/asm/ output/ \

--retrowrite ./output/reassem/retrowrite.s

$ ls output/errors/retrowrite/

disasm_diff.txt sym_diff.txt sym_errors.dat

sym_errors.json

REASSESSOR produces the following files as out-
put: ddisasm_diff.txt, sym_errors.dat, sym_diff.txt,
sym_errors.json. Firstly, disasm_diff.txt contains a
list of disassembly errors (one per line); each line contains the
relevant address, reassembler-generated assembly line, and
compiler-generated assembly line. sym_errors.dat is a raw
output file containing a list of symbolization errors. This file
is used to generate other two files: sym_errors.json and
sym_diff.txt. sym_diff.txt is a human-readable repre-
sentation of sym_errors.dat. Each line of the file contains
address, error type, reassembler-generated assembly code,
and compiler-generated code, for each error found. Finally,
sym_errors.json contains detailed information about each
symbolization error found, including the relevant assembly
file, line number, relocatable expression type, normalized
code, repairability, and so on. The file is written in the JSON
format.

A.4 Evaluation workflow
A.4.1 Preprocessing step for experiments

[10 human minutes + 5,000 CPU hours + 60 GB disk]

REASSESSOR finds reassembly errors by diffing compiler-
generated assembly code and reassembler-generated assembly
code. Thus, we need to reassemble benchmark binaries as
follows:
(Step 1): Download the dataset:

$ cd artifact

$ tar -xzf /path/to/dataset/benchmark.tar.gz .

$ ls dataset/

binutils-2.31.1 coreutils-8.30

(Step 2): Run run_preproc.py to obtain reassembler-
generated assembly code from each reassembler:
$ python3 run_preproc.py

run_preproc.py will then generate assembly files
under the ./output directory:
$ ls ./output

binutils-2.31.1 coreutils-8.30

$ cd \

output/binutils-2.31.1/x64/clang/nopie/o0-bfd/addr2line/

$ ls reassem

ddisasm.s ramblr.s

A.4.2 Major Claims

(C1): REASSESSOR is able to find diverse reassembly er-
rors. This is proven by the experiment (E1) described in
Section 5.3 as well as Table 4.

(C2): Composite relocation expressions are prevalent in real-
world binaries, and precise CFG recovery is a necessary
condition for sound reassembly of x86-64 PIEs. This
is proven by the experiment (E2) described in Section
5.2.2.

(C3): There are previously unknown FN/FP patterns. This is
proven by the experiment (E3) described in Section 5.4.1
and 5.4.2.

(C4): Preventing data instrumentation can mitigate the sym-
bolization challenge. This is proven by the experiment
(E4) described in Section 5.5.2

A.4.3 Experiments

(E1): [10 human minutes + 140 CPU hours + 330GB disk]
The experiment will search for reassembly errors by
running REASSESSOR.
How to: First, run run_reassessor.py to find re-
assembly errors. Second, run classify_errors.py to
collect the errors. Third, run get_summary.py to get the
summarized result.
Preparation: The preprocessing step in §A.4.1 is re-
quired to have reassemablable assembly files.
Execution: Run run_reassessor.py
$ python3 run_reassessor.py --core 6

Results: First, check the report files described in
§A.3.2:
$ cd output/binutils-2.31.1/x64/clang/nopie/o0-bfd/

$ cd addr2line/

$ ls errors

ddisasm ramblr

$ ls errors/ddisasm/

disasm_diff.txt sym_diff.txt sym_errors.dat

sym_errors.json

Second, run classify_errors.py to collect and
classify symbolization errors from sym_diff.txt files:
$ python3 classify_errors.py --core 8

Check the results under the triage folder:
$ ls triage

ddisasm ramblr retrowrite

$ ls triage/ddisasm/x64/nopie/

E1FN.txt E1FP.txt E2FN.txt E2FP.txt E3FN.txt

E3FP.txt ...
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Each file has a different set of errors, and each line
of the files contains a relevant file name, error type,
reassembler-generated assembly line, and compiler-
generated assembly line.

Third, run get_summary.py to get a summarized result
presented in Table 4:
$ python3 get_summary.py --core 8

(E2): [10 human minutes + 2.5 CPU hours + 100MB disk]
This experiment examines all relocatable expressions
in our benchmark and reports the distributions of relo-
catable expressions for a different set of assembly files.
Also, the experiment will show that the proportion of
label-relative (Type VII) relocatable expressions in x86-
64 PIE binaries is not negligible.
How to: First, run get_asm_statistics.py to exam-
ine compiler-generated assembly files. Second, run
get_e7_errors.sh to find E7 errors for x86-64 PIE
binaries.
Preparation: (E1) experiment needs to be
run first since get_asm_statistics.py and
get_e7_errors.sh refer to data files (gt.dat
and sym_diff.txt) that REASSESSOR made.
Execution: Run get_asm_statistics.py and
get_e7_errors.sh:
$ python3 get_asm_statistics.py -core 8

$ /bin/bash get_e7_errors.sh

Result: First, get_asm_statistics.py shows the dis-
tribution of relocatable expressions, and the proportion
of composite relocatable expressions. Also, it reports
how many binaries have abnormal cases including
composite relocatable expressions pointing to outside
of valid memory ranges and code pointers referring
to non-function entries. Second, get_e7_errors.sh
reports how many x86-64 binaries suffer from E7 errors.

(E3): [10 human minutes + 1 CPU minute + 2.2GB disk]
This experiment will find previously unseen symboliza-
tion errors.
How to: Run dissect_errors.sh to find previously
unseen symbolization errors.
Preparation: (E1) experiment is required since
dissect_errors.sh examines symbolization errors
from sym_diff.txt files.
Execution: Run dissect_errors.sh:
$ /bin/bash dissect_errors.sh

Results: dissect_errors.sh reports how many
reassembler-generated files have previously unseen
errors. Also, dissect_errors.sh generates the report
files: atomic_fn_cases.txt, atomic_fp_cases.txt,
and label_err_fp_cases.txt. Each line of the files
contains a relevant file name, error type, reassembler-
generated assembly line, and compiler-generated assem-

bly line. atomic_fn_cases.txt contains false negative
cases where reassemblers misidentify atomic relocat-
able expressions as literals. atomic_fp_cases.txt
contains false positive cases where reassemblers falsely
symbolize atomic relocatable expressions as composite
forms. Lastly, label_err_fp_cases.txt contains
cases where symbolized labels have the same form
as in the original one, while only the label values are
misidentified.

(E4): [10 human minutes + 1 CPU minute + 6GB disk]
This experiment measures an empirical lower bound
of the number of reparable symbolization errors when
preventing data instrumentation. Specifically, this exper-
iment will count symbolization errors that satisfy the
criteria we suggested in Section 5.5.2.
How to: Run check_reparable_errors.sh to find
symbolization errors that are reparable.
Preparation: (E1) experiment is required since
check_reparable_errors.sh examines the error list
files that classify_errors.sh generates.
Execution: Run check_reparable_errors.sh:
$ /bin/bash check_reparable_errors.sh

Results: check_reparable_errors.sh reports how
many symbolization errors satisfy the reparable
conditions we introduced in Section 5.5.2. Also,
reparable_errors.txt contains the list of reparable
symbolization errors; each line of the file has a relevant
file name, error type, reassembler-generated assembly
line, and compiler-generated assembly line.

A.5 Notes on Reusability
A.5.1 How to make a new dataset

If you want to use a new dataset, build binaries with ‘-g’
option and ‘--save-temps=obj’ option. Also, if you want
to make non-pie binaries, add ‘-Wl,--emit-relocs’ linker
option to preserve relocation information.

A.5.2 How to test different versions of reassemblers

If you wish to run REASSESSOR with newer versions
of reassemblers, update the execution commands in the
reassemble() method in preprocessing.py.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: Are Consumers Willing to Pay for
Security and Privacy of IoT Devices?

Pardis Emami-Naeini∗, Janarth Dheenadhayalan†, Yuvraj Agarwal†, Lorrie Faith Cranor†

∗Duke University †Carnegie Mellon University

A Artifact Appendix
A.1 Abstract

By conducting a two-phase online study on Prolific, we
quantified the impact of various security and privacy improve-
ments on Internet of Things (IoT) consumers’ purchase behav-
ior. Through designing an incentive-compatible experiment
using the multiple price list (MPL) methodology, we captured
participants’ willingness to pay for transparency over security
and privacy enhancements of smart devices. We constructed
three regression models for each phase of our online study
to quantify and explain participants’ risk perception, willing-
ness to purchase, and willingness to pay. In this artifact, we
provide participants’ de-identified survey data that we used
to construct these models, the analysis code in R and STATA
that we used to build the regression models, and the output
files.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Conducting the statistical models for this paper does not
introduce any risks. In addition, we de-identified the raw
survey data to preserve participants’ data privacy.

A.2.2 How to Access
The artifact, including the raw, de-identified survey

data, analysis files, model output files, and the README
file, is hosted on GitHub and could be accessed via
the following stable URL: https://github.com/
pemamina/USENIX23_MonteryValueSP_Artifact/tree/
e88e7eb5630996756f14335bf32abc4e9298e97a.

A.2.3 Hardware Dependencies
None.

A.2.4 Software Dependencies
We used an open source tool, RStudio, to run two of the

regression models (risk_clmm and purchase_clmm). Since R
currently does not allow constructing mixed effects interval
regressions, we used STATA to build the model to explain
participants’ willingness to pay. We downloaded RStudio via

the following link: https://www.RStudio.com/products/
RStudio/download/. We downloaded R using the following
link: https://cran.RStudio.com/. We obtained STATA
by using the following link: https://www.STATA.com/.

A.2.5 Benchmarks
None.

A.3 Set-Up
A.3.1 Installation

After installing RStudio and R, we need to in-
stall (install.packages(“ordinal”)) and load
(library(ordinal)) the ordinal library required to con-
struct CLMM models. This process is shown in lines 2 and
3 of phase_one_analysis.R, phase_two_analysis.R.
No package needs to be installed in STATA to conduct
mixed-effects interval regression.

A.3.2 Basic Test
Here we use dataset ologit.csv from the OARC website

(https://stats.oarc.ucla.edu/). This dataset includes
four variables: 1) apply: nominal categorical variable with
three levels (0, 1, 2) showing how likely it is that the stu-
dent will apply for grad school, 2) pared: categorical binary
variable, showing whether parents have attended college (1)
or not (0), 3) public: categorical binary variable, showing
whether the school the student has attended is public (1) or
not (0), and 4) gpa: continuous numeric variable, showing the
student’s GPA score.

Analysis goal. We would like to understand the impact of
parents’ college education (pared) on students’ likelihood of
applying to college (apply). Similar to our risk perception
model and the willingness to purchase model, the dependent
variable in this test (apply) is ordinal categorical. Therefore,
we will construct a cumulative link model (CLM) to explain
the impact of pared on apply.

## Loading the required library for ordinal
regression.↪→

library(ordinal)

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium    81

https://github.com/pemamina/USENIX23_MonteryValueSP_Artifact/tree/e88e7eb5630996756f14335bf32abc4e9298e97a
https://github.com/pemamina/USENIX23_MonteryValueSP_Artifact/tree/e88e7eb5630996756f14335bf32abc4e9298e97a
https://github.com/pemamina/USENIX23_MonteryValueSP_Artifact/tree/e88e7eb5630996756f14335bf32abc4e9298e97a
https://www.RStudio.com/products/RStudio/download/
https://www.RStudio.com/products/RStudio/download/
https://cran.RStudio.com/
https://www.STATA.com/
https://stats.oarc.ucla.edu/


## Loading the dataset ``ologit.csv''
dataset <-

read.csv("https://stats.idre.ucla.edu/stat/data/ologit.csv")↪→

## Changing the type of dependant variable
\texttt{apply} from numerical (levels = 0, 1,
2) to ordinal categorical (levels = "unlikely",
"somewhat likely", "very likely")

↪→

↪→

↪→

dataset$apply <- factor(dataset$apply, labels =
c("unlikely", "somewhat likely", "very likely"),
ordered = TRUE)

↪→

↪→

## Changing the type of independent variable
\texttt{pared} from numerical (levels = 0, 1)
to nominal categorical (levels = "not attend",
"attend")

↪→

↪→

↪→

dataset$pared <- factor(dataset$pared, labels = c("not
attend", "attend"))↪→

## Construction the CLM to explain the impact of
\texttt{pared} on \texttt{apply}.↪→

apply.clm <- clm(apply ~ pared, data = dataset)

# Showing the results
summary(apply.clm)

The output should look like:
formula: apply ~ pared
data: dataset

link threshold nobs logLik AIC niter max.grad cond.H
logit flexible 400 -361.40 728.79 5(0) 1.25e-10 9.3e+00

Coefficients:
Estimate Std. Error z value Pr(>|z|)

paredattend 1.1275 0.2634 4.28 1.87e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘

’ 1↪→

Threshold coefficients:
Estimate Std. Error z value

unlikely|somewhat likely 0.3768 0.1103 3.415
somewhat likely|very likely 2.4519 0.1826 13.430

By exponentiating the estimate in this model, we will cal-
culate the odds ratio of 3.09. This shows that for students
whose parents did attend the college, the odds of being more
likely to apply to grad school is 3.09 times that of students
whose parents did not attend the college.

A.4 Evaluation Workflow
The results of each phase of our study is based on

three regression models. The regression results of phase
one are included in phase_one_CLMM_output.txt and
phase_one_STATA_output.txt and the regression results
of phase two are included in phase_two_CLMM_output.txt
and phase_two_STATA_output.txt. Here we provide the
exact R and STATA code that we used to reach these results.
A.4.1 Major Claims
(C1): Our cumulative link mixed models describe partici-

pants’ risk perception and willingness to purchase be-
havior in the first phase of our study. This is proven by

the experiment (E1) described in Sections 4.2 and 4.3 of
the paper, whose results are reported in Table 2 in the
paper.

(C2): Our interval regression model describes participants’
willingness to pay in the first phase of our study. This is
proven by the experiment (E2) described in Sections 4.2
and 4.3 of the paper, whose results are reported in Table
2 in the paper.

(C3): Our cumulative link mixed models describe partici-
pants’ risk perception and willingness to purchase be-
havior in the second phase of our study. This is proven
by the experiment (E3) described in Sections 5.2 and 5.3
of the paper, whose results are reported in Table 4 in the
paper.

(C4): Our interval regression model describes participants’
willingness to pay in the second phase of our study. This
is proven by the experiment (E4) described in Sections
5.2 and 5.3 of the paper, whose results are reported in
Table 4 in the paper.

A.4.2 Experiments
(E1): Cumulative link mixed models in R: Risk perception

and willingness to purchase models for phase-one study.
## Loading the required library for regression

analysis↪→

library(ordinal)

## Loading the survey data
dataset <- read.csv("phase_one_survey_data.csv")

## Specifying the dependent variables as
ordinal categorical↪→

dataset$risk_perception_coded <-
factor(dataset$risk_perception_coded, order =
TRUE,

↪→

↪→

levels = c("1", "2", "3",
"4", "5"))

dataset$willingness_to_purchase_coded <-
factor(dataset$willingness_to_purchase_coded,
order = TRUE,

↪→

↪→

levels = c("1", "2", "3",
"4", "5"))

## Specifying the independent variables as
categorical↪→

dataset$order_scenario <-
factor(dataset$order_scenario)↪→

dataset$correct_definition_number <-
factor(dataset$correct_definition_number)↪→

## Setting the baseline for model independent
variables↪→

dataset$mostProtective_leastProtective_pair <-
as.factor(dataset$mostProtective_leastProtective_pair)↪→

dataset$smart_device <-
as.factor(dataset$smart_device)↪→

dataset$mostProtective_leastProtective_pair <-
relevel(dataset$mostProtective_leastProtective_pair,
"main_personal")

↪→

↪→

dataset$smart_device <- relevel(dataset$smart_device,
"smoke")↪→
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## Constructing the Risk Perception Model
risk_clmm <- clmm(risk_perception_coded ~

mostProtective_leastProtective_pair + smart_device
+

↪→

↪→

correct_definition_number +
order_scenario +↪→

(1|participant), data =
dataset, link = "logit"↪→

)
summary(risk_clmm)

## Constructing the Willingness to Purchase
Model↪→

purchase_clmm <-
clmm(dataset$willingness_to_purchase_coded ~
mostProtective_leastProtective_pair + smart_device
+

↪→

↪→

↪→

correct_definition_number +
order_scenario +↪→

(1|participant), data = dataset,
link = "logit"↪→

)
summary(purchase_clmm)

(E2): Mixed interval regression model in STATA: Willing-
ness to pay model for phase-one study. We first need
to import our CSV file. Since this file has long partic-
ipant quotes, we should ensure the values of the cells
do not overflow. We will specify the following param-
eters when importing the datafile: delimiter(comma),
bindquote(strict), and stripquote(yes).

* We create a label to show the order of
independent variables.↪→

. label define factor_lab 1 "main_personal"

. label define device_lab 1 "smoke" 2 "speaker"

* We recode the independent variables with the
new baseline↪→

. encode mostprotective_leastprotective_p,
generate(attribute_value) label(factor_lab)↪→

. encode smart_device, generate(device_value)
label(device_lab)↪→

* We construct the mixed interval regression
and set participant as the random effect.↪→

. meintreg minimum_willingness_to_pay
maximum_willingness_to_pay i.order_scenario
i.correct_definition_number i.device_value
i.attribute_value || participant:

↪→

↪→

↪→

(E3): Cumulative link mixed models in R: Risk perception
and willingness to purchase models for phase-two study.
## Loading the required library for regression

analysis↪→

library(ordinal)

## Loading the survey data
dataset <- read.csv("phase_two_survey_data.csv")

## Specifying the dependent variables as
ordinal categorical↪→

dataset$risk_perception_coded <-
factor(dataset$risk_perception_coded, order =
TRUE,

↪→

↪→

levels =
c("1",
"2", "3",
"4", "5"))

↪→

↪→

↪→

dataset$willingness_to_purchase_coded <-
factor(dataset$willingness_to_purchase_coded,
order = TRUE,

↪→

↪→

levels
=
c("1",
"2",
"3",
"4",
"5"))

↪→

↪→

↪→

↪→

↪→

↪→

## Setting the baseline for model independent
variables↪→

dataset$label_type_comparison <-
as.factor(dataset$label_type_comparison)↪→

dataset$label_type_comparison <-
relevel(dataset$label_type_comparison, "Z vs Y")↪→

## Constructing the Risk Perception Model
risk_clmm <- clmm(risk_perception_coded ~

label_type_comparison +↪→

(1|participant), data = dataset,
link = "logit"↪→

)
summary(risk_clmm)

## Constructing the Willingness to Purchase
Model↪→

purchase_clmm <-
clmm(dataset$willingness_to_purchase_coded ~
label_type_comparison +

↪→

↪→

(1|participant), data =
dataset, link = "logit"↪→

)

* We create a label to show the order of
independent variables.↪→

. label define comparisonOrder 1 "Z vs Y" 2 "X vs Y"
3 "X vs Z"↪→

* We recode the independent variables with the
new baseline↪→

. encode label_type_comparison,
gen(typeComparisonCat) label(comparisonOrder)↪→

* We construct the mixed interval regression
and set participant as the random effect.↪→

. meintreg min max i.typeComparisonCat || participant:

A.5 Notes on Reusability
None.

A.6 Version
Based on the LaTeX template for Artifact Evaluation

V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: PRIVATEFL: Accurate, Differentially
Private Federated Learning via Personalized Data Transformation
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A Artifact Appendix

A.1 Abstract

This artifact includes the source code, dataset, setup, and in-
structions to reproduce the results of PRIVATEFL reported
in Section 6, i.e., the evaluation section. This artifact sup-
ports our claim that PRIVATEFL can improve the accuracy
when applied to FL with DP, and can further improve the
accuracy as an add-on to the existing DP-improving method.
Our artifacts are available at this open-source repository
(https://github.com/BHui97/PrivateFL). Our artifacts
require a Linux machine with 64GB of RAM and a GPU with
24 GB of graphics memory.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

We provide the following accesse to our artifacts:

• GitHub repository: https://github.com/BHui97/
PrivateFL. You can clone the source code from the
main branches and set up the environment following the
instruction in README.md file.

A.2.3 Hardware dependencies

We recommend using a 64bit Linux machine with the follow-
ing requirements:

• GPU: 24G. We test the artifacts on NVIDIA GeForce RTX
3090

• RAM: 64G
• Storage: 16GB

A.2.4 Software dependencies

• Ubuntu 18.04
• Python 3.8+ and Python libraries listed in requirements.txt

• NVIDIA Driver and CUDA for GPU computation. We test
the artifacts on NVIDIA Driver Version 510.108.03 and
CUDA Version 11.6

A.2.5 Benchmarks

We list the datasets and models the experiments require with
this artifact reported in our paper.

• Datasets:

• CIFAR-10, MNIST, FashionMNIST, CIFAR-100, EM-
NIST: we use the library torchvision.datasets. De-
tails can be found in dataset.py of our GitHub repo.

• CH-MNIST: Dataset can be downloaded from
https://github.com/BHui97/PrivateFL/tree/
main/data/CHMNIST

• Purchase: Dataset can be download from
https://github.com/BHui97/PrivateFL/tree/
main/data/purchase, please unzip the file before
using.

• Models:

• AlexNet, ResNet, 3-layer DNN, 4-layer DNN: details can
be found in modelUtil.py of our GitHub repo.

• CLIP: we use pretrained weights from the library CLIP,
details can be found in transfer/extract_cifar.py.

• SimCLR: model can be downloaded via
https://pl-bolts-weights.s3.us-east-2.
amazonaws.com/simclr/bolts_simclr_imagenet/
simclr_imagenet.ckpt

A.3 Set-up

A.3.1 Installation

Source code. Start with the source code and set up the
environment with the README.md, first install the source and
enter it:

• git clone https://github.com/BHui97/PrivateFL.git

• cd PrivateFL/script
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Figure 1: Expected output of the basic test.

Conda (optional). This step is optional if you don’t have
an environment/package management tool installed. We use
Miniconda to create a virtual environment with Python 3.8.
You can install it using the following script for a Ubuntu 18.04
machine or refer to the official document1:

• bash install_conda.sh

• Note: remember to CLOSE and then RE-OPEN your termi-
nal after running the above script.

Python dependencies. Then run the following script to
install the required Python dependencies:

• bash setup.sh

Datasets. Datasets except Purchase will be automati-
cally downloaded, we provide the Purchase dataset under
data/purchase/dataset_purchase.zip. Please remem-
ber to unzip it before running the test.

Models. Models except ResNext will be automati-
cally downloaded. Please download the ResNext weight
model_best.pth.tar manually from this link, and put it
under the transfer/model/ folder.

A.3.2 Basic Test

Run the following script to verify the installation and test the
functionality:

• func_test_1.sh

The expected successful output follows the structure shown
in Figure 1. The specific number may be different for different
tests.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): PRIVATEFL can improve the accuracy for FL with DP.
This is proven by the experiments (E1), whose results are
reported in Section 6.1 (Figure 5) of our paper.

1https://docs.conda.io/projects/conda/en/latest/user-
guide/install/linux.html

(C2): PRIVATEFL can further improve the accuracy for FL
with DP as an add-on to the existing DP-improving
method. This is proven by the experiments (E2), whose
results are reported in Section 6.2 (Table 6) of our paper.

(C3): PRIVATEFL consistently improves accuracy when the
clients’ local training data has different heterogeneity.
This is proven by the experiments (E3), whose results are
reported in Section 6.4 (Table 9) of our paper.

(C4): PRIVATEFL consistently improves the accuracy of FL
under DP when the system has a different number of
clients. This is proven by the experiments (E4), whose
results are reported in Section 6.5 (Table 10) of our
paper.

A.4.2 Experiments

(E1): [PrivateFL with different epsilon] [Six datasets] [20
human-minutes + 30 compute-hours (from 0.5 to 12
compute-hours for different datasets)]: This experiment
tests the accuracy of PrivateFL with different epsilon, i.e.,
2 to 8, on six datasets. Each of the datasets can be tested
by running bash script/E1_[dataset].sh
How to: The accuracy evaluation on each dataset will
be tested via a data-specific script, and the evaluated ac-
curacy for different epsilons will be automatically sum-
marised and shown at the end of the script execution. You
can collect the accuracies for each dataset and compare
them with Figure 5 in our paper.
Preparation: Follow Section A.3 to finish the setup.
Remember to unzip the purchase dataset before running
the script for purchase.
Execution: First navigate to the script folder via cd
script, then run bash E1_[dataset].sh. Please re-
place the [dataset] with one of [mnist, fashion-
mnist, emnist, purchase, cifar10, chmnist], e.g, bash
E1_mnist.sh. Note that cifar10 and chmnist need 12+
hours of training due to the large model size, which may
vary from different GPUs. The other datasets could be
finished within 1 hour. If you encounter CUDA out of
memory, please reduce the value -physical_bs in bash
E1_[dataset].sh.
Results: The results are shown as a table with
four columns named [data, mode, epsilon,
accuracy]. The data column shows the current
evaluated dataset name; the mode column shows
different DP methods, e.g, LDP; the epsilon column
shows different epsilon that is being evaluated, e.g.,
2; the accuracy column shows the testing accuracy
for the combination of previous three columns, e.g.,
accuracy = 0.946 for [data = emnist, mode =
CDP, epsilon = 2].

(E2): [PrivateFL + DP-improvement with different ep-
silon] [Two datasets] [10 human-minutes + 2 compute-
hours]: This experiment tests the accuracy of Pri-
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vateFL combined with existing DP-improvement meth-
ods. We test different epsilon, i.e., 2 to 8, on two
datasets, with three different pretrained encoders. Each
of the datasets can be tested by running bash
script/E2_[dataset].sh
How to: The accuracy evaluation on each dataset will
be tested via a data-specific script, and the evaluated
accuracy for different epsilons and pretrained encoders
will be automatically summarised and shown at the end
of the script execution. You can collect the accuracies
for each dataset and compare them with Table 5 in our
paper.
Preparation: Follow Section A.3 to finish the setup.
Remember to download the ResNext model following
Section A.3.1 before running the script. To save time,
we have uploaded the extracted features from different
encoders under folder transfer/feature. If you want
to extract it yourself, delete all folders, e.g., folder
named cifar10_2cpc_100client_clip_64, under
transfer/feature.
Execution: First navigate to the script folder via cd
script, then run bash E2_[dataset].sh. Please re-
place the [dataset] with one of [cifar10, cifar100], e.g,
bash E2_cifar10.sh
Results: The results are shown as a table with four
columns named [data, mode, model, epsilon,
accuracy]. The model column shows the pretrained
encoder used to extract the feature, e.g., clip; the
data, mode, epsilon columns are similar to E1;
the accuracy column shows the testing accuracy for
the combination of the previous four columns, e.g.,
accuracy = 0.594 for [data = cifar100, mode =
CDP, model = clip, epsilon = 2].

(E3): [PrivateFL with the different data heterogeneity] [Two
datasets] [10 human-minutes + 2 compute-hours]: This
experiment tests the accuracy of PrivateFL with different
data heterogeneity, i.e., 2 to 10 classes per client, on two
datasets. Each of the datasets can be tested by running
bash script/E3_[dataset].sh
How to: The accuracy evaluation on each dataset will
be tested via a data-specific script, and the evaluated
accuracy for different data heterogeneity will be auto-
matically summarised and shown at the end of the script
execution. You can collect the accuracies for each dataset
and compare them with Table 9 in our paper.
Preparation: Follow Section A.3 to finish the setup.
Execution: First navigate to the script folder via cd
script, then run bash E3_[dataset].sh. Please re-
place the [dataset] with one of [mnist, cifar10], e.g,
bash E3_mnist.sh
Results: The results are shown as a table with four
columns named [data, mode, ncpc, accuracy].
The data, mode columns are similar to E1; the ncpc
is the number of classes assigned to each client, i.e., 2

(non-iid) to 10 (iid); the accuracy column shows the
testing accuracy for the combination of the previous
three columns, e.g., accuracy = 0.922 for [data =
mnist, mode = CDP, ncpc = 2].

(E4): [Private FL with the different number of clients] [Two
datasets] [10 human-minutes + 5 compute-hours]: This
experiment tests the accuracy of PrivateFL with the dif-
ferent number of clients, i.e., 50 to 500, on two datasets.
Each of the datasets can be tested by running bash
script/E4_[dataset].sh
How to: The accuracy evaluation on each dataset will
be tested via a data-specific script, and the evaluated
accuracy for different numbers of clients will be auto-
matically summarised and shown at the end of the script
execution. You can collect the accuracies for each dataset
and compare them with Table 10 in our paper.
Preparation: Follow Section A.3 to finish the setup.
Execution: First navigate to the script folder via cd
script, then run bash E4_[dataset].sh. Please re-
place the [dataset] with one of [mnist, cifar10], e.g,
bash E4_mnist.sh
Results: The results are shown as a table with four
columns named [data, mode, nc, accuracy]. The
data, mode columns are similar to E1; the nc is the
number of clients, i.e., 50 to 500; the accuracy column
shows the testing accuracy for the combination of the
previous three columns, e.g., accuracy = 0.892 for
[data = mnist, mode = LDP, nc = 50].

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix
A.1 Abstract

This artifact appendix focuses on road-mapping the three
main claims we developed in the “Meta-Sift” paper:

• Defense performance is sensitive to the purity of the
base set (referring to Takeaway #1, Section 1 and Sec-
tion 2.1): Representative works of defense methods
against data poisoning are only effective when they can
access a small, clean-held-out dataset (base set). When
infiltrated with poisoned samples, the defense effects of
these methods are significantly impaired.

• Both existing automated methods and human inspec-
tion fail to identify a clean subset with high enough
precision (referring to Takeaway #2, Section 1 and Sec-
tion 2.3, 2.4): To evaluate existing methods for iden-
tifying a clean base set from a poisoned dataset and
conducting a human study, we found that these tech-
niques cannot satisfy the necessary access to the base set
required to initiate the defenses mentioned above.

• Our proposed solution, Meta-Sift (our main contribu-
tion, referring to Takeaway #3, Section 1, the implemen-
tation of the proposed method in Section 3, and results
in Section 4.2), utilizes a new but intuitive idea that train-
ing a model on the clean portion of a (corrupted) dataset
will perform poorly on the poisoned portion and vice
versa, which is a splitting problem that helps to iden-
tify the clean samples and can be described as a bi-level
optimization (Eqn. 11, 12). We have introduced a suite
of techniques to build Meta-Sift to resolve this splitting
problem, resulting in efficient and effective solutions.

A.2 Description & Requirements

The provided artifacts focus on reproducing results with the
GTSRB dataset (smaller and easy to download). Our imple-
mentation has been tested on our server and can be accessed
via SSH, along with the required software environments and

dependencies. By running the implementation on our pro-
vided backend, you can reproduce examples of the experi-
ments that support our claims. If you choose to re-implement
everything on your hardware/software, it might require a ma-
chine with the following minimum requirements:
Hardware requirements: CPU: 1×AMD EPYC 7763 64-
Core Processor; GPU: 1×NVIDIA RTX A6000 48 GB.
Software requirements: Operating system: Linux (Ubuntu
20.04); Python 3.9; CUDA 11.8; cuDNN 8.7.0; Required
Python packages: h5py (version 3.6.0 or later); imageio (ver-
sion 2.9.0 or later); numpy (version 1.21.5 or later); Pillow
(version 9.4.0 or later); torch (version 1.13.0 or later); torchvi-
sion (version 0.14.0 or later); tqdm (version 4.64.0 or later);
jupyter notebook (version 6.4.8 or later).

A.2.1 Security, privacy, and ethical concerns

We do not collect data or fingerprints while the evaluators
use our provided backend for re-implementation. The con-
cern is not applicable if the evaluator uses their own hard-
ware/software platform.

A.2.2 How to access

We provide a stable released version of our imple-
mentation via the following stable reference of the
GitHub link: https://github.com/ruoxi-jia-group/
Meta-Sift/releases/tag/artifact. We have created an
anonymous SSH account for evaluators to access our hard-
ware platform. Please directly contact the authors for further
instructions on using our provided backend.

A.2.3 Hardware dependencies

We highly recommend the evaluators use our provided hard-
ware backend for reproducing the results.

A.2.4 Software dependencies

We have tested our artifact in Linux OS (Ubuntu 20.04), along
with Python 3.9, CUDA 11.8, and cuDNN 8.7.0. Python pack-
ages required, including h5py (version 3.6.0 or later), imageio
(version 2.9.0 or later), numpy (version 1.21.5 or later), Pil-
low (version 9.4.0 or later), torch (version 1.13.0 or later),
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torchvision (version 0.14.0 or later), tqdm (version 4.64.0 or
later), and jupyter notebook (version 6.4.8 or later). Before
evaluating the artifact, please ensure all the necessary soft-
ware components and packages are installed and configured
correctly. For simplicity, we have provided the “metasift.yml”
file so that one can easily install the required environment with
Conda. Detailed instruction is listed in the GitHub release.

A.2.5 Benchmarks

Throughout our artifacts, we mainly reproduce the results
on the GTSRB dataset [1], which features traffic sign im-
ages scaled to 32×32 pixels. This dataset includes 39,209
training samples and 12,630 testing samples, both with class-
imbalanced distributions, providing a real-life set of data for
our analysis. In the “quick_start.ipynb,” we utilized a VGG-
16 model that was poisoned with BadNets backdoor attack in
“class 38” as the poison model (model structure and poisoned
parameters obtained from [2]) that will be using I-BAU [2] for
purification. In the subsequent Meta-Sift processes, we used
a ResNet-18 [3] model as the feature extractor θ for sifting.

A.3 Set-up

To prepare the environment for evaluating our artifact, one
needs to first log in to our server (contact us!) or a server
with minimum hardware configuration required. After that,
simply follow the Conda command provided in the GitHub
release will be able to set up the required environment.

A.3.1 Installation

To install the required software environment and the artifacts,
first, download all the code from the GitHub release. Once the
artifacts are downloaded, one needs to navigate to the direc-
tory using the command line and install the required software
dependencies. Meanwhile, the GTSRB dataset can be found
here. Please download the required GTSRB dataset and
put it under the “./dataset” folder. By following these steps,
one should have a properly configured environment ready for
evaluation.

A.3.2 Basic Test

Please go to the “quick_start.ipynb,” and try to run the
first block. If no error pops up, it indicates that the prerequi-
site environment has been successfully installed.

A.4 Evaluation workflow

This artifact consists of three functional parts that accounts
for three experiments:

• “./quick_start.ipynb” contains three example experi-
ments supports each claim (Takeaway #1, #2 and #3);

• “./human_exp” folder provides the tool and a Narcissus
[4] poisoned image dataset we built for human study;

• “main.py” implements our proposed method, which ac-
counts for the core contribution, and one can thoroughly
evaluate Meta-Sift with different poison settings.

A.4.1 Major Claims

Please refer to Section A.1 for a detailed recap of our claims.
Mainly, we have claimed that:
(C1): Defense effects are sensitive to the purity of the base

set (Takeaway #1 in Section 1, results in Section 2.1).
(C2): Both existing automated methods and human inspec-

tion fail to identify a clean subset with high enough pre-
cision (Takeaway #2 in Section 1, results and analysis
in Section 2.3 and 2.4).

(C3): Our proposed solution, Meta-Sift, can obtain a clean
subset with the required budget in many poison situations
(Takeaway #3 in Section 1, results in Section 4.2 or
Table 15 for the GTSRB).

A.4.2 Experiments

(E1): [1 human-minutes + 10 compute-minutes]: C1, part of
C2 (Automated methods fail to identify a pure enough
clean subset), and one experiment for C3.
How to:

• First, we reproduce one experiment in Table 1 to
support C1. The code first loads a poisoned small
VGG-16 [2] that has been poisoned with BadNets
[5] targeting class 38. The code then executes I-
BAU [2] for backdoor removal with a randomly
selected 1000-size clean base set. We can observe
that the ASR of the model is successfully mitigated.
Then, we consider a poisoned base set with 8 poi-
soned samples mixed in, and we can observe the
efficacy of the defense is largely impaired.

• Moving forward, we reproduce one experiment in
Table 2 to support C2 on automatic methods. The
notebook implements an automated sifting method
which we termed Distance to the Class-Means
(DCM), to sift out a base set and evaluate the Nor-
malized Corruption Rate (NCR) of the selected base
set. The resulting value is much larger than 0, in-
dicating that automated methods fail to identify
a clean subset with sufficient precision within the
given 1000 selection budget.

• Finally, we reproduce Meta-Sift’s result on BadNets
poisoned GTSRB to confirm C3. Upon running the
code in the notebook, we can observe that the NCR
is 0, indicating that we successfully identified a pure-
clean base set within the same 1000 budget.

Preparation: Please complete Section A.3 first.
Execution: Run “quick_start.ipynb.”
Results: Expected results are in the current notebook.

(E2): [30 human-minutes]: C2 on humans’ inability to iden-
tify the poisons with enough precision.
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How to: We suggest the evaluator should not check
the visual examples in our paper before completing this
experiment for non-necessary bias. Please first go to
the “./exp_human” folder, unzip the “img.zip”, and open

“huamn_label_interface.html” with your web browser.
The interface allows human labelers to assess whether
an image is poisoned and output the results with the

“yes” or “no” button. Once one successfully goes through
all 1000 samples, the browser will automatically down-
load the “result.csv” file. Reviewers can compare these
results with the “gound_trouth.xlsx” to calculate the
false-negative rate (FNR).
Preparation: A web browser is required.
Execution: After inspection, the browser will automat-
ically download a “result.csv” file. Please copy the first
column from “result.csv” and paste it over column B,

“ground_trouth.xlsx,” to get the final FNR. One can com-
pare the results with the results in Figure 3.
Results: The results should be quite similar to our re-
sults in Figure 3, i.e., end up with high FNR.

(E3): [1 human-minutes + 20 compute-minutes]: Further
evaluation of C3 (main contribution) with representative
poisoning attack under each category.
How to: Please refer to the commands in the GitHub
release and run them in a terminal with the required
Conda environment.
Preparation: Please complete Section A.3 first.
Execution: Run commands one by one in a terminal.
Results: The sifting results over these three poison set-
tings should all end up with an NCR equal to 0 with our
proposed method at a selection budget of 1000 (default).

A.5 Notes on Reusability
In the current release, we provide a plug-in (optional) function
that allows for adopting Meta-Sift to identify a clean base set
with a specific selection budget from any dataset. When using
Meta-Sift on a new dataset, choosing hyperparameters with
care is essential. We suggest using a pseudo-poisoned dataset
by applying the Narcissus attack [4] with a 10% poison ratio
on the top of the provided dataset (i.e., despite what poison the
original dataset is poisoned with, we manually introduce the
Narcissus attack over the whole dataset). Narcissus is the most
stealthy but effective attack we have found in our empirical
study. Once you have the Narcissus poisoned dataset on top
of the given dataset, input it into Meta-Sift and fine-tune the
hyperparameters to reduce the output NCR. When you have a
set of hyperparameters that can help you achieve 0 NCR on
this pseudo-poisoned dataset, it should perform well in sifting
out a 0 NCR base set for your provided dataset.

To adjust the main hyperparameters:
“-warmup_epochs” determines the number of rounds the

model should be pre-trained on the dataset before starting the
sift. For example, in GTSRB, the model’s accuracy should
be kept around 50% after warmup, while the accuracy of a

well-trained model is over 90%.
“-batch_size” is an important parameter influencing perfor-

mance. Keeping the “batch_size” small allows the model to
be updated more frequently, which might lead to better NCR
over low-resolution datasets.

“-v_lr” determines the learning rate of the weight-assigning
network, and it should be adjusted for the dataset size. This
parameter should be as small as possible for large datasets to
prevent overfitting.

“-top_k” determines the last few layers of the model that
will be selected to compute the gradient for the virtual update.
This parameter should be adjusted according to the depth of
the model, and the larger it is, the better it is for a model with
a deep structure. In RestNet-18, this parameter is set to 15,
covering the last residual block.

“-num_sifter” controls how many sifters will be trained.
Increasing this setting improves the filtering effect but adds to
the time/memory overhead. Starting from five and gradually
growing, this parameter is recommended.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

This artifact is mostly based on PyTorch, requiring GPU
support. We implemented the proposed defense, Confusion
Training (Algorithm 1) of our paper "Towards A Proac-
tive ML Approach for Detecting Backdoor Poison Sam-
ples", together with a diverse set of baseline defenses
and attacks. The artifact can reproduce our major ex-
perimental results (true positive rate, false positive rate,
clean accuracy and attack success rate) reported in the
main body of the paper. Our source code is available at
https://github.com/Unispac/Fight-Poison-With-Poison, with
a detailed guide at https://github.com/Unispac/Fight-Poison-
With-Poison/blob/master/misc/reproduce.md.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None. All backdoor attacks against DNNs in our artifact are
conducted on the simulation level, therefore do not lead to
any damage in the real world.

A.2.2 How to access

Our artifact source code is hosted at a GitHub repository,
available through https://github.com/Unispac/Fight-Poison-
With-Poison. For artifact evaluation purposes, this com-
mit is used: https://github.com/Unispac/Fight-Poison-With-
Poison/tree/b9ef34d

A.2.3 Hardware dependencies

This artifact minimally requires a Linux server with 300 GB
disk storage, 10 GB RAM, 4 CPU cores, and 2 Nvidia GPUs
(we use A100 in our experiments).

A.2.4 Software dependencies

This artifact relies on multiple existing Python packages, in-
cluding Python, PyTorch, scipy and so on (details in require-
ment.txt). To reproduce only results of our proposed defense
(Confusion Training), you may maually install PyTorch fol-
lowing their official guide and all other packages with pip.
To produce results of other baseline defenses (specifically,
Frequency and SPECTRE), you may also need to manually
install Tensorflow (refer to official guide) and Julia (refer to
other_cleansers/spectre/README.md). Our guide includes
all details to set up the required software dependencies.

A.2.5 Benchmarks

Our experiments with this artifact are reported on 4 bench-
mark datasets: CIFAR10 (a 10-class common image clas-
sification task), GTSRB (a 43-class traffic sign recognition
task), ImageNet (a 1000-class standard image classification
task), and Ember (a malware classfication task). Among
them, CIFAR10 and GTSRB are automatically downloaded
and set up in our artifact, and a detailed guide to down-
load and set up ImageNet and Ember datasets is available
at misc/reproduce.md#todo-before-you-start.

A.3 Set-up
A.3.1 Installation

Our documentation contains a detailed guide to install our
artifact and required environments. Briefly, the installation
procedure is as follows:

1. Clone artifact from https://github.com/Unispac/Fight-
Poison-With-Poison/tree/f2f02c2.

2. Install PyTorch following the official guide.

3. Install other Python packages via pip install -r
requirement.txt.
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4. (Optional) Install Tensorflow [guide] and Julia [guide].

5. Download ImageNet [link] and Ember [link] datasets.
Refer to [link] for more details to set them up properly.

6. Execute command python create_clean_set.py
-dataset=$DATASET -clean_budget=$N (where
$DATASET = cifar10, gtsrb, imagenet, ember,
$N = 2000 for cifar10 and gtsrb, $N = 5000 for imagenet
and ember) to initialize the datasets.

7. Run data/cifar10/clean_label/setup.sh to setup
data for clean label (CL) attack.

8. Download pretrained models (for Dynamic at-
tack) all2one_cifar10_ckpt.pth.tar [link] and
all2one_gtsrb_ckpt.pth.tar [link] to models/.

A.3.2 Basic Test

We provide a simple example (defending against BadNet at-
tack on CIFAR10) involving our whole artifact pipeline (poi-
soning, training, defense, retraining, etc.) in our detailed guide
at misc/reproduce.md. Briefly, one may test our artifact’s core
functionalities via:

1. Create a BadNet poisoned dataset by running python
create_poisoned_set.py -dataset=cifar10
-poison_type=badnet -poison_rate=0.01.

2. Train on the poisoned dataset by running python
train_on_poisoned_set.py -dataset=cifar10
-poison_type=badnet -poison_rate=0.01. The
output should include the clean accuracy (ACC) and
attack success rate (ASR) of the backdoor model in each
training epoch.

3. Launch our Confusion Training defense by running
python ct_cleanser.py -dataset=cifar10
-poison_type=badnet -poison_rate=0.01
-devices=0,1 -debug_info. The last couple lines of
the output should include the defense results (recall
and fpr).

4. Retrain on the cleansed training set by running python
train_on_cleansed_set.py -cleanser=CT
-dataset=cifar10 -poison_type=badnet
-poison_rate=0.01. The output should include
the clean accuracy (ACC) and attack success rate (ASR)
of the defended model in each training epoch.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Confusion Training is an effective approach to iden-
tify and remove poisoned samples in the training set.

Compared to other baseline defenses, Confusion Train-
ing consistently shows better robustness. This is proven
by the experiments (E1) in Sec 5.2 whose results are
reported in Table 1 and Table 2.

(C2): Confusion Training is generalizable to larger dataset
and extends beyond the vision domain. This is proven by
the experiments (E2) and (E3) in Sec 5.3 whose results
are reported in Table 4 and Table 5.

A.4.2 Experiments

(E1): [Major Experiments on CIFAR10 and GTSRB] [30
human-minutes + 100 compute-hour + 10GB disk]: Ex-
periment (E1) evaluates and compares Confusion Train-
ing’s effectiveness on CIFAR10 and GTSRB across 11+9
attacks with 11 baseline defenses, therefore proving our
first claim (C1). Experiment (E1) corresponds to our
reported results in Table 1 and Table 2.
How to: All the preparation steps have been stated
in Artifact Appendix A.3. We provide all neces-
sary commands to reproduce our results of (E1)
in misc/reproduce.md#major-results-on-cifar10-and-
gtsrb-table-1–table-2.

(E2): [Experiments on ImageNet] [1 human-hour + 160
compute-hour + 300GB disk]: Experiment (E2) eval-
uates Confusion Training’s effectiveness on ImageNet, a
larger vision dataset, and therefore provides support to
our second claim (C2). Experiment (E2) corresponds to
our reported results in Table 5.
How to: All the preparation steps have been stated
in Artifact Appendix A.3. We provide all neces-
sary commands to reproduce our results of (E2) in
misc/reproduce.md#imagenet-table-5.

(E3): [Experiments on Ember] [1 human-hour + 3 compute-
hour + 50 GB disk]: Experiment (E3) evaluates Con-
fusion Training’s effectiveness on Ember, a malware
classification task, also providing support to our second
claim (C2). Experiment (E3) corresponds to our reported
results in Table 4.
How to: All the preparation steps have been stated
in Artifact Appendix A.3. We provide all neces-
sary commands to reproduce our results of (E3) in
misc/reproduce.md#ember-table-4.

The expected outcome for the experiments above should
be close to our reported results. Our experiments involve
randomness in nature. Thus, the outcomes may have some
variances. Our table also reports the approximate standard
deviation of each result.

A.5 Notes on Reusability

We have already incorporated this artifact into a more
comprehensible backdoor research toolbox, available at
https://github.com/vtu81/backdoor-toolbox, which will be
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constantly maintained in the foreseeable future.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
This report provides details of our implementation of a fed-
erated learning algorithm called Federated Rank Learning
(FRL) which is designed to achieve high test accuracy and
mitigate the risk of model poisoning attacks in a non-iid client
distribution. The report includes the implementation of FRL
on CIFAR10 and MNIST datasets with different percentages
of malicious clients. The evaluation workflow of the code
includes running experiments to validate the major claims of
the paper and measuring the test accuracy of the models. The
report also includes the installation instructions and require-
ments for running the code.

A.2 Description & Requirements
A.2.1 How to access

Our artifact, the implementation of our work on Fed-
erated Rank Learning (FRL), can be accessed at
https://github.com/SPIN-UMass/FRL. The code is written
in PyTorch and is publicly available for anyone to use. The
repository includes a comprehensive readme file that provides
instructions on how to run different experiments, making it
easy for others to replicate our results and build upon our
work. To ensure that our artifact is easily accessible and can
be referenced by others in the future, we have chosen to host
it on the popular repository hosting platform GitHub.

A.2.2 Hardware dependencies

To evaluate our artifact, a system with a GPU is required
for faster learning. Our experiments were conducted on an
NVIDIA GeForce GTX 1080 Ti with 11GB RAM.

A.2.3 Software dependencies

The experiments in this study were conducted using the Py-
Torch 1.13.1 and Numpy 1.23.5 libraries. PyTorch is a widely-
used deep learning framework that provides a seamless in-
tegration of computation graphs and tensors, making it an
ideal choice for implementing and training neural networks.

Table 1: In our experiments, we use the following, state-of-
the-art model architectures.

Architecture Layer Name Number of parameters

LeNet
(MNIST)

Conv(32) 288
Conv(64) 18432
FC(128) 1605632

FC(10) or FC(62) 1280

Conv8
(CIFAR10)

Conv(64), Conv(64) 38592
Conv(128), Conv(128) 221184
Conv(256), Conv(256) 884736
Conv(512), Conv(512) 3538944

FC(256), FC(256), FC(10) 592384

Numpy, on the other hand, is a library for the Python pro-
gramming language that provides support for large, multi-
dimensional arrays and matrices, along with a wide range
of mathematical functions to operate on these arrays. By us-
ing these two libraries in our experiments, we were able to
efficiently implement and evaluate the performance of our
models.

A.2.4 Benchmarks

We provide two benchmark datasets widely used in prior
works on federated learning robustness:
MNIST is a 10-class class-balanced classification task with
70,000 gray-scale images, each of size 28 × 28. We exper-
iment with LeNet architecture given in Table 1. For local
training in each FRL/FL round, each client uses 2 epochs.
For training ranks (experiments with FRL), we use SGD with
learning rate of 0.4, momentum 0.9, weight decay 1e-4, and
batch size 8.
CIFAR10 is a 10-class classification task with 60,000 RGB
images (50,000 for training and 10,000 for testing), each of
size 32 × 32. We experiment with a VGG-like architecture
given in Table 1. For local training in each FRL/FL round,
each client uses 5 epochs. For training ranks (experiments
with FRL), we optimize SGD with learning rate of 0.4, mo-
mentum of 0.9, weight decay of 1e-4, and batch size of 8.

Table 1 shows the state-of-the-art model architectures and
corresponding datasets that we use in our experiments. We
also show the number of parameters in each of their layers.
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A.3 Set-up
A.3.1 Installation

To install the code for this study, please follow these steps:

1. To download the repository, use the following
command: git clone https://github.com/SPIN-
UMass/FRL.git. The final stable URL is:
https://github.com/SPIN-UMass/FRL/tree/
4cf2550972e0e6299f61f682579f10b8e32c39d7.

2. Create a new conda environment. you can do so using the
following command: conda create - -name FRL_test
python=3.10.9

3. Activate the environment: conda activate FRL_test

4. Then, to install the dependencies, run: pip install -r
requirements.txt

This will download the repository and install all of the
necessary dependencies, including PyTorch and Numpy, as
specified in the software appendices section. Once the instal-
lation is complete, you should be able to run the code and
reproduce the results from the study.

A.3.2 Basic Test

To run a simple experiment on the CIFAR10
dataset using the Federated Rank Learning (FRL)
algorithm, run the following command: python
main.py - -data_loc /CIFAR10/data/ - -config experi-
ments/001_config_CIFAR10_Conv8_FRL_1000users_noniid
1.0_nomalicious.txt. This will initiate a federated learning
experiment on the CIFAR10 dataset using 1000 clients in
a non-iid fashion with a Dirichlet distribution parameter
β = 1.0. The experiment will run for 2000 global FL rounds,
with 25 clients selected for local updates in each round. Upon
completion, the results of the experiment will be recorded
and can be analyzed to evaluate the performance of the FRL
algorithm on the CIFAR10 dataset.

A.4 Evaluation workflow
A.4.1 Major Claims

These are the major claims made in our paper:

(C1): FRL can achieve similar performance as FedAvg,
Trimmed-Mean and Multi-Krum on CIFAR10 and
MNIST distributed over a large number of clients in
a non-iid fashion when there is no malicious client, as
illustrated in Table 1 in the paper.

(C2): FRL can achieve high test accuracy when 10% of
the clients are malicious on CIFAR10 and MNIST dis-
tributed over a large number of clients in a non-iid

fashion, as illustrated in Table 1 in the paper. FedAvg,
Trimmed-Mean and Multi-Krum results in lower test
accuracy.

(C3): FRL can achieve high test accuracy when 20% of
the clients are malicious on CIFAR10 and MNIST dis-
tributed over a large number of clients in a non-iid
fashion, as illustrated in Table 1 in the paper. FedAvg,
Trimmed-Mean and Multi-Krum results in lower test
accuracy.

A.4.2 Experiments

The experiments directory includes the experiments per-
formed in the paper. This section explains the purpose of
each experiment and the expected outcome.
(E1): [FL with 0% malicious client] [30 human-minutes +

16 compute-hour]: For claim C1.
Execution:

For CIFAR10:
• run FRL: python main.py - -data_loc

/CIFAR10/data/ - -config experi-
ments/001_config_CIFAR10_Conv8_FRL_1000
users_noniid1.0_nomalicious.txt.

• We also provided more experiments for FedAVG,
Trimmed-Mean and Multi-Krum in the experiments
directory.

For MNIST:
• run FRL: python main.py - -data_loc

/MNIST/data/ - -config experi-
ments/004_config_MNIST_LeNet_FRL_1000
users_noniid1.0_nomalicious.txt

• We also provided more experiments for FedAVG,
Trimmed-Mean and Multi-Krum in the experiments
directory.

Results: The results of the experiment will be stored
in the Logs directory. For MNIST, the expected test ac-
curacy should be around 98%, and for CIFAR10, the
expected test accuracy should be around 85%.

(E2): [FRL with 10% malicious client] [30 human-minutes
+ 16 compute-hour]: For claim C2.
Execution: For CIFAR10, run python main.py
- -data_loc /CIFAR10/data/ - -config experi-
ments/002_config_CIFAR10_Conv8_FRL_1000
users_noniid1.0_10pmal.txt. For MNIST, run python
main.py - -data_loc /MNIST/data/ - -config ex-
periments/005_config_MNIST_LeNet_FRL_1000
users_noniid1.0_10pmal.txt.
Results: The results of the experiment will be stored
in the Logs directory. For MNIST, the test accuracy
should be around 98%, and for CIFAR10, the test ac-
curacy should be around 79%.

(E1): [FRL with 20% malicious client] [30 human-minutes
+ 16 compute-hour]: For claim C3.

98    Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association



Execution: For CIFAR10, run python main.py
- -data_loc /CIFAR10/data/ - -config experi-
ments/003_config_CIFAR10_Conv8_FRL_1000
users_noniid1.0_20pmal.txt. For MNIST, run python
main.py - -data_loc /MNIST/data/ - -config ex-
periments/006_config_MNIST_LeNet_FRL_1000
users_noniid1.0_20pmal.txt.
Results: The results of the experiment will be stored
in the Logs directory. For MNIST, the test accuracy
should be around 98%, and for CIFAR10, the test ac-
curacy should be around 69%.

It is important to note that the results may vary slightly due to
the random initialization of the models and the random sam-
pling of clients in each round of federated learning. Therefore,
it is recommended to run the experiments multiple times and
report the average of the results to obtain a more robust evalu-
ation of the performance of the FRL algorithm.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
The artifact is an implementation of Deep Learning
Vulnerability Analyzer (DLVA), a vulnerability detection tool
for Ethereum smart contracts based on powerful deep learn-
ing techniques for sequential data adapted for bytecode. We
benchmark DLVA against nine competitors.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

N/A

A.2.2 How to access

Both DLVA and DLVAlarge are available as Docker images at
https://hub.docker.com/u/dlva.

A.2.3 Hardware dependencies

The test machine is a desktop with a 12-core 3.2 GHz Intel(R)
Core(TM) i7-8700 and 16 GB of memory.

A.2.4 Software dependencies

Ubuntu OS and Docker should be installed.

A.2.5 Benchmarks

In this artifact, we use three benchmarks to compare DLVA
with the-state-of-the-art tools. Elysiumbenchmark https://
bit.ly/Elysium_benchmark, Reentrancybenchmark https:
//bit.ly/Reentrancy_benchmark, SolidiFIbenchmark
https://bit.ly/SolidiFI_benchmark.

A.3 Set-up
A.3.1 Installation

The instructions to install DLVA as follows: Open the terminal
and enter the following command to create a “dlva folder” in
the home directory: mkdir ~/dlva

• To install DLVA (trained on SolidiFI’s labels or on
Slither’s labels of small-length contracts):

1. Pull the latest version of the DLVA Docker image
by running the following command:
docker pull dlva/dlva:latest

2. Run the DLVA Docker container with the following
command:
docker run -i -t -v

~/dlva/:/DLVA_Tool/dlva/ dlva/dlva

3. After executing the above commands, you will be
inside the DLVA Docker container.

• To install DLVAlarge (trained on Slither’s labels of large-
length contracts):

1. Pull the latest version of the DLVAlarge Docker
image by running the following command:
docker pull dlva/dlva-large:latest

2. Run the DLVAlarge Docker container with the fol-
lowing command:
docker run -i -t -v

~/dlva/:/DLVA_Tool/dlva/ dlva/dlva-large

3. After executing the above commands, you will be
inside the DLVAlarge Docker container.

A.3.2 Basic Test

Now, follow the command-line interface instructions to inter-
act with DLVA Docker container.

1. Press 1 to run DLVA trained on SolidiFI labels, or press
2 to run DLVA trained on Slither labels (small contracts).

2. Enter 1 for a single contract mode, or 2 for a batch of
contracts mode.

3. For a single contract mode: enter contract address e.g.
0x01f8c4e3fa3edeb29e514cba738d87ce8c091d3f
or insert the bytecode in “dlva/input.bin” file at “dlva
folder” then enter: b
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4. For batch mode: copy the dataset file (e.g., batch.csv
with "address" and "bytecode" columns) to the “dlva
folder”, then enter ../dlva/batch.csv Alternatively,
the user can use the provided test dataset by entering
Testset10.csv The analysis results will be written
in file named “DLVA_Predictions_batch.csv” at “dlva
folder”.

To test DLVAlarge Docker container follow the same afore-
mentioned steps without step 1.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): DLVA performs well in practice for smart contract
vulnerability detection: Figure 1 illustrates DLVA per-
formance against nine competitors. DLVA is on the far
right. We use bar-and-whiskers where star ⋆ represents
the mean and plus + represents outliers. Our average
Completion Rate (i.e., the percentage of contracts for
which a tool produces an answer, the higher the better)
is 100.0%. Our average accuracy is 99.7% (the higher
the better), with a True Positive Rate (i.e., detection rate;
the higher the better) of 98.7% and a False Positive Rate
(i.e., false alarm rate; the lower the better) of 0.6%. Our
average analysis time per contract (the graph is in log
scale, lower better) is 0.2 seconds. Smart learning pays
off: DLVA beats Slither on every statistic except for TPR
(where it lags by 0.7%). Recall also that Slither requires
source whereas DLVA needs only bytecode.
This is proven by the experiment (E1) described in §4.4
whose results are illustrated/reported in Figure 1, the
data underlying Figure 1 is in Tables 4, 5, and 6.

A.4.2 Experiments

(E1): 30 human-minutes + machine with 12-core and 16 GB
memory + 12 GB disk
How to: Run the DLVA Docker container with the fol-
lowing command:
docker run -i -t -v
~/dlva/:/DLVA_Tool/dlva/ dlva/dlva
Preparation: After executing the previous command,
the three benchmarks A.2.5 will be downloaded auto-
matically and saved to the “dlva folder”.
Execution: Run DLVA on the three benchmarks:

1. For Elysiumbenchmark:
(a) Press 2 to select DLVA trained on Slither labels

(small contracts).
(b) then, press 2 to select the batch of contracts

mode.
(c) then, enter:

../dlva/Elysium_benchmark.csv

(d) then, wait until the analysis is com-
plete, the raw results will be stored at
“dlva/DLVA_Predictions_for_Elysium_benchm
ark.csv”

2. For Reentrancybenchmark:
(a) Press 2 to select DLVA trained on Slither labels

(small contracts).
(b) then, press 2 to select the batch of contracts

mode.
(c) then, enter:

../dlva/Reentrancy_benchmark.csv

(d) then, wait until the analysis is com-
plete, the raw results will be stored at
“dlva/DLVA_Predictions_for_Reentrancy_benc
hmark.csv”

3. For SolidiFIbenchmark:
(a) Press 1 to select DLVA trained on SolidiFI la-

bels.
(b) then, press 2 to select the batch of contracts

mode.
(c) then, enter:

../dlva/SolidiFI_benchmark.csv

(d) then, wait until the analysis is com-
plete, the raw results will be stored at
“dlva/DLVA_Predictions_for_SolidiFI_benchm
ark.csv”

4. Press 0 to exit from the DLVA Docker image.
Results: Enter: cd ~/dlva
then enter: pip3 install -r requirements.txt
then: python3 print_dlva_results.py that will
show the DLVA results on the three benchmarks.
then: python3 print_competitors_results.py
that will show the competitors results on the three
benchmarks.
Open the “dlva folder”, seven files have been
added: “tools_results.txt” contains the log per-
formance for all tools based on raw data in
“10_tools_files” folder, “tools_results.csv” represents
the same results as a spreadsheet, and five files of
“tools_predictions_benchmark.csv” contain labels of all
tools for each benchmark.
The FN and FP produced numbers in this experiment
should match the numbers in Tables 4, 5, and 6.
Any number in Figure 1 is the average for each tool using
the three benchmarks.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
FUZZTRUCTION’s artifact contains the source code necessary
to run our fuzzer (as well as competing fuzzers). This docu-
ment describes how to set-up our fuzzer prototype, gives a
brief overview of the resource requirements to replicate the ex-
periment (i. e., a coverage comparison with other state-of-the-
art fuzzers) conducted in our paper, and contains instructions
for reproducing our results.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact is shipped via a Docker image used to spawn
a unified containerized environment to ease evaluation and
development independent of the underlying system. The con-
tainer’s life cycle is managed by the env/start.sh script
which by default forwards the ssh-agent (if any) and the
.gitconfig into the container. If this is undesired behavior,
the related functionality should be removed from the script
before conducting any experiments.

A.2.2 How to access

The artifact’s source code is accessible at https:
//github.com/fuzztruction/fuzztruction/tree/
91ba684d2b8fa21ae19e403496b507f3729c4ff5. The
repository and sub repositories contain extensive documen-
tation to make the artifact evaluation process as easy as
possible.

A.2.3 Hardware dependencies

For evaluation, we used two Intel(R) Xeon(R) Gold 6230R
CPUs, totaling 52 cores, 128 GB RAM, and about 1 TB SSD
disk space. Since some targets produce many test cases, which

are stored in /tmp, i. e., in RAM, we advise resizing the tmp
folder to 600 GiB and backing the amount exceeding the
RAM capacity via a swap file. The evaluation script will walk
you through these steps.

In our paper, we evaluated 12 targets, which we run five
times for 24 hours, and assigned all 52 cores to one experi-
ment. Consequently, a vast amount of computational power is
required to replicate the exact experiments conducted in our
paper. We believe this computational power is out-of-scope
for artifact review, thus we provide instructions on how to ap-
proximate our experiments using significantly less resources
in Section A.4.2.

A.2.4 Software dependencies

For running the artifact, a working Docker installation is re-
quired. All scripts that must be executed on the host system
(i. e., outside of the container) have been tested exclusively on
Ubuntu 22.04. However, since the scripts are rather simple,
they should work on any Linux distribution.

A.2.5 Benchmarks

All data required for the evaluation is part of the linked repos-
itory.

A.3 Set-up
The set-up is explained in detail in the main repository’s
README.md. For your convenience, we provide pre-built ver-
sions of FUZZTRUCTION. We recommend using these pre-
built versions of FUZZTRUCTION since slight changes in, for
example, libraries linked into a fuzzing target might cause de-
viations from the results presented in the paper. Furthermore,
compiling all targets takes considerable time, because we use
AFL++’s collision free encoding, which causes link time to
increase significantly. Overall, the compilation of all targets
takes multiple hours.
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A.3.1 Basic Test

Testing the set-up is possible using the steps provided in
the Fuzzing a Target using Fuzztruction section in the
README.md.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We demonstrate the generic capabilities of our ap-
proach by fuzzing even complex cryptographic proce-
dures, such as the parsing and validation of encrypted
RSA keys, automatically and without custom-crafted
seeds.

(C2): We implement and evaluate our prototype, called FUZ-
ZTRUCTION, against the state-of-the-art fuzzers AFL++,
SYMCC, and WEIZZ. Our results show that our approach
achieves significant gains in terms of coverage and num-
ber of software faults found.

Please note that claim C1 is a subset of C2, since outper-
forming all other competitors on a cryptographic target also
indirectly shows our approach’s applicability to complex cryp-
tographic targets.

A.4.2 Experiments

As described in the requirements section, we conducted an
extensive evaluation requiring considerable CPU time for
reproduction. Since comparing each individual result from the
paper with an experiment using fewer resources is impossible,
we suggest concentrating the evaluation efforts on a subset of
the fuzzing targets.

According to our statistical analysis presented in Table 2
in our paper, the three targets objdump, readelf and unzip
show no statically significant difference between the evaluated
fuzzer configurations. Thus, we advise excluding these targets
from the reproduction since they are no proxy for our claims.
For the remaining targets, we advise only considering the best
competitor (cf. Table 2) to further reduce the amount of CPU
time required.

Following our recommendations, the artifact evaluation
effort is composed of 52 CPUs * 9 targets * 2 fuzzers
(FUZZTRUCTION, best competitor) * 24h, which equates to
running a single 52 CPU machine for 18 days. If desired, the
list of targets might be further reduced by skipping targets not
employing cryptographic primitives (i. e.,, targets in Table 2
that are not marked with a lock) since targets using crypto-
graphic primitives are required to support both our claims. For
example, if fuzzing only 3 targets (e. g., rsa, vfychain, and
7zip-enc) with 2 fuzzers (FUZZTRUCTION, best competitor)
for 24 hours, your fuzzing run will take 6 days on a single 52
CPU machine.

Notably, since fuzzing is inherently non-deterministic, a
single run per target does not necessarily exactly align with

the results presented in the paper. Consequently, reducing the
number of tested targets in favor of doing multiple runs for
some targets might be desirable. Certainly, this trade-off is
primarily driven by the available hardware resources.

As a result of this experiment, we expect a plot similar to
Figure 3 in our paper. All steps required to run the experiment,
and to plot the data, are explained in the documentation found
in the artifact’s git repository. Please mind that some of the
targets are not supported by SYMCC.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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<FuzzJIT: Oracle-Enhanced Fuzzing for JavaScript Engine JIT Compiler>

Junjie Wang1*, Zhiyi Zhang2*, Shuang Liu1+, Xiaoning Du3, and Junjie Chen1

1College of Intelligence and Computing, Tianjin University
2CodeSafe Team, Qi An Xin Group Corp.

3Monash University

A Artifact Appendix

This artifact appendix is meant to be a self-contained docu-
ment which describes a roadmap for the evaluation of FuzzJIT.

A.1 Abstract

FuzzJIT is a fuzzing tool for JavaScript engines JIT compiler,
built on top of Fuzzilli [1]. FuzzJIT maintains a queue that
contains all samples that triggered new code coverage in the
testing subjects. At the start of each fuzzing round, FuzzJIT
selects a test case from the queue and mutates it to generate
new test cases. Generated new test cases are executed, and
the test cases that triggered new code coverage are then added
to the fuzzing queue for further mutation. Our main contribu-
tions include a for-loop structure to trigger the JIT compilers,
a test function embedding JIT compiler bugs revealing ele-
ments, and an enhanced oracle to check if the test function
output differently before/after the JIT compilation.

A.2 Description & Requirements

In this section, we list the information necessary to recreate
the same experimental setup we have used to run our artifact.
We also list the hardware and software requirements to run our
artifact. At last, we list benchmarks used to produce results
with our artifact.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

FuzzJIT can be obtained from GitHub: https://github.c
om/SpaceNaN/fuzzjit/commit/a3d3f6da7f7f8577476
892d6135eee6c50afc7ad.

A.2.3 Hardware dependencies

In our experiments, we used a workstation with a processor
of 12th Gen Intel Core i9-12900K*24 and 32 GB memory.
Any similar configuration should work too.

A.2.4 Software dependencies

In our experiment, FuzzJIT runs on a 64-bit Ubuntu 22.04.01
LTS system. Other Linux operating systems should work too.
The same as Fuzzilli, FuzzJIT is written in Swift, therefore,
the installation of Swift is required. Swift 5.7 and 5.3 are
tested working.

A.2.5 Benchmarks

Our testing subjects include four mainstream JavaScript en-
gines, JavaScriptCore (the JavaScript engine of the Safari
browser), V8 (the JavaScript engine of the Chrome browser),
Spidermonkey (the JavaScript engine of Firefox), and Chakra-
Core (the JavaScript engine of Edge). In our evaluation,
we compared FuzzJIT with four baselines, including Jsfun-
fuzz [3], Superion [4], DIE [2], and Fuzzilli [3].

A.3 Set-up
In this section, we list the installation and configuration steps
required to prepare the environment to be used for the evalua-
tion of our artifact.

A.3.1 Installation

The running procedure of FuzzJIT is the same with Fuzzilli.
1. Download Swift from its download page: https://ww

w.swift.org/download/, for example:

wget https :// download.swift .org/ swift−5.7−release /
ubuntu2204−aarch64/swift−5.7−RELEASE/swift−5.7−
RELEASE−ubuntu22.04−aarch64.tar.gz

2. Uncompress the downloaded file.
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tar zxvf ./ swift−5.7−RELEASE−ubuntu22.04−aarch64.tar.gz

3. Export the path of Swift to an environment variable.

export PATH=~/swift−5.7−RELEASE−ubuntu22.04−aarch64/usr/
bin:\${PATH}

4. Download FuzzJIT from GitHub.

git clone https :// github .com/SpaceNaN/fuzzjit

5. Compile the FuzzJIT.

swift build [−c release ]

A.3.2 Basic Test

The user can run the following command to see if FuzzJIT
works.

swift run FuzzilliCli −−help

A.4 Evaluation workflow
We list the operational steps and experiments to evaluate
FuzzJIT.

A.4.1 Major Claims

Our paper makes four major claims.
C1: FuzzJIT can be used to uncover new bugs in the

JavaScriptCore/V8/Spidermonkey/ChakraCore. This is
proven by the experiments (E1).

C2: FuzzJIT can achieve better code coverage growth than
baselines. This is proven by the experiments (E2).

C3: FuzzJIT can achieve better syntax correctness rate than
baselines. This is proven by the experiments (E3).

C4: FuzzJIT can achieve relatively good throughput than
baselines. This is proven by the experiments (E4).

A.4.2 Experiments

E1: Finding bugs in testing subjects. One week of fuzzing
should work:
How to: Fuzzing given targets for about one week or
longer to see any crashes triggered.
Preparation and execution: To fuzz JavaScriptCore
with FuzzJIT:
1. Download JavaScriptCore.

git clone https :// github .com/WebKit/webkit

2. Apply Targets/JavaScriptCore/Patches/*. This step
will be a little bit tricky. When the version does not
match, the user needs to manually apply the patch.

3. Run the Targets/JavaScriptCore/fuzzbuild.sh script in
the WebKit root directory.
4. FuzzBuild/Debug/bin/jsc will be the JavaScript shell
for the fuzzer.
5. Fuzz JavaScriptCore.

swift run −c release FuzzilliCli −− profile =jsc −−
timeout=500 −−storagePath=./ jsc / / path / to /webkit/
FuzzBuild/Debug/bin/ jsc

To fuzz V8 with FuzzJIT.
1. First download depot_tools.

git clone https :// chromium.googlesource.com/chromium/
tools/depot_tools . git

2. Export depot_tools to an environment variable.

export PATH=\$PATH:/path/to/depot_tools

3. Configure gclient.

mkdir v8
cd v8
gclient config https :// chromium.googlesource.com/v8/

v8

4. Synchronize V8’s source code.

gclient sync

5. Run the Targets/V8/fuzzbuild.sh script in the v8 root
directory.
6. out/fuzzbuild/d8 will be the JavaScript shell for the
fuzzer.
7. Fuzz V8.

swift run −c release FuzzilliCli −− profile =v8 −−
timeout=500 −−storagePath=./v8/ / path / to /v8/out /
fuzzbuild /d8

To fuzz Spidermonkey with FuzzJIT.
1. Download Spidermonkey source code.

git clone https :// github .com/mozilla/gecko−dev

2. Apply Targets/Spidermonkey/Patches/*. This step will
be a little bit tricky. When the version does not match,
the user needs to manually apply the patch.
3. Run the Targets/Spidermonkey/fuzzbuild.sh script in
the js/src directory of the Firefox checkout.
4. ./fuzzbuild_OPT.OBJ/dist/bin/js will be the JavaScript
shell for the fuzzer.
5. Fuzz Spidermonkey.

swift run −c release FuzzilliCli −− profile =
spidermonkey −−timeout=500 −−storagePath=./
spidermonkey/ / path / to /gecko−dev/js / src /
fuzzbuild_OPT.OBJ/dist/ bin / js

To fuzz ChakraCore with FuzzJIT.
1. Download ChakraCore source code.
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git clone https :// github .com/chakra−core/ChakraCore

2. Apply Targets/ChakraCore/Patches/*. This step will
be a little bit tricky. When the version does not match,
the user needs to manually apply the patch.
3. Run the Targets/ChakraCore/fuzzbuild.sh script in the
ChakraCore directory.
4. FuzzBuild/Debug/ch will be the JavaScript shell for
the fuzzer.
5. Fuzz ChakraCore.

swift run −c release FuzzilliCli −− profile =chakracore
−−timeout=500 −−storagePath=./ chakracore / / path /
to / chakracore /FuzzBuild/Debug/ch

Results: Fuzzing is a random procedure, but enough
time of fuzzing should reproduce the crashes.

E2: Evaluating code coverage. One week of fuzzing should
work:
How to: FuzzJIT/Fuzzilli update the fuzzing status per
minute, as shown in Figure 1. We can read the code
coverage information from the "Coverage:" row of the
FuzzJIT/Fuzzilli interface after one week of fuzzing. For
Jsfunfuzz, we fail to obtain its coverage information. For
Superion/DIE, which are AFL based, we can also read
the coverage information from the "map density" row
from their interface.

E3: Evaluating syntax correctness rate. One week of fuzzing
should work:
How to: FuzzJIT/Fuzzilli update the fuzzing status per
minute. We can read the sample syntax correctness rate
information from the "Correctness Rate:" row of FuzzJIT
interface after one week of fuzzing. For Jsfunfuzz/Su-
perion/DIE, we provide a Python script to calculate the
syntax correctness rate, which is at /path/to/FuzzJIT
/script/calculate_syntax_error.py.

E4: Evaluating throughput. One week of fuzzing should
work:
How to: FuzzJIT/Fuzzilli update the fuzzing status per
minute. We can read the throughput information from the
"Total Execs:" row of FuzzJIT interface after one week
of fuzzing. For Jsfunfuzz, its throughput is determined
by its timeout threshold since almost all samples can not
be finished in given time. For Superion/DIE, we can read
its throughput information from its "total execs:" row of
their interface.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20220912. Submission, reviewing and badging method-
ology followed for the evaluation of this artifact can be
found at https://secartifacts.github.io/usenix%20
sec2023/.

Figure 1: The interface of FuzzJIT.
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A Artifact Appendix

A.1 Abstract

autofz’s artifact contains the source code and all the bench-
marks used in the evaluation section of the paper. This artifact
appendix is used to outline the steps to retrieve the artifact
and how to use it to reproduce the experiments. Furthermore,
we provide the instructions to extend the framework (i.e. add
ad new fuzzer or a new benchmark to autofz).

A.2 Description & Requirements

The artifact contains the following components.
1. autofz source code
2. A pre-built docker image containing autofz, fuzzers, and

benchmarks.
3. A VM image which includes all the necessary changes

to the host environment and can be used to launch the
aforementioned docker image.

A.2.1 Security, privacy, and ethical concerns

During fuzzing, we modify some kernel parameters which
docker shares with the host. For example, we enable core
dump and disable ASLR for the whole system. Therefore, we
recommend that running autofz inside a VM.

A.2.2 How to access

1. Source code https://github.com/sslab-gatech/autofz
2. Source code with commit hash
https://github.com/sslab-gatech/autofz/tree/

b9a795dda252aa37406d593434b710b0fbedd177
3. Docker image: https://hub.docker.com/r/fuyu0425/autofz
with SHA256 digest f39fb70af5db and tag v1.0.1.
4. VM image: https://doi.org/10.5281/zenodo.7865366

A.2.3 Hardware dependencies

During the evaluation, we use a cluster of Ubuntu 20.04 ma-
chines equipped with AMD Ryzen 9 3900 (12C/24T), 32 GB

RAM, and 512 GB SSD disk space. To use the provided
docker image or VM image, 30 GB disk space is required.

A.2.4 Software dependencies

To use the docker image, a working Docker/Podman under
Linux is required. Alternatively, to use the VM image, Virtu-
alBox/VMware is required.

A.2.5 Benchmarks

All benchmarks required for evaluation are already in the
docker image.

A.3 Set-up
We provide a detailed set-up process in README.md in the
provided GitHub repository. However, building all fuzzers and
benchmarks will takes a lot of time and resource. Therefore,
we recommend using either the pre-built docker image or the
VM image (preferred).

A.3.1 cgroup v2 downgrade

autofz uses cgroup v1; therefore, a manual downgrade from
v2 to v1 might be required in newer operating systems. This
can be done by adding “systemd.unified_cgroup_hierarchy=0”
to the kernel command line (e.g. via “/etc/default/grub”).

A.3.2 Basic Test

To make sure autofz is installed successfully, type the follow-
ing command:

autofz --help

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We demonstrate that autofz can achieve better cov-
erage against different target binaries compared with
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individual fuzzers (Figure 3 in the paper). The result is
supported by E1.

(C2): We demonstrate that autofz can achieve better cover-
age against different target binaries compared with other
collaborative fuzzing techniques ENFUZZ and CUPID
(Figure 7 in the paper). The result is supported by E2.

A.4.2 Experiments

Setup. To execute the experiments, we need to pull docker
images and launch a docker container by the following com-
mands.

docker pull fuyu0425/autofz:v1.0.1
docker tag fuyu0425/autofz:v1.0.1 autofz

docker run --rm --privileged -it autofz
/bin/bash.

Note that, the result is not preserved after exiting the con-
tainer. To preserve the fuzzing output, we need to mount a
docker volume.

docker run --rm --privileged -v
$PWD:/work/autofz -w /work/autofz -it
autofz /bin/bash.

After entering the docker, we need to tune the necessary
kernel parameters and create a cgroup for autofz; we pack all
commands in a script /init.sh and can be executed by the
following command. Note the security concern mentioned in
§A.2.1.

sudo /init.sh

More detail is in the running section of README.md.
(E1): [autofz v.s. individual fuzzers] [32000 compute-hours

+ 200 GB disk]: Generate the 24-hour fuzzing output
of autofz and individual fuzzers on 12 benchmark pro-
grams for 10 repetitions for Figure 3 in the paper.
How to: Use autofz with different command line argu-
ments to run all the fuzzing. README.md in the reposi-
tory has more information about the arguments.
Execution: To run autofz on a target (e.g. exiv2), use
the following command:

autofz -o output-exiv2-autofz -t exiv2
-T 24h -f all

To run a individual fuzzer (e.g. AFL) on a target (e.g.
exiv2), use the following command:

autofz -o output-exiv2-afl -t exiv2 -T
24h -f afl --focus-one afl

Output directory specified by -o needs to be different
for each fuzzing repetition.
Results: For each fuzzing run, autofz will generate a
log file in JSON format, which includes all the coverage
and the number unique bugs information.
Additionally, there is a directory called eval in the
fuzzer output directory. The directory stores the results
of crash deduplication and ASAN output of each crash.

(E2): [autofz v.s. ENFUZZ/CUPID] [7680 compute-hours +
200 GB disk]: Generate the 24-CPU-hour fuzzing output
of autofz-10, autofz-6, CUPID-4, and ENFUZZ-6 on 8
benchmark programs for 10 repetitions for Figure 7 in
the paper.
Execution: To run autofz-10 on a target (e.g. exiv2),
use the following command:

autofz -o output-exiv2-autofz10 -t
exiv2 -T 24h -f all -j10 --parallel

To run autofz-6 on a target (e.g. exiv2), use the follow-
ing command:

autofz -o output-exiv2-autofz6
-t exiv2 -T 24h -f afl fairfuzz
qsym aflfast lafintel radamsa -j6
--parallel

To run CUPID-4 (ENFUZZ-Q) on a target (e.g. exiv2),
use the following command:

autofz -o output-exiv2-cupid4 -t exiv2
-T 24h -f afl fairfuzz qsym aflfast
--enfuzz 300 -j4 --parallel

Results: Note that, in the paper, we draw the graph
based on CPU hours. Therefore, if we use 10 CPU
cores (by specifying -j 10), only the first 2.4 hours is
draw on the graph.

Because both experiments take enormous resource to repli-
cate, we recommend choosing only a subset of benchmarks.
Please note that fuzzing is an inherently a random process;
therefore, the reproduced result might not be the same as we
have reported in the paper. To alleviate this problem, we rec-
ommend increasing the fuzzing repetition (e.g. 10 times as
we did) and similar results are expected.

A.4.3 Inspect log files of autofz

The log file of autofz is in JSON format and can be easily
parsed by standard libraries in most programming languages.
To inspect the log file (e.g. exiv2.json), we recommend using
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a tool called jq (https://github.com/stedolan/jq), which can be
installed by the package manager in most Linux distributions.
We already installed it in both the docker image and the VM
image.

There are many fields in the log file. One of them is “log”,
which can be retrieved by the following command.

jq .log exiv2.json

The output is an array and each element of the array con-
tains the coverage (“bitmap” field) and unique bugs informa-
tion and the timestamp for that record. By default, a new log
entry is appended for every 60 seconds.

To get the results based on rounds, we can use the following
commands.

jq .round exiv2.json

The output is also an array and each element is the result
of one round. Each element records information for different
phases in one round (e.g. the coverage before/after prepara-
tion/focus phases, resource allocation metadata and current
difference threshold θ.)

In the provided VM, we provided one of the fuzzing log
with the path
/home/autofz/output_exiv2/exiv2.json

A.4.4 Plotting the figures

We also include the scripts to draw the figures used in the
paper.

autofz-draw -o output-draw -t exiv2 -d
exp -T 24h –pdf

Above commands is used to draw figure 3 in the paper but
only for exiv2.

We have more detailed explanation of each argument in the
provided repository.

Note that for timeout parameter -T, it specifies CPU Time;
therefore, for Figure 7, -T 3h is enough if you use 10 CPU
cores.

A.5 Notes on Reusability

We have included instructions to extend autofz (add new
fuzzers or new benchmarks) in the provided repository.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

CarpetFuzz is an NLP-based fuzzing assistance tool specifi-
cally designed for extracting constraint relationships between
command-line options from documents. Our evaluation of
CarpetFuzz involved a comprehensive analysis comprising an
end-to-end experiment, a comparative experiment, and four
submodule experiments. To facilitate the setup process, we
provide a Dockerfile, which helps mitigate potential issues
with environment configuration. Additionally, we offer a col-
lection of scripts that automate experiment reproduction and
effectively showcase the results obtained.

Given the nature of fuzzing-related work, reproducing the
experiments conducted with CarpetFuzz necessitates a sub-
stantial amount of computational resources. Replicating all
the experiments outlined in the paper requires a total of 33,600
CPU hours (across 5 repetitions). Simplifying the process
would still require a minimum of 15,840 CPU hours. Conse-
quently, we recommend employing a server with at least 32
cores to carry out these experiments, which would approxi-
mately take around 20.6 days. It’s worth noting that having a
higher number of cores would further enhance the efficiency
of the experiments.

A.2 Description & Requirements

Our paper describes a novel technique for identifying and
extracting constraints among program options from the docu-
mentation. Our artifact is a prototype of our technique named
CarpetFuzz, which contains the models, fuzzers, run scripts,
and documentation. We also provide a comprehensive collec-
tion of samples, run scripts, and documentation to replicate
the experiments outlined in our paper with ease.

*Corresponding author.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The artifact is provided as a GitHub repository:
https://github.com/waugustus/CarpetFuzz/commit/
50f09eb94d33abbfe3e18184988a0c3a8f0f5612.

A.2.3 Hardware dependencies

As a fuzzing-related work, reproducing the experiments ne-
cessitates a significant allocation of computational resources,
ranging from 15,840 to 33,600 CPU hours. To ensure com-
pletion within the review process timeframe, we recommend
utilizing a server with a minimum of 32 cores, which would
require approximately 20.6 days. For enhanced fault tolerance
and expediency, we strongly advise opting for a server with a
higher core count. In terms of hard disk capacity, our Docker
image occupies around 20GB of disk space, so a disk capacity
of 50GB is more than sufficient.

For the sole purpose of running CarpetFuzz, we believe that
mainstream computers available on the market are sufficient
to meet the requirements, such as computers with a 1-core
CPU, 8GB RAM, and a 128GB hard drive.

A.2.4 Software dependencies

All software dependencies have been successfully resolved
within our provided Dockerfile which is based on Ubuntu
20.04. Therefore, any system capable of running this image
is suitable for the task.

A.2.5 Benchmarks

Our benchmark includes a total of 50 executable programs,
with 20 sourced from our real-world program dataset and 30
obtained from the POWER dataset. All of these programs
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can be readily acquired from the internet. The process of
obtaining and compiling each program has been thoroughly
documented in our Dockerfile, facilitating automated building
using the "docker build" command.

A.3 Set-up
Clone the artifact repository:
$ git clone --recursive https://github.com/

waugustus/CarpetFuzz; cd CarpetFuzz

A.3.1 Installation

For easy installation, we offer a ready-to-use Docker image
for download,
$ sudo docker pull 4ugustus/carpetfuzz

or you can compile the image yourself using the Dockerfile
we provide.

$ sudo docker build -t
4ugustus/carpetfuzz:latest .
Then you can create the container based on the image,

$ sudo docker run -it --name "carpetfuzz"
4ugustus/carpetfuzz:latest bash

A.3.2 Basic Test

We take the program “tiffcp” as an example (in the con-
tatiner),

1. Use CarpetFuzz to analyze the relationships from the
manpage file:

$ cd /root/programs/libtiff

$ python3 ${CarpetFuzz}/scripts/find_
relationship.py --file $PWD/build_
carpetfuzz/share/man/man1/tiffcp.1

2. Use pict to generate 6-wise combinations:

$ python3 ${CarpetFuzz}/scripts/generate_
combination.py --relation ${CarpetFuzz}/
output/relation/relation_tiffcp.json

3. Rank each combination with its dry-run coverage:

$ python3 ${CarpetFuzz}/scripts/rank_
combination.py --combination ${CarpetFuzz}/
output/combination/combination_tiffcp.txt
--dict ${CarpetFuzz}/tests/dict/dict.json
--bindir $PWD/build_carpetfuzz/bin
--seeddir input

4. Fuzz with the ranked stubs:

$ ${CarpetFuzz}/fuzzer/afl-fuzz -i
input/ -o output/ -K ${CarpetFuzz}/
output/stubs/ranked_stubs_tiffcp.txt --
$PWD/build_carpetfuzz/bin/tiffcp @@

A.4 Evaluation workflow
In our paper, we evaluated CarpetFuzz through a total of six
experiments, including an end-to-end experiment, a compar-
ative experiment, and four submodule experiments, which
collectively required 33,600 CPU hours. Please note that due
to the authors of POWER declining our request to use their
tool during the review process, the comparative experiment
was deemed unnecessary (RQ5), resulting in a reduction of
7,200 CPU hours. Furthermore, all experiments in the pa-
per were repeated five times. However, for simplification pur-
poses, we consider three repetitions to be acceptable, resulting
in a reduction of 10,560 CPU hours. As a result, the minimum
required time for the experiments is 15,840 CPU hours.

If you desire to replicate the experiments in the paper com-
prehensively (excluding running POWER), you can execute
"$ ./run_fuzzing.sh" without any options in A.4.1. This
will trigger CarpetFuzz to perform fuzzing on the entire bench-
mark and repeat the process five times, thus amounting to a
total runtime of 30,000 CPU hours.

A.4.1 Preprocessing

1. Build docker image for experiments [1 human-minute +
6 compute-hours + 20GB disk]:

$ git clone https://github.com/waugustus/
CarpetFuzz-experiments

$ sudo docker build -t
carpetfuzz-experiment:latest .

$ sudo docker run -d --name
"carpetfuzz-experiment"
carpetfuzz-experiment:latest tail -f
/dev/null

$ sudo docker exec -it
carpetfuzz-experiment bash

2. Start all fuzzing instances [1 human-minute + 15,840
CPU-hours + 10GB disk]:

$ screen -dmS fuzzing bash -c
"./run_fuzzing.sh -r 3 2>&1 |tee
fuzzing.log"

3. Analyze the documents from the compiled programs
and generate the results of relationship identification and
extraction [1 human-minute + 10 computer-minutes +
1GB disk]:

$ screen -dmS analyze python3
analyze_manpages.py 2>&1 | tee analyze.log

A.4.2 Major Claims

(C1): Compared to aflfast, mopt, afl++, CarpetFuzz can help
afl find more uncovered edges. This is proven by the
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experiment (E1) described in Section 5.1 whose results
are illustrated in Table 1.

(C2): For explicitly declared relationships, CarpetFuzz
achieves an accuracy of 92.90% on the validation set and
98.80% on the documentation of the 20 programs. For
implicitly declared relationships, CarpetFuzz achieves
an precision of 95.87% and a recall of 90.09%. This is
proven by the experiments (E2) described in Section 5.2.

(C3): The precision and recall of conflict were 95.83%
and 89.40%, and those of dependency were 100% and
81.82%. The precision and recall of all relationships
were 96.10% and 88.85%. This is proven by the experi-
ments (E3) described in Section 5.3.

(C4): With our prioritization technique, CarpetFuzz found
more edges on each program that other fuzzers could
not discover. This is proven by the experiments (E4)
described in Section 5.4 whose results are illustrated in
Table 2.

(C5): CarpetFuzz can discover real-world vulnerabilities.
This is proven by the experiments (E4) described in
Section 5.6 whose results are illustrated in Table 4.

A.4.3 Experiments

(E1): [5 human-minutes + 1 compute-hour]: This experi-
ment will measure the edge coverage for all Fuzzing
instances and present the results in the format shown in
Table 1.
How to: First, run get_stubs.py in experiments/
RQ1/scripts to collect all testcases. Second, run
afl-showmap.py to obtain the coverage data. Third,
run analyze_results.py to present the results.
Preparation: The preprocessing step in A.4.1 is re-
quired to have fuzzing results.
Execution: Execute the following commands:
$ cd experiments/RQ1/scripts
$ python3 get_stubs.py
$ python3 afl-showmap.py
$ python3 analyze_results.py
Results: The ouput should match Table 1 of the paper.

(E2): [5 human-minutes + 5 compute-minutes]: This exper-
iment will measure the relationship identification per-
formance of CarpetFuzz on the validation set and the
documentation of the 20 programs.
How to: Run analyze_results.py in experiments/
RQ2/scripts to obtain the results.
Preparation: The preprocessing step in A.4.1 is re-
quired to obtain prediction results.
Execution: Execute the following commands:
$ cd experiments/RQ2/scripts
$ python3 analyze_results.py
Results: The ouput should match Section 5.2 of the
paper.

(E3): [5 human-minutes + 5 compute-minutes]: This exper-

iment will measure the relationship extraction perfor-
mance of CarpetFuzz.
How to: Run analyze_results.py in experiments/
RQ3/scripts to obtain the results.
Preparation: The preprocessing step in A.4.1 is re-
quired to obtain extraction results.
Execution: Execute the following commands:
$ cd experiments/RQ3/scripts
$ python3 analyze_results.py
Results: The ouput should match Section 5.3 of the
paper.

(E4): [5 human-minutes + 1 compute-hour]: This experi-
ment will measure the edge coverage for CarpetFuzz-
random instances and present the results in the format
shown in Table 2.
How to: First, run get_stubs.py in experiments/
RQ4/scripts to collect all testcases. Second, run
afl-showmap.py to obtain the coverage data. Third,
run analyze_results.py to present the results.
Preparation: The preprocessing step in A.4.1 is re-
quired to have fuzzing results.
Execution: Execute the following commands:
$ cd experiments/RQ4/scripts
$ python3 get_stubs.py
$ python3 afl-showmap.py
$ python3 analyze_results.py
Results: The ouput should match Table 2 of the paper.

(E5): [5 human-minutes + 1 compute-hour]: This experi-
ment will tally the number of crashes encountered by
CarpetFuzz instances.
How to: Run analyze_results.py in experiments/
RQ6/scripts to tally the number of crashes.
Preparation: The preprocessing step in A.4.1 is re-
quired to have fuzzing results.
Execution: Execute the following commands:
$ cd experiments/RQ6/scripts
$ python3 analyze_results.py
Results: CarpetFuzz should find multiple crashes in the
20 programs.

A.5 Notes on Reusability

A.5.1 How to find the manpage file of a new program?

In our experience, manpage files are typically located in
the share directory within the compilation directory, such
as /your_build_dir/share/man/man1.

A.5.2 How to fuzz the target not recorded in dict.json?

Unfortunately, as mentioned in the paper, CarpetFuzz does
not currently support the automatic selection of appropriate
option values from the document. To fuzz a new program,
you’ll need to read the manpage and manually add the synop-
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sis and option-value pairs in the JSON, which may not be too
time-consuming.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: The Gates of Time: Improving Cache
Attacks with Transient Execution
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Tel-Aviv University
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A Artifact Appendix

A.1 Abstract
We implement a speculative execution attack that improves
cache attacks by means of amplifying cache states. In ad-
dition to that, the construct that we use to perform this
amplification technique is also capable to facilitate robust
computation on cache states. This project is available at
https://github.com/0xADE1A1DE/GoT. In this Artifact Eval-
uation, we are applying for:

• "Artifact Available" badge

• "Artifact Functional" badge

• "Results Reproduced" badge

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

A.2.2 How to access

Artifact can be accessed here:
https://github.com/0xADE1A1DE/
GoT/commit/5bac7ece92f61025b7c1942c59b95e8a999ec231

A.2.3 Hardware dependencies

Amplification, Eviction Set, and Prime + Store Attack
Dynabook TECRA A50- EC, with an Intel(R) Core(TM) i5-
8250U CPU
Trace Processing and Stitching

A High Performance Computing (HPC) node with 80
threads and AVX-2 instruction-set support.
Circuit Evaluation

Intel(R) Core(TM) i7-9750H with cores 0,1,6,7 isolated.

A.2.4 Software dependencies

Amplification, Eviction Set, and Prime + Store Attack

Ubuntu 20.04.3 LTS, Chromium commit hash
(be87c21d2a7069363dfd66f278739d7e4211145e), em-
scripten.
Trace Processing and Stitching

A reasonably modern HPC node with Linux.
Circuit Evaluation

Ubuntu 21.04, huge-pages enabled, gnuplot.

A.2.5 Benchmarks

Amplification, Eviction Set, and Prime + Store Attack
None

Trace Processing and Stitching

• Dataset: The dataset consists of several components, in-
cluding the raw traces obtained from the Prime+Store at-
tack on ElGamal, the true key (referred to as the “ground
truth”) of the ElGamal encryption algorithm, and the
frequency analysis of these traces. The latter serves as
a guide for selecting the optimal starting trace for key
expansion.

• Location: The dataset is located in the
artifacts repository under the directory:
“trace_processing_and_stitching/DATASETS”

Circuit Evaluation

• Dataset: The dataset contains raw circuit accuracy data
which provides guidance on how to create the figures.
Furthermore, scripts that can be used to generate figures
that match those in the paper are also included in the
dataset.

• Location: The dataset can be found in the artifacts repos-
itory under the directory: “circuits/FIGURES”

A.3 Set-up
A.3.1 Installation

Amplification, Eviction Set, and Prime + Store Attack
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• Install gcc/g++, python3, matplotlib, gnuplot

• Install and activate emscripten

git clone https://github.com/emscripten-
core/emsdk.git

cd emsdk

./emsdk install latest

./emsdk activate latest

source ./emsdk_env.sh

• Switch the processor to run in performance mode (mean-
ing the processor is set to its’ maximum frequency), by
run the following command as superuser (‘sudo -s‘)

for i in 0..7; do echo performance >
/sys/devices/system/cpu/cpu$i/cpufreq/
scaling_governor; done

• Clone the GoT repo:

git clone https://github.com/0xADE1A1DE/GoT.git

• Get Chromium at commit hash
be87c21d2a7069363dfd66f278739d7e4211145e

Apply /GoT/amplification_eviction_set_finding/
wasm/v8.diff, which does the following:

– Creates a special native function %CustomFn

* Gives access to clflush

* Memory fences mfence; lfence

* Non functioning virtual to physical address
resolution (requires running Chromium with-
out sandbox, and some more tedious setup,
this part is not used by our experiments)

– Alters the assembler to emit rdtsc
when asked to emit a mov register,
imm with imm==0xddaa00ccbb00 ||
imm==0xddaa00ccbb80 This is used to pro-
vide our program with the ability to measure with
rdtsc.

Note: The experiment requiring this patch is for Figure
9, we only use the clflush and fences capabilities
provided by this patch.

Note: Due to the size of Chromium, and the
limited capacity of the storage in our system,
we suggest using our compilation located at
/home/acrypto/Documents/daniel/out/Default/chrome

Trace Processing and Stitching
Access to an HPC node with 80 threads and AVX-2 instruc-

tion set support helps in speeding up evaluation process.
Circuit Evaluation

Ensure that huge pages are enabled and core 0,1,6,7 (for
Core i7-9750H with 12 logical cores, these are core 0,1 and
their sibling cores) are isolated. On Ubuntu,

This can be achieved by adding the boot parameter:
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash

isolcpus=0.1,6,7 default_hugepagesz=1G
hugepagesz=1G hugepages=3000"

to /etc/default/grub.
Then run the command
sudo update-grub
Then Install gnuplot. In ubuntu, run
sudo apt install gnuplot

A.3.2 Basic Test

Circuit Evaluation To test that the program compiles suc-
cessfully and the environment requirements are met. This test
require huge pages to be enabled, refer to appendix A.3.1 on
how to enable. Run the program with
taskset -c 1 ./out gol_glider_demo
This will run the game of life glider demo. Expect a glider

to hover across your screen. Note that the process is pinned to
core 1, as it is isolated from the rest of the system to reduce
noise.

A.4 Evaluation workflow

Amplification, Eviction Set, and Prime + Store Attack
Refer to the readme file in

amplification_eviction_set_finding/README.md
and prime_store_attack_finding/README.md
Trace Processing and Stitching

Refer to the readme file in
trace_processing_and_stitching/README.md
Circuit Evaluation

Refer to the readme file in circuits/README.md

A.4.1 Major Claims

(C1): Amplification, Eviction Set, and Prime + Store Attack
We can achieve a difference of 100ms between medians
in native amplification (graph 8) We can achieve a dif-
ference of 1ms between medians in WASM amplification
(graph 9) We can find eviction sets in WASM (graph 10).
This is proven in experiment (E1)

(C2): Trace Processing and Stitching ElGamal Key Re-
covery using Prime+Store attack. This is proven by the
experiment (E2) described in [Section 6.3 - 6.6] whose
results are illustrated/reported in [Figure 11-12]

(C3): Circuit Evaluation Circuits achieve accuracy as de-
scribed in the paper. This is proven by the experiment
(E3) described in [Section 4] whose results are illus-
trated/reported in [Figure 3-6, and Table 1].
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A.4.2 Experiments

(E1): Amplification, Eviction Set, and Prime + Store Attack
[3 human-hours + 3 compute-hours + 500MB disk]: In
this experiment
How to: Follow the steps detailed in appendix A.4
Preparation: Install emscripten. As described in ap-
pendix A.3.1
Execution: Refer to the steps described in ap-
pendix A.4.
Results: Refer to claim (C1).

(E2): Trace Processing and Stitching [1 human-hour + 1
compute-hour on (80 thread HPC) + 100MB disk]:
In this experiment, ElGamal traces obtained from
Prime+Store are transformed into square and multiply
traces, and then key stitching is performed to combine
partial traces into the complete ElGamal key.
How to: Follow the steps detailed in appendix A.4
Preparation: To compile the trace process-
ing and stitching programs, navigate to the
"trace_processing_and_stitching" directory in the
repository, and issue the make command.
make
Execution: Refer to the steps described in ap-
pendix A.4.
Results: You can follow the instructions outlined in sec-
tion appendix A.4. Running the “sigproc” command will
produce a set of square and multiply traces. It’s impor-
tant to note that these traces represent only portions of
the complete ElGamal key, and must be combined or
“stitched” together to retrieve the full key. This process is
accomplished using the “stitch_parallel_simd_any_pos”
and “stitch_parallel_simd” commands, which will gen-
erate the complete ElGamal key as the output in the
form of square and multiply representation. Use the
“sm_to_exponent” program to convert this into binary
format.

(E3): Circuit Evaluation [30 human-minutes + 3 compute-
days + 100MB disk]: This experiment evaluates the ac-
curacy of our circuits. Results are stored in each sub-
directory of the experiments under the name “RESULT”
which include the raw samples, their mean, and median.
How to: Follow the steps detailed in appendix A.4
Preparation: 1) Navigate to the "circuits" directory in
the cloned repository. 2) Execute ./compile.sh to com-
pile program.
Execution: Refer to the steps described in ap-
pendix A.4.
Results: Refer to the steps described in appendix A.4.
Results of each circuit experiment is stored in a di-
rectory named “RESULT”. This directory contains the
raw samples, mean, and median. Use the “final.csv” to
recreate the histograms presented in the paper. The “FI-
NAL_MEAN” and “FINAL_MEDIAN” files carry the

mean and median values respectively for each circuit,
and are the values used in the paper. Follow the steps in
appendix A.4 to generate figures identical to the ones
found in the paper from collected data.

A.5 Notes on Reusability
All of our experiments are done on specific hardware, and
reproducing on others may need additional tuning.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: CACHEQL: Quantifying and Localizing
Cache Side-Channel Vulnerabilities in Production Software
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A Artifact Appendix

A.1 Abstract
We provide code and data of our paper in this artifact.
Our artifact is publicly available at https://github.com/
Yuanyuan-Yuan/CacheQL with detailed documents. Using
our tool, users can quantify the side channel leaks and localize
the leakage sites for different software.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our artifact does not violate the security and privacy of eval-
uators. Nevertheless, since evaluators need to perform real-
world side channel attacks (which require the root access) in
some evaluations, we suggest evaluators using our artifact on
test systems without sensitive data.

More importantly, we clarify that our artifact is provided
as-is and is only for research purposes; any users should not
use our scripts to attack others.

A.2.2 How to access

An archived copy of the initial version is available at: https:
//zenodo.org/record/8062035.

Our artifact is actively maintained at: https://github.
com/Yuanyuan-Yuan/CacheQL.

A.2.3 Hardware dependencies

We do not have any particular requirements for the hardware.
Our artifact may need GPUs to speed up training neural net-
works; we suggest evaluators having at least one GPU.

A.2.4 Software dependencies

Our tool is built based on Pytorch; evaluators need to first
install Pytorch. See detailed instructions in our documents.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Users only need to install Pytorch first. See details in our
documents.

A.3.2 Basic Test

Our artifact requires first preparing some data and then an-
alyzing these data. Please see detailed instructions in our
documents.

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

The repo on GitHub contains the following artifacts:

Search Terms The list of search terms that we used to iden-
tify as many TOTP apps in the Google Play Store as
possible (see Section 4.1 - App Selection);

App Checklists For each app, the customized checklist that
enumerates exactly which actions to take within the app
and which data to enter while recording the network
traffic (see Section 4.2.1 - Exploring the App); and

Decryption Scripts For each app that supports encrypted
TOTP backups, the golang script that implements the de-
cryption process (see Section 4.2.3 - Performing Crypt-
analysis).

Along with the instructions in the README, the app check-
lists and decryption scripts allow researchers to reproduce the
findings we report in Tables 1, 2, and 3 in the paper.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The README instructions included in the repo suggest flash-
ing a new Android ROM onto the device in order to use root
privileges to capture the plaintext traffic generated by each
TOTP app. Rooting a phone can have negative security conse-
quences and flashing a new Android ROM will entirely wipe
the phone’s data, so we do not recommend using your primary
Android device. If available, use an old Android phone that
you can flash with a stock Android ROM after evaluation.

The backup mechanisms on several TOTP apps require
divulging personal information, such as email address, phone
number, name, and date of birth. To protect your privacy, we
recommend using fake values where possible. Create a new
email address specifically for the purpose of evaluation. Many
apps require an active phone number that can receive SMS
messages for authentication purposes. During our work, we
purchased temporary phone numbers from messagebird.com
to protect our privacy. Other telephony APIs available online
can achieve the same privacy goals.

A.2.2 How to access

Publicly available at https://github.com/blues-lab/
totp-app-analysis-public.

The following tag is intended for review by the USENIX
2023 Artifact Evaluation committee: https://github.com/
blues-lab/totp-app-analysis-public/releases/
tag/usenix-sec23-ae.

A.2.3 Hardware dependencies

During our research, we used Pixel 3a Android phones run-
ning a custom version of Android 9. However, our results can
be replicated using any Android phone running version 9+.

A.2.4 Software dependencies

The README contains detailed instructions on how to install
many of the following software dependencies:

• The decryption scripts require golang v1.18 or higher.
The golang website provides installation documentation:
https://tip.golang.org/doc/install

• The Android Debug Bridge (adb) is required to con-
trol the Android phone from the researcher’s ma-
chine: https://developer.android.com/studio/
command-line/adb

• Magisk is a suite of open source software for customiz-
ing Android: https://github.com/topjohnwu/
Magisk/blob/master/docs/install.md

• mitmproxy is a free and open source interactive HTTPS
proxy: https://mitmproxy.org/

• (Optional) The scrcpy tool allows the researcher to mir-
ror the Android phone’s screen onto their computer and,
optionally, record the phone’s screen: https://github.
com/Genymobile/scrcpy

A.2.5 Benchmarks

None
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A.3 Set-up
Please see the README in the artifact repo on GitHub.

A.3.1 Installation

Please see the README in the artifact repo on GitHub.

A.3.2 Basic Test

After following the instructions in the repo’s README, you
should be able to capture plaintext traffic generated by each
TOTP app that you are evaluating.

A.4 Evaluation workflow
The README in the linked repo contains detailed steps to
reproduce our findings for each TOTP app we analyzed.

Once recorded, the plaintext traffic can be analyzed to
confirm whether TOTP fields (secret, issuer, label) are sent
in plaintext. Additionally, values from the plaintext can be
copy/pasted into the corresponding decryption scripts to ver-
ify the cryptographic primitives used in each TOTP backup
mechanism.

A.4.1 Major Claims

Our major claims are enumerated in the following tables in
the paper:

Table 1: Overview of the backup mechanisms supported in
each app.

Table 2: Overview of the backup mechanisms that automati-
cally sync data to the cloud.

Table 3: Cryptographic details of app backup mechanisms.

Evaluators should be able to verify and reproduce the findings
reported in each cell of Tables 1, 2, and 3.

A.4.2 Experiments

The linked repo contains a custom checklist for each TOTP
app, which enumerates exactly which actions to take within
the app and which data to enter while recording the network
traffic (see Section 4.2.1 - Exploring the App). It should
take about 10-20 minutes to execute the steps defined in the
checklist for each app.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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Vivek Nair
UC Berkeley

vcn@berkeley.edu
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A Artifact Appendix

Multi-Factor Key Derivation Function (MFKDF)
mfkdf.com | pbkdf2.com

A.1 Abstract

We present a JavaScript library implementing all of the factors
and methods associated with the Multi-Factor Key Derivation
Function (MFKDF) proposal. The library covers all proposed
features of MFKDF, including threshold MFKDF, policy-
based MFKDF, entropy measurement, authentication, and
factor constructions for HOTP, TOTP, HMAC-SHA1, OOBA,
and more. In separate repositories, we also include centralized
and decentralized proof-of-concept web applications, along
with a browser-based benchmarking suite. These repositories
together contain about 100,000 lines of JavaScript code.

To aid evaluation, we have detailed documentation that
includes usage examples for every supported method, as well
as a series of in-depth tutorials. We have also included a unit
testing suite with 100.0% code coverage, the results of which
can be viewed online. We have compiled and hosted the demo
applications and benchmarks for easy online access, and have
included video tutorials explaining how to use them.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our artifact is non-destructive, but caution should be taken
when using the proof of concept applications, as they are in-
tended for demonstration purposes only and have not been
audited for security vulnerabilities. When evaluating the demo
applications, evaluators should not use credentials that they
have used or intend to use for any other application. Nothing
of value should be stored in the ETH demo wallet at this time.
We also recommend that any parties wishing to remain anony-
mous use a fictitious name and disposable email address.

A.2.2 How to access

MFKDF Library
• GitHub Repository (Stable): https://
github.com/multifactor/MFKDF/tree/
1427224a709b77312b1b03cfa79ebed7bed316ea

• Website: https://mfkdf.com (or https://pbkdf2.com)
• Documentation: https://mfkdf.com/docs
• Unit Testing Results: https://mfkdf.com/tests
• Code Coverage Report: https://mfkdf.com/coverage

Centralized Demo
• GitHub Repository (Stable): https://github.com/
multifactor/mfkdf-application-demo/tree/
37ca96c58c050e460e6a3d4d09896eae06ed2720

• Live Demo: https://demo.mfkdf.com
• Video: https://youtube.com/watch?v=cB44BMGnFIs

Decentralized Demo
• GitHub Repository (Stable): https://github.
com/multifactor/mfkdf-wallet-demo/tree/
1fbc67d2b7505b2185a8ca3ce9ba163e22ae29ab

• Live Demo: https://wallet.mfkdf.com
• Video: https://youtube.com/watch?v=u3eUsPnv7K8

Benchmarking
• GitHub Repository (Stable): https://github.
com/multifactor/mfkdf-benchmark/tree/
72b81f89818b7b68313e05f17764aadb38fb99e0

• Live Demo: https://benchmark.mfkdf.com

A.2.3 Hardware dependencies

Any system with a stable internet connection and capable
of running JavaScript code should be able to run our demo
applications and benchmarks. For consistency, the device we
used for benchmarking has an AMD Ryzen 9 5950X CPU,
NVIDIA GeForce RTX 3090 GPU, and 128GB of DDR4
RAM, although the benchmarking results almost exclusively
depend on single-core CPU performance in this case. For
the centralized demo, an iOS or Android mobile device ca-
pable of installing the Google Authenticator application is
required. The decentralized demo application can use (but
doesn’t require) a YubiKey device supporting HMAC-SHA1.
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A.2.4 Software dependencies

We expect that any device with a relatively modern web
browser (HTML5/ES6) will be able to run our benchmarks
and demo applications. Our evaluations were performed in
Chrome Browser v103.0.5060.114 on Windows 10 v21H2.

If manually building any of the packages, each repository
contains a package.json file with the names and versions of
all dependencies. Node.js and NPM are required to build and
test each package; we used Node.js v16.15.0 and NPM v8.4.0.
Running npm install in the root directory of each repository
should automatically install all of the dependencies.

A.2.5 Benchmarks

A self-contained benchmark that can run in any modern
web browser (usually in less than a minute) is available at
https://benchmark.mfkdf.com. The relevant source code
is visible in index.html. No external data is required.

A.3 Set-up
A.3.1 Installation

1. Download and install the latest version of Google Chrome
from https://www.google.com/chrome.

2. Download and install the latest LTS version of Node.js
(including NPM) from https://nodejs.org/en.

3. On a mobile device, download and install the latest version
of Google Authenticator for iOS or Android.

4. Clone our main GitHub repository by running
git clone http://github.com/multifactor/MFKDF

5. Open the root directory of the repository (cd MFKDF), and
then run npm install to download all dependencies.

6. Repeat steps 4 and 5 for each of the demo repositories if
you wish to build them instead of using the hosted versions.

A.3.2 Basic Test

If the repository and dependencies have been installed
correctly, running npm run build should successfully
compile the package (you should see a message like
webpack X.X.X compiled with X warnings in X ms).

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The MFKDF algorithms and constructions of §4–§9, as
summarized by the pseudocode given in §A, can be used
to produce a fully-functional MFKDF implementation
satisfying the stated definitions and security goals of §3.
This can be verified by experiment (E1), which runs a
test suite enforcing the specification of the paper.

(C2): MFKDF has a low computational overhead over
PBKDFs in a typical web browser. This can be verified
by experiment (E2), which runs browser-based bench-
marks for the setup and derive functions of a standard
3-of-3 MFKDF setup, a 2-of-3 threshold MFKDF setup,
and all supported authentication factor constructions.
The results can be used to verify the performance claims
of §11 of the paper, particularly figures 7 and 8.

(C3): MFKDF can be used in place of PBKDFs in common
centralized applications like password managers. Such
applications can authenticate using derived keys (see §7),
enforce arbitrarily specific derivation policies (see §9),
and are fully backward-compatible with existing popular
authentication factors like TOTP (see §5). This can be
verified by experiment (E3), which evaluates a functional
MFKDF-based password management application using
the standard Google Authenticator mobile app, and can
in turn can be used to confirm §10.1 of the paper.

(C4): MFKDF can be used to enable new applications in
situations where PBKDFs would not be used, such as in
fully-decentralized applications. The public parameters
(α) can be stored openly, such as on a public blockchain.
This can be verified by experiment (E4), which evaluates
a decentralized Ethereum and ERC20 wallet based on
MFKDF and stores parameters using IPFS and IPNS,
per the description of §10.2 of the paper.

A.4.2 Experiments

(E1): [Unit Tests] [5 human-minutes + 5 compute-minutes]:
Run the included unit testing suite to verify that all tests
are passing with 100.0% code coverage.
Preparation: Clone the main MFKDF repository and
install the dependencies as described in §A.3.1.
Execution: Simply run npm test to simultaneously
generate testing and code coverage results. The tests
assert the library’s compliance with the specifications of
the paper; you can browse the test directory to verify.
Results: After about 2 minutes, 337 passing should
be displayed with no tests failing. Below that, the code
coverage report should show 100% for all files.

(E2): [Benchmark] [5 human-minutes + 1 compute-minute]:
Run our browser-based benchmark to replicate the main
performance evaluation described in the paper.
Preparation: Visit our hosted benchmarking page at
https://benchmark.mfkdf.com (recommended), or
clone the benchmarking repository and read README.md.
Execution: Simply click “run now” to benchmark
MFKDF, threshold MFKDF, and all supported factors.
You can browse the source code to verify its validity.
Results: After about 1 minute, a results table should be
displayed that roughly matches Fig. 7 and Fig. 8 of the
paper. The scripts for generating these figures using the
benchmarking output are included in the figs directory.
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(E3): [Centralized Demo] [30 human-minutes]: Run our
browser-based centralized proof-of-concept to verify the
compatibility results described in §10.1 of the paper.
Preparation: Visit our hosted application demo at
https://demo.mfkdf.com (recommended), or install
the repository manually per §A.3.1 and run npm build.
Execution: Create an account on the demo application
using false information and the Google Authenticator
app on your mobile device. Use an anonymous, but valid,
email address that can receive mail. Store at least one
fictitious password, then log out. To store a password,
type a site name (e.g., google.com), then click on the cor-
rect option from the dropdown, and type a username and
password before clicking save. Log back in using your
master password and TOTP, or try the various recovery
options, and verify that you can still access the stored
password. Our demo video shows the intended usage.
Results: Confirm that the application behaves as de-
scribed in the paper. Specifically, it should be fully
backward-compatible with the Google Authenticator mo-
bile app, and that incorrect login factors can’t be used
to successfully access encrypted information. You can
verify that the source code uses MFKDF as described.

(E4): [Decentralized Demo] [30 human-minutes]: Run our
browser-based decentralized proof-of-concept to verify
the functionality described in §10.2 of the paper.
Preparation: Visit our hosted application demo at
https://wallet.mfkdf.com (recommended), or in-
stall the repository per §A.3.1 and run npm build.
Execution: Use false credentials to create a wallet for
the Ethereum mainnet or Ropsten testnet. Note the user-
name and recovery code. Optionally, you may transfer
nominal funds to the wallet address using a free Ropsten
faucet. Sign out, then log back in using your password
and recovery code, and verify that you can still access
the funds. Our demo video shows the intended usage.
Results: Confirm that the wallet behaves as described
in the paper. Verify that incorrect login factors can’t be
used to successfully access the wallet. You can check
that the source code uses MFKDF as described.
*Note: In the time between submission and publication,
the Ethereum merge caused the Ropsten testnet to shut
down. Our new and improved demo, using the Sepolia
testnet, can be found at https://ciao.mfkdf.com.

A.5 Archive of Repositories

The version of each repository evaluated by the USENIX
AEC has been tagged with “usenix-ae” on GitHub. A copy of
each of these repositories has also been uploaded to Zenodo
in their evaluated state for historical preservation:

https://doi.org/10.5281/zenodo.7859226

A.6 Notes on Reusability
The MFKDF JavaScript library was built with the express
goal of being flexible and easy to deploy in a wide variety
of new or existing applications. Its creative commons license
puts almost no restrictions on non-commercial use.

We suggest that interested parties get started by visiting
mfkdf.com to learn more, reading our tutorial series, browsing
our detailed documentation, and trying our demos.

The MFKDF library is flexible, modular, and easy to extend
with new features and factor types. If you are interested in
contributing, please read our contributing guide.

The benchmarking code and two demo applications are
all offered under the MIT license, and can be modified and
redistributed essentially without restriction.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: Lost at C: A User Study on the Security
Implications of Large Language Model Code Assistants

Gustavo Sandoval*, Hammond Pearce*, Teo Nys, Ramesh Karri, Siddharth Garg, Brendan Dolan-Gavitt
New York University

A Artifact Appendix

A.1 Abstract
This artifact contains raw user data collected during the user
study and the scripts used for study evaluation. The user data
includes (1) anonymous demographic information, (2) sub-
mitted code files, (3) the annotations to those code files per-
formed by the authors’ manual security analysis, (4) the com-
plete database record of ‘prompts’ and ‘suggestions’ by the
utilized language model (code-cushman-001 by OpenAI).
The scripts for study evaluation are written in Python version
3.10.6, and may be executed on any compatible machine.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The code executes locally on resources obtained via the arti-
fact repository. No internet or network access is used beyond
this initial download of the artifact repository and the subse-
quent installation of software dependencies (Python libraries,
see Section A.2.4).

The user study data was collected via the involvement of
human participants and was approved by New York Univer-
sity’s Institution Review Board (IRB) as #IRB-FY2022-6074.
There is no known risk for evaluators when executing this
artifact as no destructive steps are taken and no evaluator files
will be impacted.

A.2.2 How to access

Access via URL: https://zenodo.org/record/7187358

A.2.3 Hardware dependencies

No special hardware dependencies are required, only a ma-
chine capable of running Python. The authors used a computer
with 16GB of RAM and an Intel i7-10750 with Ubuntu 22.04.

A.2.4 Software dependencies

We assume that evaluation is being undertaken on a Debian-
based Linux system. The specific software dependencies are

*Equal Contribution

Python 3.10.6, virtualenv 20.13.0, and pip 20.0.2. Installation
is described under Section A.3.1.

A.2.5 Benchmarks

The user study data is provided as an input to the artifacts.
They are provided in the folder data as part of the repository
download.

A.3 Set-up

A.3.1 Installation

Ensure build-essential, Python3, pip, virtualenv, and parallel
are installed. These should be able to be installed on Debian-
based Linux systems with:

$ sudo apt-get install build-essential
$ sudo apt-get install python3 python3-pip parallel
$ sudo pip3 install virtualenv

Download the repository from the Zenodo URL. Navigate
to the root of the downloaded folder, and create and activate a
new virtual environment:

$ virtualenv venv
$ source venv/bin/activate

Now install the necessary Python libraries:

$ pip install -r requirements.txt

A.3.2 Basic Test

You can test that your system works by running the first (and
simplest) generation,

$ python plot_fig7.py

This should produce:

Created FIG7 as figures/functionality.pdf

Which you can check by opening that file and seeing that it
matches the paper.
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A.4 Evaluation workflow

A.4.1 Major Claims

(C1 / RQ1 - Functionality): There are systematic differ-
ences between the ‘assisted’ and the ‘control’ groups,
with the ‘assisted’ group having a small but consistent
advantage over the ‘control’ group, and the ‘autopilot’
group outperforming both. The small sample size how-
ever means that the comparison does not reach statistical
significance. These results are presented in the paper in
Section 4.2.Results and Figure 7, and reproduction is
described in Experiment E1 of this Appendix.

(C2 / RQ2 - Security ‘aggregate’): For all four cases
{CWEs/LoC over compiling functions; CWEs/LoC
over functions passing unit tests; Severe CWEs/LoC
over compiling functions; Severe CWEs/LoC over
functions that pass the unit test} the ‘assisted’ group
has fewer bugs compared to the ‘control’, with up to
a 22% lower mean for the ‘assisted’ group compared
to the ‘control’ for Severe CWEs/LoC over functions
that pass unit tests. For severe CWEs, the comparisons
are also statistically significant using non-inferiority
tests with δ = 10%. This suggests that in the aggregate
case, LLMs may provide a slight benefit to security.
These results are presented in the paper in Section
4.3.3 Topline results and Figure 8, and reproduction is
described in Experiment E2 of this Appendix.

(C3 / RQ2 - Security ‘per-function’): When examining in-
dividual functions in the user study, results vary, with
different functions being harder or easier for each group
and with some differences being statistically significant.
As a result of this analysis, it is hard to conclude how
LLM suggestions may impact the code security of any
arbitrary code-writing task (some functions are made
less buggy, some are made more, it likely depends on
the complexity of each specific function). These results
are presented in the paper in Section 4.3.4 Per-function
CWE rates, and Table 3, and reproduction is Experiment
E3 of this Appendix.

(C3 / RQ3 - Bug origin): Even though suggestions from the
LLM may contain bugs, the human developers intro-
duced a majority of the bugs present in the submitted
code from the ‘assisted’ group. These results are pre-
sented in the paper in Section 4.4 RQ3 - On the origin
of bugs.

A.4.2 Experiments

The functionality of these artifact scripts are predicated on
the completion of a user study as outlined in Preliminary 1
and the formatting of that data in Preliminary 2 as well as
bug data encoding in Preliminary 3. Should a fresh user study
not be desirable/attempted, evaluators may skip ahead to the
data analysis stage starting with Experiment E1.

Preliminaries (User study and first-pass processing):

Preliminary 1 - User study (Manual) [Approximately 1
month]: Each experiment E1-E4 implicitly relies on the
data produced by a user study following the setup of the
paper (see the paper Section 3). This would use the user
study participant files provided in the linked artifacts
repository folder study_participant_instructions.
The data produced by our user study is provided.

Preliminary 2 - First-pass data processing (Automated)
[Approximately 15 compute-minutes]: This step
converts the given user study data files into ones suitable
for the rest of the data processing pipeline. This includes
running functional tests against the study-designed test
cases and breaking the files into separate functions for
split testing (see paper Section 4.2 ‘Split Testing’) and
manual bug encoding (see Preliminary 3). Note that
executing the linked scripts ‘resets’ the bug encoding
process: as a result, the script will create a new directory
rather than overwrite the data that our study collected
(should you wish, you may manually overwrite our data
by using a copy paste).
Preparation: As per Section A.3.1.
Execution: From the functionality_tests
directory, execute ./run_all.sh. This script
creates a directory with the necessary test-
ing infrastructure for each user study file in
functionality_tests/repos/{uuid}, executes
the test suites, and saves the results to JSON files in
each directory named api_report.json (indicating
which API functions were implemented, unimple-
mented, or failed to compile), orig_testsuite.json
(the results of the basic 11-function test suite), and
ref_testsuite.json (the results of the expanded
45-function test suite).
This script will produce for each participant a direc-
tory containing the results of the split-functional test-
ing and the components of each of their submissions. It
also creates extraneous/intermediate files we removed
from our own data output folder, which can be found at
data/submitted_assignments/*.

Preliminary 3 - Bug encoding (Manual) [Approximately
66 person-hours]: To evaluate the security of the code
provided by the users, manual analysis was performed.
This involved the process described in the paper Section
4.3.1. From a technical point of view, each file in
the data/submitted_assignments/{uuid}/parts/
gen_{function}.c was read by three people who
manually looked for security relevant bugs. These
annotations are still present and may be modified
or evaluated by artifact evaluators. Once this eval-
uation is done, the bugs must be ‘typed up’ into
a sqlite database with the schema described in
bugs_and_demographics.sqlite3.
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Analysis of user study data:
(E1 / RQ1 - Functionality) [<1 minute total]: This experi-

ment runs several Python scripts.
Preparation: Section A.3.1 and the preliminaries.
Execution: To see the data relevant to this claim
run the command: python plot_fig7.py. This will
produce the file figures/functionality.pdf
as well as the file data/derived_data/
functionality_stats.txt.
Results: The file figures/functionality.pdf dis-
plays the relationship between groups, and should show
how the ‘autopilot’ group appears to function better
than the ‘assisted’ group, which functions better then
the ‘control’ group. Statistically speaking, however, the
comparisons between groups for code passing basic and
expanded tests does not reach statistical significance as
shown in the functionality_stats.txt file from line
88 onwards.

(E2 / RQ2 - Security ‘aggregate’) [<1 minute total]: This
experiment runs several Python scripts.
Preparation: Section A.3.1 and the preliminaries.
Execution: To see the data relevant to this claim run
the command: python plot_fig8.py
Results: The following results will be presented in the
terminal and they will create the appropriate images for
Figure 8 of the paper:
Plotting figures/bugs_per_loc_compiled.pdf
Plotting figures/bugs_per_loc_passing.pdf
Plotting figures/bugs_per_loc_severe_compiled.pdf
Plotting figures/bugs_per_loc_severe_passing.pdf

In addition, to run the non-inferiority tests with δ =
10%, after running the script to run the figure, you
may run the script python inferiority_tests.py.
This script will produce in the command line the re-
sults that show the p-values for each of the four groups.
The two important values for the graph are the values
for Per Loc Severe Compiled and Per Loc Severe
Passing, which show that for ‘the Severe CWEs per
Line of Code Compiled’ the non-inferiority test is signif-
icant with p-value of p=0.04 and the Non-inferiority test
for the Severe CWEs per LOC passing which is p=0.06.

(E3 / RQ2 - Security ‘per-function’) [<1 minute total]:
This experiment runs several Python scripts.
Preparation: Section A.3.1 and the preliminaries.
Execution: The results for this claim are made
in a two step-process. Firstly, we derive the
main Table 3 data by the command python
generate_table3.py which will produce the
file data/derived_data/table3.tsv. Then, we
perform the non-inferiority tests by running python
inferiority_per_func.py.
Results: The statistical test results between function
group pairings are directly printed to the console. These
in conjunction with the derived table3.tsv should

match Table 3 in the paper.
(E4 / RQ3 - Bug origin) [<1 compute-minutes, up to 6

person-hours]: This experiment runs several Python
scripts and may involve a further optional human-
annotation step.
Preparation: Section A.3.1 and the preliminaries.
Execution: Demonstrating this is a two-step process.
First we run the command
python suggestion_cover.py -o
data/derived_data/suggestion_cover.html
to display the origin of code in the final output files.
There is now a human-annotation step, which is
required as determining the relationship with the
final code and the model suggestions was often
beyond simple lexical analysis. For result repro-
duction, this step may be considered optional as it
is laborious. For each bug present in each file in
data/submitted_assignments/recombined_list_
files/Active/{uuid}-list.c, one must scroll to
the given bug location in the suggestion_cover file.
Using a mouse-over, this will display the lexical origin
of the suggestion. If the reviewer agrees, then this
annotation can be recorded in the original file in the
manner described in bug_origin_all.py. The authors
thus went through each identified bug and visually
determined their origin.
Secondly, once bugs were annotated, we can then use the
command python bug_origin_all.py, which uses
grep to scan the annotated code files for the human-
annotated bugs and their origins and aggregates the statis-
tics. The script prints the results to the terminal, reporting
that 63.1 % of bugs come from human developers in the
assisted groups.
Results: Results are presented in the terminal and dis-
play the count of the origin of each bug.
We can explore the specific reasons for this further by
examining a specific bug, CWE-416, with the command
python bug_origin_cwe416.py. This will, for each
user in the assisted group, find each instance of the bug—
then reporting if the first time it appeared it was in a
suggestion or in the human’s own-written code, then
count the number of times it was suggested, accepted,
and the number of times it appeared in the final document.
The results show that for this bug, the LLM typically
suggested the bug even if it was not already present in
the user’s code.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

We teach you how to run our experiments in this appendix. If
you have any questions, please let us know.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

https://github.com/wjl123wjl/Aegis.git
The GitHub hash is:
95ded45538bf358ce5122a6e3ff920db25525186

A.2.3 Hardware dependencies

You need GPUs to train or run models.

A.2.4 Software dependencies

None.

A.2.5 Benchmarks

Datasets. Our source code could automatically download
the datasets, i.e., CIFAR-10, CIFAR-100, STL-10. For Tiny-
ImageNet, please download it by yourself.
Models. Our source code could train all models, and you can
directly run the scripts to train the models.

� Corresponding authors.

A.3 Set-up
A.3.1 Installation

We list the python packages and the corresponding versions to
install. Note other versions may work as well, but we haven’t
tried it.

(1) Please install python 3.6.9.
(2) Please install pytorch 1.7.0.
(3) Please install torchvision 0.8.1.
(4) Please install tensorboardX 2.5.
(5) Please install matplotlib 3.3.4.
(6) Please install tqdm 4.60.0.
(7) Please install pandas 1.1.5.
(8) Please install numpy 1.18.5.

A.3.2 Basic Test

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Aegis could effectively mitigate TBT attacks, and
adaptive TBT attacks.

(C2): Aegis could effectively mitigate TA-LBF attacks, and
adaptive TA-LBF attacks.

(C3): Aegis could effectively mitigate ProFlip attacks, and
adaptive ProFlip attacks.

A.4.2 Experiments

Before conducting experiments, you need to train all models.

• CIFAR-10: train resnet32.
(1) cd cifar10/resnet32
(2) Train the base model: sh train_CIFAR.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh
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• CIFAR-10: train vgg16.
(1) cd cifar10/vgg16
(2) Train the base model: sh train_CIFAR.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh

• CIFAR-100: train resnet32.
(1) cd cifar100/resnet32
(2) Train the base model: sh train_CIFAR.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh

• CIFAR-100: train vgg16.
(1) cd cifar100/vgg16
(2) Train the base model: sh train_CIFAR.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh

• STL-10: train resnet32.
(1) cd stl10/resnet32
(2) Train the base model: sh train_STL.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh

• STL-10: train vgg16.
(1) cd stl10/vgg16
(2) Train the base model: sh train_STL.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh

• Tiny-ImageNet: train resnet32.
(1) cd tinyimagenet/resnet32
(2) Train the base model: sh train_tinyimagenet.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh

• Tiny-ImageNet: train vgg16.
(1) cd tinyimagenet/vgg16
(2) Train the base model: sh train_tinyimagenet.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh

(E1): For TBT attacks.
(1) First enter a folder to attack the target model, e.g.,
cd ./Aegis/TBT/resnet32-cifar10/
(2) If you want to conduct the TBT attack, run the in-
struction: python3 TBT_noadaptive.py. Then, you can
observe the ASR.
(3) If you want to conduct the adaptive TBT attack, run
the instruction: python3 TBT_adaptive.py. Then, you can
observe the ASR.

(E2): For non-adaptive TA-LBF attacks. Please enter the
folder: cd TA-LBF/non-adaptive. For adaptive TA-LBF
attacks. Please enter the folder: cd TA-LBF/adaptive.
(1) on cifar10 and resnet32, run the instruction:
sh ./attack_reproduce_k=50_resnet32_cifar10.sh
(2) on cifar10 and vgg16, run the instruction:
sh ./attack_reproduce_k=50_vgg16_cifar10.sh
(3) on cifar100 and resnet32, run the instruction:
sh ./attack_reproduce_k=50_resnet32_cifar100.sh
(4) on cifar100 and vgg16, run the instruction:

sh ./attack_reproduce_k=50_vgg16_cifar100.sh
(5) on stl10 and resnet32, run the instruction:
sh ./attack_reproduce_k=50_resnet32_stl10.sh
(6) on stl10 and vgg16, run the instruction:
sh ./attack_reproduce_k=50_vgg16_stl10.sh
(7) on tinyimagenet and resnet32, run the instruction:
sh ./attack_reproduce_k=50_resnet32_tinyimagenet.sh
(8) on tinyimagenet and vgg16, run the instruction:
sh ./attack_reproduce_k=50_vgg16_tinyimagenet.sh

(E3): For Proflip attacks.
(1) First enter a folder to attack the target model, e.g., cd
cd ./Aegis/ProFlip/resnet32-cifar10/
(2) If you want to conduct the ProFlip attack,
run the instruction to generate a trigger: python3
trigger_nonadaptive.py. Then, run the instruction to at-
tack: python3 CSB_nonadaptive.py. Then, you can ob-
serve the ASR.
(3) If you want to conduct the adaptive ProFlip at-
tack, run the instruction to generate a trigger: python3
trigger_adaptive.py. Then, run the instruction to attack:
python3 CSB_adaptive.py. Then, you can observe the
ASR.

A.5 Notes on Reusability
None.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
This is the artifact appendix for the IvySyn fuzzing frame-
work. It contains instructions about how to setup, run, and
reproduce the results of IvySyn, along with information re-
garding system and resource requirements.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

IvySyn is a fuzzer for discovering security-critical bugs in
Deep Learning (DL) frameworks. The list of APIs for which
IvySyn has uncovered bugs, during our experiments, is avail-
able in the repository of the project. If, during the reproduction
of any reported result, IvySyn produces PoVs for APIs not
listed in project repository, contact the authors via HotCRP
or follow the Responsible Disclosure steps in README.md to
report the (newly discovered) vulnerabilities to the developers
of the corresponding framework(s).

A.2.2 How to access

IvySyn is available at: https://gitlab.com/brown-ssl
/ivysyn/-/tree/4b3d26dda0ddea11282c2658e28090a
738dfd6c7 (stable ref.)

A.2.3 Hardware dependencies

The provided Docker images are configured to use 4 CPUs
and 16GB of RAM, but can also be set to use fewer (or more)
resources, as needed.

A.2.4 Software dependencies

We provide a Docker image that builds and runs IvySyn, and
hence Docker is required. Some scripts run outside Docker
containers and were tested on Debian v11—but they are rela-
tively simple and should work on any Linux distribution.

A.2.5 Benchmarks

All the data required for running our benchmarks are either
included in the project repository or can be produced by our
scripts during setup. Note that the prototype implementation
of IvySyn fuzzes both CPU- and GPU-specific implemen-
tations of DL kernels. However, we are not able to provide
access to machines with GPUs. Therefore, the benchmarks
in the artifact fuzz only kernels with CPU implementations.
This does not have any effect on the claims of the paper, other
than a smaller number of instrumented and fuzzed kernels.

A.3 Setup

A.3.1 Installation

To setup IvySyn, simply invoke docker/download
-prebuilt-image.sh. This script will download a pre-built
Docker image of IvySyn. Alternatively, in order to build
the IvySyn Docker image from scratch, invoke the script
docker/build-docker-image.sh, under the root directory
of the project repository. (Note that building the image from
scratch requires ≈3.5 hours on a 16-core, 64GB RAM host;
and the total size of the fully built image is ≈35GB.)

• To start the container, simply run:
docker/run-docker-image.sh
(This script is configured to run the container with access
to 4 CPUs and 16GB of RAM.)

• To provide more/less resources to the container,
use the optional --memory (e.g., --memory 8g)
and --cpus (e.g., --cpus 2) arguments to the
run-docker-image.sh script. If you increase the num-
ber of CPUs the container can use, you should also in-
crease the amount of RAM, since more parallel jobs may
require more memory.

• To get a shell on the container, run:
docker exec -it ivysyn-instance /bin/bash
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If you wish to run the experiments for comparing IvySyn
with the two other fuzzers, namely Atheris and DocTer, an
additional ≈39GB of storage is required for their correspond-
ing Docker images (i.e., ≈26GB for Atheris and ≈13GB
for DocTer). For more details, refer to A.4.1 and A.4.2.

A.3.2 Basic Test

For a quick smoke test, we recommend invoking the
do-run.sh script, inside the running Docker container of
IvySyn, and providing a small number of kernels to be
fuzzed with the --nkernels argument. For example:

./do-run.sh --seed 1 --pytorch --nkernels 5

Once the script done, it should display a summary of the
run, containing information about how to inspect the results.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): IvySyn automatically fuzzes DL frameworks and pro-
duces Proofs of Vulnerability (PoVs)—i.e., code snippets
that trigger memory errors in low-level (C/C++) code of
the respective framework via a high-level (Python) API.

(C2): IvySyn: (i) uncovers more crashes in the DL frame-
works than the state-of-the-art Python fuzzer Atheris,
and (ii) it does so faster. This is proven by the experiment
described in Section 7.2 of our paper.

(C3): IvySyn produces more PoVs per unit of time than
DocTer, yet another DL-framework fuzzer. This is
proven by the experiment in Section 7.3 of our paper.

A.4.2 Experiments

In what follows, we provide instructions on how to setup, run,
and interpret the results of our experiments. All compute-time
approximations assume you are using 16GB of RAM and 4
CPUs to run the Docker containers. For additional details, see
README.md at the root of the project repository.
(E1): [Up to 58 compute-hours – Up to 28 compute-hours

with suggested configuration + Up to 2GB disk]: Run
IvySyn on a selected framework and produce PoVs.
Preparation: Run and connect to the provided (or
custom-built) Docker image.
Execution: To perform a full run of IvySyn, invoke the
do-run.sh script, inside the running Docker container
of IvySyn, by providing an integer as the RNG seed
and either --tensorflow or --pytorch to choose the
framework to be fuzzed, as follows:

./do-run.sh --seed 123 --tensorflow

However, note that a full run will require ≈45 hours
for PyTorch and ≈12 hours for TensorFlow. We advise
restricting the amount of kernels that will be fuzzed, by
providing the extra --nkernels argument. Furthermore,
we suggest fuzzing 300 kernels for each framework.
This will require ≈17 hours for PyTorch and ≈9 hours
for TensorFlow, while still producing PoVs. Running on
TensorFlow will require an additional 2 hours for the
first invocation of the script, in order to compile the C++
developer-provided TensorFlow tests, which are also
used by IvySyn. Execute IvySyn as follows:

./do-run.sh --seed <rng seed> --tensorflow
--nkernels 300

Results: Once fuzzing is done, IvySyn will produce
PoVs under results/<framework>/ivysyn_povs
(where <framework> is pytorch or tensorflow). To
manually run and reproduce the PoVs, do the following
(in the IvySyn Docker container):

1. Activate the environment of the pip-installed
version of the corresponding framework. In the
case of PyTorch, run: source /home/ivyuser
/ivysyn/venv/anaconda3/bin/activate;
conda activate pytorch-1.11-orig. For
TensorFlow, run: source /home/ivyuser
/ivysyn/venv/tensorflow-2.6-orig/bin
/activate.

2. Run the PoVs produced under /home/ivyuser
/ivysyn/results/<framework>/ivysyn_povs
using python3 <pov.py> (where <pov.py> is the
filename of the selected PoV).

(E2): [Atheris-comparison] [Up to 400 compute-hours – Up
to 26 compute-hours with suggested configuration + Up
to 40GB disk space]: Run IvySyn and a selected vari-
ant of the Atheris fuzzer, and compare their efficiency
at uncovering crashing inputs.
Preparation: We provide a separate Docker image that
sets-up the two variants of Atheris, namely Atheris+
and Atheris++, which are described in Section 7.1 of
our paper. Similarly to the IvySyn image, you can build
this image from scratch, by running:

comparisons/atheris_comp/docker_env/docker
/build-docker-image.sh

or download a pre-built version of the image by running:

comparisons/atheris_comp/docker_env/docker
/download-prebuilt-image.sh

Execution: To perform the experiment that compares
IvySyn to Atheris, invoke the compare-fuzzers.sh
script outside the IvySyn container.
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You need to specify an RNG seed, the framework to fuzz
(either --tensorflow or --pytorch), the Atheris
variant (--atheris1, which corresponds to Atheris+;
or --atheris2, which corresponds to Atheris++), and
whether you want to limit the number of kernels to be
fuzzed using the --nkernels argument. For example:

./compare-fuzzers.sh --tensorflow
--atheris2 --seed 123 --nkernels 50

We suggest running at least 50 kernels to get a decent
approximation of the overall results.

The script above will:
1. Instrument the subset of 308 TensorFlow and 283

PyTorch kernels we performed our experiment
on (depending on the chosen framework) and re-
compile the target framework.

2. Execute IvySyn on the target kernels, limiting the
fuzzed kernels if --nkernels was specified.

3. Run the selected Atheris variant on the same sub-
set of fuzzed kernels.

4. Output a summary of the results.
Results: The compare-fuzzers.sh script will dis-
play a summary of the results. Specifically, a new
directory will be created at results/<framework>
/atheris_comp/ (where <framework> is pytorch or
tensorflow), containing the following:

• results.csv: start/end timestamp, as well as
whether a crash was found, for each API (CSV file).

• total_time.txt: total time of the run (text file).
• fuzzer_logs_dir.txt: name of the directory in

the Docker container with the raw logs produced by
the IvySyn fuzzer (text file).

The corresponding CSV that contains similar entries
for the Atheris run can be found at comparisons
/atheris_comp_fuzzed_<framework>.csv (where
<framework> is either pytorch or tensorflow).
The raw Atheris logs can be found in the Atheris
Docker container at /home/ivyuser/ivysyn-atheris
/fuzzer_output. To connect to the Atheris Docker
container, in order to manually inspect the logs, run
docker exec -it atheris-instance /bin/bash.

(E3): [DocTer-comparison] [Up to 34 compute-hours – Up
to 26 compute-hours with suggested configuration + Up
to 15GB disk space]: Run IvySyn and DocTer and
compare their effectiveness at producing PoVs.
Preparation: We provide a separate Docker image that
sets-up DocTer. Similarly to the IvySyn image, you can
either build it from scratch, by running:

comparisons/docter_comp/docker_env/docker
/build-docker-image.sh

or download a pre-built version of the image, by running:

comparisons/docter_comp/docker_env/docker
/download-prebuilt-image.sh

Execution: To perform the experiment that compares
IvySyn to DocTer, invoke the compare-fuzzers.sh
script outside the IvySyn container. You need to
specify an RNG seed, the framework to fuzz (either
--tensorflow or --pytorch), the --docter flag, and
whether you want to limit the number of kernels to be
fuzzed using the --nkernels argument. For example:

./compare-fuzzers.sh --tensorflow --docter
--seed 123 --nkernels 50

We suggest running at least 50 kernels to get a decent
approximation of the overall results.

The script above will:
1. Instrument the subset of 125 TensorFlow and 105

PyTorch kernels we performed our experiment
on (depending on the chosen framework) and re-
compile the target framework.

2. Execute IvySyn on the target kernels, limiting the
fuzzed kernels if --nkernels was specified.

3. Run DocTer on the same subset of fuzzed kernels.
4. Output a summary of the results.

Results: The compare-fuzzers.sh script will dis-
play a summary of the results. A new directory
with the IvySyn results will be created at results
/<framework>/docter_comp/ (where <framework>
is pytorch or tensorflow), and will contain files
similar to the ones mentioned in the Atheris ex-
periment (i.e., results.csv, total_time.txt, and
fuzzer_logs_dir.txt).
The corresponding CSV that contains similar entries
for the DocTer run can be found at comparisons
/docter_comp_fuzzed_<framework>.csv (where
<framework> is pytorch or tensorflow). The raw
DocTer logs can be found in the DocTer Docker
container at /home/workdir/<framework>. To con-
nect to the DocTer Docker container, in order to
manually inspect the logs, run docker exec -it
docter-instance /bin/bash.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
The artifact, written in Python, contains the code and dataset
for the major part of our work on fingerprinting voice com-
mands across the three most popular voice assistants. The ar-
tifact contains 7 datasets that we used along with code for our
data collection process which we used to collect the datasets
and the code we used to process the data and get the results
that we presented in our paper.

A.2 Description & Requirements
A.2.1 Environment setup

A.2.2 Security, privacy, and ethical concerns

There are no major security or privacy considerations except
that you will be collecting network traffic from the routers
which can include traffic from other devices connected to this
network. You would need to be careful about who has access
to this dataset

A.2.3 How to access

The code can be accessed from https://github.
com/dilawer11/va-fingerprinting/tree/
0dd1ec3a65e843e366e81ffd29721593bc8043b1.
The datasets can be downloaded from https:
//privacy-datahub.csc.ncsu.edu/publication/
ahmed-usenix-2023/. An archived version through Zen-
odo is available at https://doi.org/10.5281/zenodo.
8037394

A.2.4 Hardware dependencies

For analysis following specifications are minimum:

• CPU: (x86-64) 8 cores

• RAM: 16 GB

• OS: Debian Linux (Ubuntu recommended)

For data collection following specifications are recom-
mended:

• CPU: (x86-64) 4 cores

• RAM: 8 GB

• OS: Debian Linux (Ubuntu recommended)

• Speaker: Any Stereo PC Speakers

• Routers: 2x OpenWRT (ssh-capable) Linux routers

• Voice Assistant: Alexa, Google Assistant or Siri sup-
ported smart speaker

A.2.5 Software dependencies

You can either use the Docker image (provided
at https://privacy-datahub.csc.ncsu.edu/
publication/ahmed-usenix-2023/ or setup your
own environment (using either the Dockerfile or manually in-
stalling all dependencies). The github repository contains the
more detailed instructions on how to setup the environment
manually and on Docker. The software dependencies which
can be installed using apt-get are:

• python3.9 (analysis, data collection)

• python3-pip (analysis, data collection)

• tshark (analysis)

• tcpdump (router, data collection)

• dumpcap (data collection)

The following python packages also need to be
installed for analysis: autogluon.tabular[fastai,
xgboost, ray, lightgbm], pandas, scikit-learn,
matplotlib, tqdm, seaborn, datetime, plotly,
jupyterlab, python-dotenv. For data collec-
tion the following packages need to be installed:
python-dotenv, google-cloud-texttospeech, gtts,
tqdm, selenium.
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A.2.6 Benchmarks

The following datasets are available at the URLs provided
above:

• simple_50_alexa

• simple_50_siri

• simple_50_google

• simple_100_alexa

• skills_100_alexa

• stream_15_alexa

• mix_100_alexa

The results presented in Tables 2 and 3 of our paper are
mostly computed on these datasets and can be used as bench-
marks for the setup.

A.3 Set-up
The following subsections describe how to complete the setup

A.3.1 Docker Setup

To set up via the provided Docker container you need to
download it from the given link. After you have down-
loaded it use the following command to load the docker
container image into your Docker system. Replace the
path/to/dockerimage with the absolute path of the down-
loaded docker image
$ docker load < path/to/dockerimage

After you have loaded the Docker image you can then
create and start a container by using the following command
from inside the root repository directory
$ docker run -it
-v $(’pwd’):/va-fingerprinting
vafingerprint

The command above starts the container and mounts the
repository directory (including source and data) to the con-
tainer to any changes are reflected and persistent in local
storage.

A.3.2 Manual Installation

To manually install the software dependencies use the follow-
ing commands:
$ apt-get update && apt-get install
packagenames

Replace the packagenames with the packages that need
to be installed based on the type of setup i.e. analysis, data
collection. The analysis packages need to be installed on the

machine where the raw data is input (e.g our datasets) and
results need to be computed. The data collection packages
need to be installed on the machine where you want to dump
the data and want to run the speaker control script for data
collection. The router packages need to be installed on the
router which you want to capture traffic from. In this appendix,
we are primarily focused on the analysis part.

To install the Python packages use the following com-
mands:

$ pip3 install -r path/to/requirements.txt
Use the requirements file from the setup directory in
the GitHub repo. The requirements_analysis.txt
file contains the pip dependencies for the analysis and
the requirements_collection.txt contains the pip
dependencies for data collection.

To download and setup the datasets you can download
them from the URL mentioned above. Then unzip them in the
data directory of the cloned GitHub repostory. The detailed
instructions can be found in the data/README.md file.

A.3.3 Basic Test

After the setup is complete and you have set up the dependen-
cies and the test dataset. Use the following command from
the root of the cloned GitHub repository to run a basic test
that dependencies are properly installed (for the analysis).

$ sh src/scripts/test.sh

If the script runs without any errors and outputs the results
then everything should work fine.

A.4 Evaluation workflow

We provide the details and steps necessary to recompute the
results of activity detection and invocation detection which
are a major portion of our work in realistic voice activity
fingerprinting.

A.4.1 Major Claims

(C1): We achieved more than 98% accuracy while finger-
printing invocations on voice assistants. This is described
in Section 4.2 of our paper and in Table 2.

(C2): We improved the state-of-the-art accuracy in voice
command fingerprinting on a variety of datasets we col-
lected. The results are presented in Section 5.5-5.7 and
in Table 3 of our paper

A.4.2 Experiments

To re-compute the results for the datasets make sure you
have already set up the datasets as described previously and
conducted a simple test.
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A common step to both experiments is to process the
PCAPs to remove the unnecessary information and convert
to CSV format for easier processing with Python and Pandas.
To achieve this you can use the script provided as such

$ python3 src/scripts/PCAP2CSV.py -i
path/to/data/dataset

(E1): Invocation Detection [10 human-minutes + 3
compute-hour]: This experiment seeks to evaluate the
invocation detection performance on the datasets. The
results, once computed, should look similar to Table 2
of our paper
How to: Running this experiment is fairly simple, how-
ever, it might take long to actually compute the results.
We will initially need to convert the PCAP files to CSV
and then create sliding windows based on invoke records.
Then we will extract features from the windows and fi-
nally train the model. As a final step, we can aggregate
results across datasets and create a table
Preparation: After you have completed the
setup mentioned above. You can then use the
src/scripts/PCAP2CSV.py script to convert PCAP
files to CSV. If you have already converted (for another
experiment) you should skip this step.
Execution: After the CSV files are created you would
then, for each dataset, need to create windows, extract
features and train models. We have provided a default
short hand argument to the scripts which can automat-
ically do this. For each dataset you can compute the
results using the following command
$ python3 src/scripts/InvocationDetection.py
auto-train -i path/to/data/dataset

For further options and information you can either use
the -h option or see the GitHub README file.
Results: To create the table with all datasets you can
run the following script with the options as follows
$ python3 src/scripts/PostProcessing.py
id-table -d path/to/data

This will display a table with result metrics across differ-
ent models and datasets similar to Table 2 of the paper

(E2): Activity Detection [10 human-minutes + 3 compute-
hour]: This experiment is to evaluate the performance of
our voice activity fingerprinting method on the datasets
we collected. This experiment will reproduce the results
in Table 3 of our paper
How to: Similar to last experiment we will need the
CSV files (converted from PCAPs) from which windows
are created based on invoke records. We then extract
features and train the AutoGluon model.
Preparation: You can skip this step if the PCAPs for
the dataset are already converted to CSV. Otherwise, run

the following script to convert PCAP to CSVs.
$ python3 src/scripts/PCAP2CSV.py -i
path/to/data/dataset

Execution: To create windows, extract features and
train the AutoGluon model you can use the following
command.
$ python3 src/scripts/ActivityDetection.py
auto-train -i path/to/data/dataset

Alternatively, instead of the auto-train option you can
pass the windows, features, train arguments to the
script (in this order) to complete this experient.
More information on this script is provided in the GitHub
README file
Results: To create the table with all datasets you can
run the following script with the options as follows
$ python3 src/scripts/PostProcessing.py
ad-table -d path/to/data

This will display a table with result metrics across dif-
ferent datasets similar to Table 3 of the paper

A.5 Notes on Reusability
Our artifact was designed to be a prototype and hence is not
nearly optimized enough for production. To help with reusing
and adding additional functionality we have tried to make the
code easier to read and functionality separated into modules.
For the extension of a particular module, only that module can
be extended while keeping the rest of the code base largely
untouched.

The src/iotpackage/Utils.py file contains some util-
ity functions that can help with extending the functionality
and also help future researchers by optimizing some work-
flows. For example, the DataFrame2LatexTable can convert
a Pandas dataframe into a latex table format to save time.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: Pushed by Accident: A Mixed-Methods
Study on Strategies of Handling Secret Information in Source Code

Repositories

Alexander Krause, CISPA Helmholtz Center for Information Security

A Artifact Appendix

A.1 Abstract

Our paper contains a mixed-methods study, a survey with
developers on their experiences handling secrets in source
code, and an interview study with developers that experienced
code secret leakage in the past. In order to support our paper
and make it more useful for the readers, we provide all the
necessary artifacts available in a replication package. The
replication package includes: 1. The full survey and interview
recruitment materials (including Upwork post and invitation,
as well as GitHub invite messages). 2. The survey screening
questions and interview pre-survey questionnaire. 3. The sur-
vey and interview consent form. 4. The survey questionnaire
and interview guide. 5. The survey and interview codebook.
6. The background section on version control.

A.2 Description & Requirements

In this section, we provide the descriptions of all the appli-
cable subsections for our use case (i.e., "artifacts available"
badge).

A.2.1 Security, privacy, and ethical concerns

The data we provide is not harmful to viewers. All data we
provide has been anonymized to protect our participants’ pri-
vacy.

A.2.2 How to access

Our artifact can be accessed using the following URL: https:
//doi.org/10.25835/xfc2h3pg.

The complete replication package can be downloaded as a
.zip file through the provided link. This replication package
is hosted on the Research Data Repository of our university
(data.uni-hannover.de).

A.2.3 Hardware dependencies

None

A.2.4 Software dependencies

None

A.2.5 Benchmarks

None

A.3 Set-up
Our artifacts can be downloaded as a .zip file from the URL
we provided in the section A.2.2. The file contains the follow-
ing seven .pdf files:

1. README.md This .md file contains a list of all pro-
vided resources.

2. index.html This .html file is used to render the replica-
tion package as a website.

3. background.md This .md file contains an additional
background section on version control, source code plat-
forms, and secret information.

4. interviews/codebook.txt: This .txt file contains the high
level codebook, including counts of the codes that we
assigned to participants’ answers.

5. interviews/consentform.html: This .pdf file contains
the consent form we used in the pre-survey.

6. interviews/Interview_Guide.pdf This .pdf file contains
the semi-structured interview guide we used in our inter-
view study.

7. interviews/invite_mail.md This .md file contains our
recruitment material. We sent this invite mail text to
developers from GitHub.

8. interview/pre-survey.md This .md file contains the pre-
survey we used to collect demographics and screen par-
ticipants.

9. survey/codebook.md This .md file contains the high
level codes that emerged from the survey to identify code
secret leakage prevention and remediation approaches.
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10. survey/consentform.html This .html file contains the
consent forms used for participants recruited from Up-
work and GitHub.

11. survey/github_invite_mail.md This .md file contains
our recruitment material. We sent this invite mail text to
developers from GitHub.

12. survey/survey.md This .md file contains the survey
questionnaire.

13. survey/survey-matrix.png This .png file contains the
survey question on participants’ threat models because
it could not be displayed in a .md file.

14. survey/upwork_recruitment_material.md This .md
file contains all recruitment materials used to recruit
developers from Upwork.

A.3.1 Installation

N/A

A.3.2 Basic Test

N/A

A.4 Notes on Reusability
To replicate the study, we suggest using the survey question-
naire excluding the open-ended questions that did not work
well; we detailed on that in the paper). When replicating the
interview study, we suggest using our template of the inter-
view guide that we provide within this artifact.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix:
DeResistor: Toward Detection-Resistant Probing for Evasion of Internet

Censorship

Abderrahmen Amich, Birhanu Eshete, Vinod Yegneswaran and Nguyen Phong Hoang

.1 Abstract

DeResistor is a research project that provides a system ex-
tension to protect Probing for Evasion of Internet Censorship
from detection. Specifically, it offers IP address protection for
internet users that are running automated tools for censorship
measurments and evasion (e.g. Geneva).

In this artifact, we provide an instance of DeResistor im-
plemented on top of Geneva code: https://github.com/
Kkevsterrr/geneva. DeResistor leverages Machine Learn-
ing techniques to model a censor-side flow-level detector
and use it to guide Geneva genetic evolution towards more
detection-resilient evasion strategies. Additionally, DeResis-
tor introduces guided-pauses of censorship evasion attempts
and interleaving them with normal user-driven network activ-
ity to confuse IP-level detection.

.2 Description & Requirements

.2.1 Security, privacy, and ethical concerns

For Docker experiments, evaluators have no risk to execute
this artifact. However, real-world experiments are intended to
test DeResistor in censored regimes (e.g., China, India, etc).
Evaluators should not try to reproduce these experiments in
one of these countries using there personal machines. Instead,
they need to get access to vantage points that are remotely
controllable and do not require the involvement of real user
credentials that may identify individuals.

.2.2 How to access

Our artifact can be accessed via https://github.com/
um-dsp/DeResistor.

.2.3 Hardware dependencies

No specific Hardware dependencies are needed for docker
experiments. However, real-world experiments have to be
performed in censored regimes. If needed, we can provide
you with ssh access to one of our vantage points in China.

.2.4 Software dependencies

DeResistor has been developed and tested on Ubuntu. How-
ever, it should support Centos or Debian-based systems. Sim-
ilar to Geneva, due to limitations of netfilter and raw sockets,
this code does not work on OS X or Windows at this time and
requires python3.6. To reproduce In-situ experiments, docker
has to be properly installed.

.2.5 Benchmarks

None

.3 Set-up

.3.1 Installation

• Install netfilterqueue dependencies:

$ sudo apt-get install build-essential
python-dev libnetfilter-queue-dev
libffi-dev libssl-dev iptables python3-pip

• Create a new python3.6 environment and install Python
dependencies:

$ python3 -m pip install -r requirements.txt

• If needed, for Debian 10 systems, you can install netfil-
terqueue directly from Github:

$ sudo python3 -m pip install --upgrade -U
git+https://github.com/kti/python-
netfilterqueue

• If needed, on Arch systems, you can make liblibc.a avail-
able for netfilterqueue:

$ sudo ln -s -f /usr/lib64/libc.a
/usr/lib64/liblibc.a

• After you make sure you install and run docker on your
system use the dockerfile provided in /docker folder to
build the base image:

$ sudo docker build -t
base:latest -f docker/Dockerfile .
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.3.2 Basic Test

• to manually run/inspect the docker image to explore the
image, run:

$ sudo docker run -it base

• To check that all docker containers and harpoon are run-
ning correctly, We can run the genetic algorithm with
small number of Individuals (--population) and
Generations (--generation):

$ sudo /path/to/python_environment/bin/python
evolve.py --censor censor3 --server
forbidden.org -- log debug --workers 1
--runs 1 --population 5 --
generation 1 --jump 1

[To add: Output description]

.4 Evaluation workflow

.4.1 Major Claims

(C1): DeResistor offers detection-resilience to Geneva’s
probing traffic. This is discussed in §6.2. We record
the flow-level detection rate and IP-level detection result
of DeResistor and Geneva in Table 1.

(C2): Effectiveness of DeResistor to produce working strate-
gies that can evade the censor.

.4.2 Experiments

Experiments (E1) and (E2) reproduce results related respec-
tively to major claims (C1) and (C2). If the evaluators do not
have access to controlled vantage points in China, India or
Kazakhstan, in order to reproduce results in the first 3 rows
of Table 1 and working strategies in Table2, they can rely on
the docker experiments to reproduce results in rows 4-8 in
Table 1 (addresses (C1)) and monitor the traffic logs of newly
generated strategies that they have found against the mock
censors to address (C2). If evaluators are able to generate
strategies against real-world censors (e.g., startegies in Table2
in the paper), they can test those strategies directly against
the censor using Geneva engine.
(E1): [Testing Detection-Resilience] [30 human-minutes +

1 to hours compute-hour according to the considered
number of individuals and generations. 2GB disk should
be sufficient to store all the results]:
We run DeResistor vs. one of the 11 mock cen-
sors, while enabling real-time detection using
--real-time-detection. During execution time, we
keep track of the Detection Rate after every strategy
evaluation, displayed to the screen. Additionally, we
check whether the real-time detector blocks the IP
address and stops Geneva/DeResistor training.

How to: We start by running Geneva without DeRe-
sistor protection, using --Geneva to test its flow-level
and IP-level detection. Then, we run DeResistor and
compare the results between both runs. We provide more
detailed description later in the Execution paragraph.

Preparation: To prepare this experiment, we need to
make sure all Setup points in §3 are taken care of.
You can ignore the following if you are running only
docker experiment: – For real-world experiments,
You need to have internet access. For experiments
in china, we need to first bypass DNS poisoning as
exaplained in §6.1 in the paper, paragraph 3. For
Linux systems we can point the URL hrw.org to its
correct IP 23.185.0.2, by adding the line 23.185.0.2
www.hrw.org to /etc/hosts. Similarly, to run this ex-
periment in Kazakhstan we need to add 93.184.216.34
www.youporn.com to /etc/hosts file.

Execution: • Running Geneva without DeResistor
protection.
$ sudo /path/to/python_environment
/bin/python evolve.py --censor censor1
--server forbidden.org -- log debug
--workers 1 --runs 1 --population 200
--generation 10 --Geneva
--real-time-detection

Before performing a second run make sure all
docker containers related to Geneva are killed using:
"sudo docker kill $(sudo docker ps -q)".
The execution automatically stops after testing
only two flows which is a evidence of IP-level
detection (reported in Table1 in the paper). To
reproduce Geneva’s flow-level detection value, we
need to complete all Geneva training by disabling
--real-time-detection (remove it from the
command) to avoid early blocking of Geneva. After
every iteration, we observe how The detection Rate
value changes to reach ≈ 99% as reported in Table1
in the paper rows 4-8.

For real-world experiments (e.g., China):
$ sudo /path/to/python_environment/bin
/python evolve.py --external-server
--server www.hrw.org --test-type http
--log debug --workers 1 --runs 1
--population 500 --generation 20
--real-time-detection
--local-model rfc_gfw.joblib
--censor-model rfc_gfw2.joblib
--Geneva

www.hrw.org is not necessarily censored outside of
China. For India, we can use bannedthought.net,
xnxx.com, vidwatch.me and for Kazakhstan, we
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can use youporn.com. For india and Kazakhstan
experiments we can use more appropriate mod-
els provided in /ML detectors folder, respectively
called rfc_india.joblib and rfc_kz.joblib to
update -local-model and -censor-model. Be-
fore performing a second run make sure you reset
the iptables: "sudo iptables -F".

• Running DeResistor:
$ sudo /path/to/python_environment
/bin/python evolve.py --censor censor1
--server forbidden.org -- log debug
--workers 1 --runs 1 --population 200
--generation 10 --jump 1
--real-time-detection

Before performing a second run make sure all
docker containers related to Geneva are killed using:
"sudo docker kill $(sudo docker ps -q)".
According to Table 1 in the paper, DeResistor
should be able to complete its training without IP-
level detection. Similar to the previous run, we also
track the changes occurred on the Detection Rate as
it regularly displays in the console.
For real-world experiments, we can use the same
command as before without --Geneva and adding
--jump 1. Similarly, we need to flush the iptables
after each run with: "sudo iptables -F".

To reproduce results against all 11 mock censors, we
can run the same commands using a different censor
(e.g., --censor censor2, etc).

Results: Results of every run are stored in the
folder /trials/[date-and-time-of-execution].
It contains , network traces in /packets and their
csv counterparts after features extraction in /csv
(using only the client-side packets). All generated
strategies are located in the final hall.txt file (e.g.,
/generations/hall9.txt) with their fitness values.
Strategies with the highest fitness values are most likely
to evade the censor.

As illustrated before, detection resilience results should
be observable during run-time. Particularly, if the
program raises a detection exception, then an IP
detection is observed. Additionally, the flow-level
detection rate is regularly displayed during run-time
as Detection Rate. We also store the flow-level
detection results of all flows in preds.csv. We can
re-compute the final value of the flow-level detection
rate by counting the percentage of zeroes (0: detected as
Geneva flow) compared to all flow-level predictions.

(E2): [Evasion Effectiveness:] [1 to 2 human-hours + 0
compute-hour. 2GB disk should be sufficient to store
all the results]: In this experiment, we leverage results

stored in previous executions of DeResistor and Geneva
to select strategies that are effective for censorship
evasion.

How to: We inspect collected strategies of DeRe-
sistor in /generations/hall[final].txt located
in the folder corresponding to the DeResistor run.
For real censors (e.g., China), we can evaluate the
effectiveness of each strategy against the censor using
Geneva startegy-testing Engine. More details about
testing a strategy with Geneva engine is provided
in Execution. You can also refer to Geneva docu-
mentation related to how to run a strategy in https:
//geneva.readthedocs.io/en/latest/intro/
gettingstarted.html#running-a-strategy. For
startegy generated against mock censors, We cannot
evaluate them using Geneva engine. Instead we can
manually inspects the logs of the most fit strategies
and check whether the client finally had access to the
forbidden server (evaded censorship). We note that, the
most fit startegies are the ones that have the highest
fitness values which can be negative in case we run
DeResistor.
Preparation: To perform this experiment we need to
generate appropriate results files using commands de-
scribed in (E1). Similar to (E1), to test strategies against
real censors (e.g. GFW), you need access to controlled
vantage points in the desired country.
Execution: • Evaluate a strategy against real cen-

sors: To evaluate a strategy that you selected, you
first need to run Geneva engine to apply the strategy
later on using:

$ sudo /path/to/python_environment
/bin/python engine.py --server-port 80
--strategy "[your-strategy]" --log debug

In a separate console (e.g. terminal), you can per-
form curl commands to attempt connections to a
censored website. For instance, in china you can
try:

$ curl -L --no-keepalive --local-port
[random-port-number] --connect-to
::23.185.0.2: 'http://hrw.org' -D -

The port number has to be changed across runs to
avoid Resisdual censorship performed by GFW (ths
is discussed in the paper in §6.1 paragraph 3.
To automate the strategy evaluation process, we
provide a script in /test.py that evaluates a list
of strategies 30 times and stores their success rate
in success_rate.txt. Using this script, we can
reproduce results in Table2.

Results:
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.5 Notes on Reusability
[Optional] This section is meant to optionally share addi-
tional information on how to use your artifact beyond the
research presented in your paper. In fact, a broader objective
of an artifact evaluation is to help you make your research
reusable by others.

You can include in this section any sort of instruction that
you believe would help others re-use your artifact, like, for
example, scaling down/up certain components of your artifact,
working on different kinds of input or data-set, customizing
the behavior replacing a specific module/algorithm, etc.
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A Artifact Appendix

A.1 Abstract
As introduced in the paper, we measure and characterize the
GFW’s new system for censoring fully encrypted traffic. We
find that, instead of directly defining what fully encrypted
traffic is, the censor applies crude but efficient heuristics to
exempt traffic that is unlikely to be fully encrypted traffic; it
then blocks the remaining non-exempted traffic. These heuris-
tics are based on the fingerprints of common protocols, the
fraction of set bits, and the number, fraction, and position of
printable ASCII characters. In this artifact, we provide the
data and code to support our major claims. Additionally, we
conducted a follow-up experiment to confirm that the GFW
had stopped blocking fully encrypted traffic dynamically as
of Wednesday, March 15, 2023.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

As detailed in the ethics section of our paper, our measurement
tools have already employed the best practices by default.

A.2.2 How to access

The artifact is available on GitHub: https://github.com/
gfw-report/usenixsecurity23-artifact/commit/
ad45e63b4a708bda5ce39f48fc25ebbae013ee51.

A.2.3 Hardware dependencies

We have prepared a VPS in China and a VPS in the US, on
which the AE reviewers can perform remote experiments. The
VPS in China is located in AlibabaCloud Beijing Datacenter
(AS37963), which uses one core of Intel Xeon Platinum 8163
and 1GB RAM. The VPS in the US is located in DigitalOcean

San Francisco Datacenter (AS14061), which uses one core
of Intel DO-Regular and 1GB RAM. To SSH into the VPSes,
reviewers need to install the provided credentials, as detailed
in artifacts/setup-vps/README.md.

For people other than the AE reviewers who want to per-
form experiments, they need to prepare a VPS in China and a
VPS outside of China themselves.

A.2.4 Software dependencies

The VPS in China runs Ubuntu 22.04.2 LTS (GNU/Linux
5.15.0-56-generic x86_64). The VPS in the US runs Ubuntu
20.04.3 LTS (GNU/Linux 5.4.0-88-generic x86_64). The fol-
lowing tools and environment are required:

• GNU make utility

• Go 1.17+

• Python 3.8+

In particular, the two VPSes do not require Go environment.
As detailed in README, reviewers may compile the Go code
on their local machines and copy the binaries to the VPSes.

A.2.5 Benchmarks

None.

A.3 Set-up
As detailed in artifacts/setup-vps/README.md, we have
prepared a VPS in China and a VPS in the US, on which the
AE reviewers can perform remote experiments. Since we have
installed the dependencies and required tools on the VPSes,
all reviewers need to do is to use the provided credentials
to SSH into the VPSes to run experiments. We also provide
one-click scripts, allowing reviewers to initialize test-ready
VPSes themselves. Be very cautious that running setup scripts
will disrupt other reviewers’ ongoing experiments.
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A.3.1 Installation

• Set up the Go environment: https://go.dev/dl/.

• Retrieve the artifacts: git clone https://github.
com/gfw-report/usenixsecurity23-artifact.

• Compile the client-side experiment tools and install
them to the CN VPS: cd artifacts/setup-vps &&
./setup-client/to_alibaba_server.sh.

• Compile the sink server and install it to
the US VPS: cd artifacts/setup-vps &&
./setup-server/to_digitalocean_server.sh.

A.3.2 Basic Test

First login to the VPS in China using the provided credentials:
ssh usenix-ae-client-china.

Then send random probes to the port 80 of the
$serverIP with the following command: echo $serverIP
| ./utils/affected-norand -p 80 -log /dev/null.

The program outputs in CSV format. If the affected
field is True, the blocking is successfully triggered. If the
affected field is False, the blocking is not triggered.

A.4 Evaluation workflow
A.4.1 Major Claims

(C0): As of Tuesday, March 7, 2023, the GFW was still
blocking random traffic. This is supported by the experi-
ment (E0).

(C1): As of Wednesday, March 15, 2023, the GFW had
stopped blocking random traffic dynamically. This is
supported by the experiment (E1).

(C2): The GFW exempts a connection if the first TCP packet
pkt satisfies: popcount(pkt)

len(pkt) ≤ 3.4 or popcount(pkt)
len(pkt) ≥ 4.6.

This is supported by the experiment (E2) described in
Section 4.1 of the paper. This detection rule is introduced
in Algorithm 1 (Ex1) and illustrated in Figure 1.d.

(C3): The GFW exempts a connection if the first six
(or more) bytes of the first TCP data packet pkt are
[0x20,0x7e]. This is supported by the experiment (E3)
described in Section 4.2 of the paper. This detection rule
is introduced in Algorithm 1 (Ex2) and illustrated in
Figure 1.a.

(C4): The GFW exempts a connection if the first TCP
data packet pkt has more than 50% of pkt’s bytes in
[0x20,0x7e]. This is supported by the experiment (E4)
described in Section 4.2 of the paper. This detection rule
is introduced in Algorithm 1 (Ex3) and illustrated in
Figure 1.b.

(C5): The GFW exempts a connection if the first TCP
data packet pkt has more than 20 contiguous bytes in
[0x20,0x7e]. This is supported by the experiment (E5)

described in Section 4.2 of the paper. This detection rule
is introduced in Algorithm 1 (Ex4) and illustrated in
Figure 1.c.

(C6): The GFW exempts a connection if the first few bytes
of the first TCP data packet pkt match the protocol
fingerprint for TLS or HTTP. This is supported by the
experiment (E6) described in Section 4.3 of the paper.
This detection rule is introduced in Algorithm 1 (Ex5)
and illustrated in Figure 1.e.

A.4.2 Experiments

Experiment E0 tests if the GFW still blocks random traffic
dynamically by sending random probes from China to a single
server in US. If the reviewers can trigger the blocking in
experiment E0, they can proceed to test experiments (E1-E6);
otherwise, they only need to run experiment E1 to further
confirm the GFW has stopped blocking random traffic.

Experiments E0 and E2-E6 follow the same testing logic:
we craft different payloads that will be either exempted or
blocked by the GFW. We send them, from VPS in China
to the VPS in US, through the GFW, to observe whether
each payload can trigger the blocking or not. If the blocking
or exemption results match with what Algorithm 1 predicts,
it shows that the GFW is indeed using the detection rule
described in Algorithm 1. For reviewers’ convenience, we
implement Algorithm 1 as utils/detect.py, which reads a
list of given payloads in hex format and writes if each payload
will be exempted by any of the detection rules.

Unless explicitly specified, all operations described below
are performed on the VPS in China. And $serverIP corre-
sponds to the IP address of the VPS in US.
(E0): [test-random] [5 human-minutes + 5 compute-

minutes]: This experiment tests if the GFW blocks ran-
dom traffic. It also familiarizes the reviewers with the
testing tools and logic.
Preparation: cd artifacts
Execution: Execute this command to generate a
random probe of 200 bytes and check if Algo-
rithm 1 thinks it will be blocked by the GFW
or not: head -c200 /dev/urandom | xxd -p -c256
| tee random.txt | ./utils/detect.py.
Execute this command to repeatedly send the probe to
the same port of the US server: cat random.txt |
./utils/affected-payload -host $serverIP -p
$serverPort.
Results: If the affected field in the program output is
True, it means that your generated probe has triggered
the blocking by the GFW. This result should be consis-
tent with what detect.py predicts.

(E1): [confirm-ceased-blocking] [15 human-minutes + 2
compute-days]: This experiment tests if the GFW has
stopped blocking random traffic dynamically. Specifi-
cally, it performs an Internet scan from a VPS machine
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in China to all 142,827 IP addresses that were previously
marked affected as of August 22, 2022. For each IP ad-
dress, The test uses two types of probes: 50-bytes of
random data and 50-bytes of zero (as the control group).
For each type of probe, the program makes up to 25 con-
nections, and when five consecutive connections to an
IP address fail, the program mark it as possibly affected.
We then remove any probes that were also marked as
affected in the control group to rule out most of the false
positives due to network failure rather than censorship.
Preparation: cd ceased-dynamic-blocking
Execution: Execute this command to perform the 2-day
test: make.
One then compares the results between the two tests us-
ing two different types of probes, to find the IP addresses
that are marked as blocked (true) in the random probe
test but marked as not blocked (false) in the zero probe
test: make compare.
Results: The number of affected IP addresses should
be as low as around six thousand out of the 142,827 IP
addresses tested. One can further test these IP addresses
recursively to make sure they are all false positives.

(E2): [test-entropy] [30 human-minutes + 30 compute-
minutes]: This experiment test if the GFW exempts
a connection whose first TCP packet pkt satisfies:
popcount(pkt)

len(pkt) ≤ 3.4 or popcount(pkt)
len(pkt) ≥ 4.6.

Preparation: cd test-entropy
Execution: Execute this command to generate a list of
payloads: make. As shown in the output of detect.py,
some of the probes will be exempted by the GFW; while
other probes will not.
Use this command to test if each probe is exempted by
the GFW: make test.
Use this to compare the blocking results against the
results predicted by the detect.py: make compare.
Results: The testing results should match with what
detect.py predicts.

(E3): [test-printable-prefixes] [15 human-minutes + 30
compute-minutes]: This experiment tests if the GFW
exempts a connection whose first six bytes are printable
characters.
Preparation: cd test-printable-prefixes
Execution: Execute this command to generate a list of
payloads: make. As shown in the output of detect.py,
some of the probes will be exempted by the GFW; while
other probes will not.
Use this command to test if each probe is exempted by
the GFW: make test.
Use this to compare the blocking results against the
results predicted by the detect.py: make compare.
Results: The testing results should match with what
detect.py predicts.

(E4): [test-printable-fraction] [15 human-minutes + 30
compute-minutes]: This experiment tests if the GFW

exempts a connection whose first TCP data packet has
more than 50% of printable characters.
Preparation: cd test-printable-fraction
Execution: Execute this command to generate a list of
payloads: make. As shown in the output of detect.py,
some of the probes will be exempted by the GFW; while
other probes will not.
Use this command to test if each probe is exempted by
the GFW: make test.
Use this to compare the blocking results against the
results predicted by the detect.py: make compare.
Results: The testing results should match with what
detect.py predicts.

(E5): [test-printable-longest-run] [15 human-minutes + 15
compute-minutes]: This experiment tests if the GFW
exempts a connection whose first TCP data packet has
more than 20 bytes of contiguous printable characters.
Preparation: cd test-printable-longest-run
Execution: Execute this command to generate a list of
payloads: make. As shown in the output of detect.py,
some of the probes will be exempted by the GFW; while
other probes will not.
Use this command to test if each probe is exempted by
the GFW: make test.
Use this to compare the blocking results against the
results predicted by the detect.py: make compare.
Results: The testing results should match with what
detect.py predicts.

(E6): [test-protocol-fingerprints] [15 human-minutes + 2
compute-hours]: This experiment tests if the GFW ex-
empts traffic that matches the protocol fingerprints.
Preparation: cd test-protocol-fingerprints
Execution: Execute this command to generate a list of
payloads: make. As shown in the output of detect.py,
some of the probes start with a fingerprint that will be
exempted by the GFW; while other probes do not.
Use this command to test if each probe is exempted by
the GFW: make test.
Use this to compare the blocking results against the
results predicted by the detect.py: make compare.
Results: The testing results should match with what
detect.py predicts.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

This artifact includes all the source code of Attestation of
Real-time Mission Execution Integrity (ARI ), a policy-guided
real-time mission execution integrity attestation framework.
It mainly contains three key component. A compartmentaliza-
tion mechanism, runtime mission information measurement
mechanism, and a mission integrity verification engine. For
this artifact evaluation, we will illustrate ARI ’s functional-
ity by employing an example policy to verify the execution
integrity of a copter flight mission. Specifically, the policy
will utilize controller-based compartmentalization, with the
attitude controller as the critical compartment. We aim to
streamline the Artifact Evaluation (AE) process by providing
a pre-configured virtual machine (VM) with all necessary
dependencies. Additionally, we provide a hardware flight con-
troller accessible via SSH. For further convenience, remote
VM access is made available through Teamviewer.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Carrying out the Artifact Evaluation (AE) for ARI does not
pose any security, privacy, or ethical concerns. All AE tasks
are carried out within the Virtual Machine (VM) and the
remote hardware flight controller, which are host on remote
machine. This ensures that the AE process remains isolated
and does not interact with the reviewer’s personal or sensitive
code/data.

A.2.2 How to access

Source Code: https://github.com/WUSTL-CSPL/ARI

A.2.3 Hardware dependencies

To properly evaluate our artifact, please ensure that your host
system has stable network to access the remote VM through
Teamviewer. Furthermore, the quadcopter mission runs in a
simulation environment on a Raspberry Pi 3, equipped with a
Navio2 daughter board. To access the remote Raspberry Pi 3
with the Navio2 daughter board, you can utilize the following
command and corresponding password in remote VM:

A.2.4 Software dependencies

To undertake an effective evaluation of the ARI artifact, it is
recommended to use the Ubuntu 16.04 LTS operating system.
Our customized compiler is built upon LLVM 3.9.0, while the
software quadcopter flight controller utilizes ArduPilot 3.9.0.
The underlying verification engine has been developed based
on Capstone 4.0.2, and employs the Black2s hash algorithm.
The cross compiler is gcc-linaro-6.2.1-2016.11-x86_64_arm-
linux-gnueabihf. The OS on Raspberry Pi3 is Linux navio
4.14.95-emlid-v7+.

A.2.5 Benchmarks

None

A.3 Set-up
The setup section is intended for reviewers who wish
to construct the system from scratch. We have made
available a well-configured remote VM accessible via
Teamviewer. Thus, reviewer can skip section 3.

A.3.1 Installation

Dependencies Installation: Install the dependencies for the
three key components of ARI by using the following com-
mands.
$ sudo apt-get install python-pip
$ python -m pip install –upgrade "pip < 19.2"
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$ sudo python -m pip install –upgrade "pip < 21.0"
$ sudo apt-get install clang-3.9 && cd /usr/bin && sudo ln
./clang-3.9 ./clang && sudo ln ./clang++-3.9 ./clang++
$ sudo apt install git cmake build-essential make texinfo
bison flex ninja-build ncurses-dev texlive-full binutils-dev
python-networkx python-matplotlib python-pygraphviz
python-serial
$ sudo pip2 -q install -U future lxml pymavlink MAVProxy
$ pip install pydotplus python-louvain bitarray capstone
enum34 pyelftools pyblake2
$ wget http://launchpadlibrarian.net/356067403/gcc-
5-aarch64-linux-gnu_5.4.0-
6ubuntu1~16.04.9cross1_amd64.deb
$ sudo dpkg -i ./gcc-5-aarch64-linux-gnu_5.4.0-6ubuntu1
~16.04.9cross1_amd64.deb

Customized LLVM Installation: ari_dir is the root directory
of ARI project. In VM ari_dir is /home/ari-new-ae/conattest
$ git clone https://github.com/WUSTL-CSPL/ARI.git
$ cd ./conattestllvm
$ chmod +x ./compiler_for_1st_part.sh
$ ./compiler_for_1st_part.sh
$ mkdir build && cd ./build
$ cmake -DLLVM_ENABLE_ASSERTIONS=OFF ..
$ make
$ echo ’export PATH=$PATH:ari_dir/
conattestllvm/build/bin’ ≫ ~/.bashrc
$ source ~/.bashrc

ArduPilot Installation:
$ echo ’export PATH=$PATH:ari_dir/
gcc-linaro-6.2.1-2016.11-x86_64_arm-linux-
gnueabihf/bin’ » ~/.bashrc
$ source ~/.bashrc
Download the Pi3 image in following link. Decompress it into
pi3_img_dir.https://drive.google.com/drive/folders/1WOiFES-
zJf6JkdWjziMnFrqsJJlmlBwy?usp=sharing.
$ cd pi3_img_dir/my-working-image && ./load_image.sh

A.3.2 Basic Test

You can verify the success of the LLVM installation by using
the command llvm-config –version. A successful installation
will return 3.9.0svn as the result

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): ARI is capable of compartmentalizing and instrument-
ing the system in accordance with the policy.

(C2): ARI can automatically instrument the CPS, recording
control flow events during runtime.

(C3): ARI has the ability to verify mission integrity based
on runtime measurements.

A.4.2 Experiments

(E1): [Automatic Compartmentalization and Runtime
Measurement Instrumentation] [5 human-minutes + 30
compute-minutes]
How to: Given CPS software such as ArduPilot, ARI uses
command line instructions to automatically compartmentalize
and instrument the software.
Preparation: Implement the compartmentalization policy in
ari_dir/graph_analysis/analyze.py (ari_dir refers to the root
directory of ARI , i.e., /home/ari-new-ae/conattest in VM). We
have provided the default one, partition_by_controller. Iden-
tify the critical compartments in ari_dir/ardupilot/crit_cpt;
we have designated the attitude controller as the critical com-
partment. Please note that the terminal might display a
’Build Failed’ message due to linking issues during the
ArduPilot build, but this is normal; we will link it later.
Execution: $ cd ari_dir
$ cd ./conattestllvm && ./compiler_for_1st_part.sh
$ cd ./build && make -j2
$ cd ../../ardupilot
$ source ./compile_1st_part.txt
$ cd ../conattestllvm && ./compiler_for_2nd_part.sh
$ cd ./build && make -j2
$ cd ../../ardupilot
$ source ./compile_2nd_part.txt
Results: The resulting binary is stored in
ardu_dir/build/sitl/bin/arducopter and is also trans-
ferred to the Pi3. You can check the compartmentalization of
the application into 8 regions with the following command:
$ readelf -S ardu_dir/ardupilot/build/sitl/bin/arducopter

(E2): [Mission Execution and Measurement Collecting]
[5 human-minutes + 10 compute-minutes]:
How to: Execute a takeoff mission with Ardupilot on Pi3.
The instrumented code will automatically record the runtime
measurements.
Preparation: (1) Log into the remote Pi3 via SSH from VM.
(2) Open a terminal in the VM.
Execution: (1) On the remote Pi3, execute the following
commands:
$ ssh pi@10.228.106.170
$ cd ~&& sync
$ sudo ./arducopter -S -I0 –model + –speedup 1 –defaults
./copter.parm
(2) In the VM, run the following single line command:
$ "mavproxy.py" "–master" "tcp:10.228.106.170:5760"
"–sitl" "10.228.106.170:5501" "–out"
"10.228.106.170:14550" "–out"
"10.228.106.170:14551" "–map" "–console"

You will then see a Console and a Map in the VM. Wait for
approximately 1 minute until the Console displays AP: EKF2
IMU0 is using GPS and AP: EKF2 IMU1 is using GPS.
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Next, type the following commands in the terminal (only the
command after > in the following):
STABILIZE> mode guided
GUIDED> arm throttle
GUIDED> takeoff 20

After the flight takes off (wait for about 10 seconds), stop the
processes in the VM terminal and remote Pi3 using Ctrl + C.
Then, transfer the measurement from the remote Pi3 to the
VM terminal using these commands:
$ cd ardu_path/ardupilot/
$ source ./tsf_measurement.txt

Results: The mission measurements are stored in
ardu_path.txt, including ARI_branch.txt, ARI_ind_jmp.txt,
ARI_ret_hash.txt, and ARI_tsf.txt.

(E3): [Measurement Verification] [1 human-minutes + 3
compute-minutes]
How to: Perform the verification using runtime measure-
ments as input. The verification engine will issue an alert
if the verification fails.
Preparation: Open a terminal in the VM.
Execution: $ cd ../oat-verify-engine
$ source ../ardupilot/mission_verify.txt

Results: The verification engine will validate the mission
integrity. If the verification passes, it will display the hash
of all return addresses obtained from both runtime and re-
play. A successful verification will also show Return Integrity
Verification Pass!

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
XCheck is a defense system designed to verify the integrity
of 3D-printed medical devices, by crosschecking their CT
scans against the original designs with shape comparison
techniques. Our artifact comprises the source code, CT scans
(in the DICOM format), and designed model files (in the STL
format). To operate the system, the user needs to run the
program in the command line, providing input file paths and
specifying acceptable thresholds adapted to different types
of medical devices. The expected output includes interactive
visualization for identifying malicious areas, and quantitative
scores indicating whether the print is benign or malicious.

Given the complex computation and geometry rendering
involved in XCheck, a machine with a moderate CPU and
GPU, as well as memory of at least 16 GB is recommended.
Please note that run-time may vary depending on the user’s
hardware. We have compiled a list of required dependencies
into a YML configuration file.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact provided does not contain any harmful materials
that may compromise machine security or pose threats to
human health. The models and CT scans used by the system
were not derived from real human subjects, and there is no
privacy concern associated with the use of artifacts. We have
taken the utmost care to ensure that the artifact meets all
necessary safety standards and guidelines.

A.2.2 How to access

We have made the code, models, and CT scans publicly avail-
able on GitHub. The stable URL link pointing to the commit
is https://github.com/WUSTL-CSPL/XCheck/commits/
5ee4b4820671fc215795ccb09daa70670a29e4f3.

A.2.3 Hardware dependencies

The system can run on a machine with a moderate CPU
and at least 16GB of available RAM. The system was tested
stable on a desktop computer with AMD Ryzen 9 3900X 12-
Core Processor, NVIDIA GeForce RTX 3070 Ti, and 32GB
memory; and a laptop with Intel i9-9880H Processor, AMD
Radeon Pro 5500M, and 16GB memory. Both setups are
equipped with OpenGL of version 4.1. No other specific hard-
ware is required, but the variance in hardware can lead to
differences in run-time.

A.2.4 Software dependencies

XCheck was implemented in Python, and the system’s envi-
ronment was set up using Miniconda 4.12.0 on Ubuntu 22.0.4.
The required packages include vedo, vtkplotter, open3d, point-
cloud-utils, numpy, matplotlib, pydicom, seaborn, and scipy.
For the detailed installation process please see Section A.3.
The models and CT scans for testing are included in the arti-
fact and do not need to be downloaded from external sources.

A.2.5 Benchmarks

The data required by the experiments are the design models (in
the STL format) and CT scans (in the DICOM format) of the
printed medical devices. Nine malicious models underwent
geometry or material modifications provided; three malicious
bone scaffolds where certain internal regions were filled in
solid, a lung-on-chip with solid internal bulges, a dental guide
with added sphere volume, two bone screws with enlarged
thread distance and shortened non-threaded shank, a bone
screw and a dental guide printed with a different material. The
CT scans and design models can be found in the directory
./Geometry.
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A.3 Set-up
A.3.1 Installation

Conda or Miniconda is recommended for setting up the en-
vironment. It can be installed via the official link https://
docs.conda.io/en/latest/miniconda.html and the pro-
cess can differ based on the user’s OS. The commands for
setting up the environment with the xcheck.yml file are:

$ cd <the_path_to_the_folder>
$ conda env create -f xcheck.yml
$ conda activate xcheck

A.3.2 Basic Test

The basic functionality can be tested with an additional flag
-basic in the command line. For testing, please run the follow-
ing command:

$ python3 run.py -basic Bone_12

The expected output is an interactive visualization window,
with an example shown in Figure 6 in the manuscript. The
boxes in the top right corner are clickable, each corresponding
to an analysis method. When clicking on Registration, the CT-
reconstructed model should overlap with the design model, in-
dicating that they are properly aligned after registration. When
clicking on Added Voxel or Missing Voxel, an additional box
Colormap becomes clickable. The colormap enables filtering
out areas with lower distances, therefore highlighting the ar-
eas where geometric discrepancies are high. When clicking
on Ray-based, it shows results where malicious regions are
highlighted in red in the 3D space.

A.4 Evaluation workflow
A.4.1 Major Claims

In summary, our major claim is that XCheck can verify the
integrity of printed devices in terms of geometry and material,
by providing both interactive visualization applications and
quantitative risk scores.
(C1): XCheck can validate the geometry integrity by measur-

ing and visualizing discrepancies in geometric features.
This is proven by the experiment (E1) described in Sec-
tion 6 whose results are illustrated/reported in Figure 6
and Figure 11.

(C2): XCheck can validate the material of printed objects
by comparing them to prints with similar geometry but
different materials. The material verification result is
reflected in the corresponding Gamma_m value. This
is proven by the experiments (E2) whose results are
illustrated in Table 3 in the appendix.

(C3): XCheck provides a quantitative risk score with gamma
analysis, which aggregates geometry and material devi-
ations. This is proven by the experiments (E3) whose
results are illustrated in Table 3 in the appendix.

A.4.2 Experiments

(E1): [Geometry Verification] [16 compute minutes + 1GB
disk]:
Preparation: Detailed instructions regarding environ-
ment setup and activation are included in Section A.3.1.
Execution: The experiments are conducted using com-
mand lines. For each of the included CT scans and mod-
els under ./Geometry, run the command by replacing
the "-f1" and "-f2" arguments for the files to be com-
pared, and the "-etdist", "-ets", and "-etg" command to
set the appropriate thresholds. For instance, to compare
the CT scans of a 3D printed bone scaffold (./Geom-
etry/Bone_12), that is manipulated by adding various
internal solid regions, to its original model (./Geome-
try/Bone.stl), use the following command:

$ python3 run.py \
-f1 "Geometry/Bone_12" \
-f2 "Geometry/Bone.stl"
-o Bone_12 -etdist 1.7 \
-ets 0.05 -etg 0.005 -etm 1

Results: XCheck begins to first reconstruct the CT
scanned DICOM images, then aligns them to the original
model. Due to the complexity of models, the registration
process of XCheck adopts a non-deterministic design to
significantly reduce the runtime. Therefore, the iterative
registration will prompt the user to visualize the aligned
shapes to easily verify the registration. After the user
confirms and closes the visualization window, the user
can either press "enter" to proceed, or press "r" to restart
the registration.
When the program run to its termination, an interac-
tive visualization window appears, through which the
user can navigate to visualize the difference between the
original model and the CT-scanned reconstruction. The
user can click on Added Voxel or Missing Voxel coupled
with selecting Colormap to visualize the added/missing
voxel of the printed model. During this, the user can
also control different aspects of the visualization using
the following sliders. (1) Opacity-Divergence Isolation:
filters out voxels below a certain distance threshold; (2)
Colormap-Upper Bound: paints all voxels with distance
above the upper bound red, then normalizes and assigns
colors with the new bounds; (3) Colormap-Lower Bound:
paints all voxels with distance below the lower bound
blue, then normalize and assign colors with the new
bounds; and (4) Point Size: adjust voxel size ranging
from 1 to 10. By customizing these parameters, users
can identify whether a region of interest has been ma-
nipulated. For instance, in the verification of the model
./Geometry/Screw_5, adjusting Opacity can effectively
isolate part of voxels on threads and render in red, be-
cause the enlarged pitch size results in threads shifting to
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shank regions. Such visualization enables a more flexible
and intuitive presentation of malicious regions.
Ray-based analysis leverages the principle that all ge-
ometry attacks have to alter the volume of devices. It
will identify and visualize such volume in the interactive
window. An example is given in ./Geometry/Bone_14
model, where the internal solid region is too small to
be captured by voxel analysis but can be visualized by
ray-based analysis when clicking the Ray-based box.

(E2): [Material Validation] [1 compute minute]:
Preparation: Material validation follows the geometry
verification automatically.
Execution: Material validation should run automati-
cally following the geometry verification.
Results: Material validation extracts the HU values
from the CT scans, using kernel density estimation
(KDE) to find the features describing its shape. This
information is compared with known benign values of
the same type of 3D-printed devices, to decide whether
the material is tampered with. The expected result is
reflected in the Gamma_m value, which is produced by
gamma analysis and will be printed out in the terminal.
The material will be considered malicious if the value is
higher than 1, otherwise it is considered benign.

(E3): [Gamma Analysis] [Less than 1 compute minute]:
Preparation: Gamma analysis follows the geometry
verification and material validation automatically.
Execution: Gamma analysis should run automatically
following the previous analysis.
Results: The gamma analysis is automatically calcu-
lated at each run. If any of the four Gamma terms is less
than 1, it is set to 1 to avoid value compensation when ag-
gregating different terms (Section 5.6 in the manuscript).
Each individual term of Gamma is squared and aggre-
gated to output a total Gamma value. If the total Gamma
value is no greater than 2, it is deemed benign, otherwise,
it is deemed malicious. Besides, each term can be ana-
lyzed independently to infer the exact attack type; for
instance, a material term Gamma_m larger than 1 indi-
cates the existence of material attacks in the examined
device. XCheck then proceeds to run to its termination,
with the expected output of an interactive visualization
window described in Section A.3.2.

[Computed Gamma_s: 5.130472175211942]
[Computed Gamma_d: 6.949988175539468]
[Computed Gamma_v: 1.8414619560913288]
[Computed Gamma_m: 0.43136242250997886]
[Total Computed Gamma: 8.889041709683562]
[Final Decision: Malicious]

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

Hoedur is a rehosting-based firmware fuzzer that introduces a
multi-stream input format that extends the concepts contained
in previous rehosting-based fuzzing works such as P2IM,
uEmu, and Fuzzware. This format helps the fuzzer to mutate
its input effectively.

We provide GitHub repositories containing data and scripts
to install our prototype, to automatically reproduce our new
firmware targets/configurations, and to auto-generate configu-
rations to rerun our experiments based on the available com-
putation resources. Our experiments run in Docker contain-
ers. These can be rebuilt via the provided scripts, or prebuilt
Docker containers can be used to rerun our experiments. To
facilitate the reproduction, we provide an alternative experi-
ment profile that reduces the CPU requirements while still, in
our view, supporting our major claims.

In our experiments, we compare our fuzzer against itself
in different configurations (with and without multi-stream
inputs) and against the related work Fuzzware given that this
tool outperformed P2IM and uEmu in an evaluation. We test
Hoedur’s speed and reliability in finding known bugs, produc-
ing code coverage, and finding previously unknown vulnera-
bilities.

A.2 Description & Requirements

Access Privileges. The user under which the experiments
are supposed to run requires access to Docker. root
privileges are also required to configure the environment
for running the related work Fuzzware (see scripts/fuz-
zware/set_limits_and_prepare_afl.sh).

OS and software. Our fuzzing experiments require Linux
hosts. We recommend a recent Ubuntu Server installation. On
these hosts, Python 3, rsync, and Docker must be installed
and the user must be part of the docker group.

Computation Resources. Our original experiments took
around 30 CPU years to run. To provide a less resource in-
tensive option, we created an alternative experiment profile
for the artifact evaluation that should reproduce our major
findings in around 3 CPU years worth of computation time.
If changes to these configurations are desired, we provide a
configuration format that allows customizing the experiment
duration and the repetition counts.

To rerun the experiments within 15 days, the equivalent of
the following computation resources will be required:

1. Reduced experiment: 2 servers, 50 physical cores each.
2. Full experiment: 20 servers, 50 physical cores each.

Storage. In total, the experiments will produce a maximum
of 300 GB of data which needs to be pulled onto one server
to compute and aggregate all metrics.

A.2.1 Security, privacy, and ethical concerns

Running the experiments will require root access and access
to Docker on the reproduction machines. No security mech-
anisms are disabled, and the machines are not exposed to
additional security risks.

Hoedur has found previously-unknown vulnerabilities
which have been responsibly disclosed to the respective ven-
dors. Our prototype may find additional vulnerabilities, possi-
bly even in the provided targets. Please handle these findings
responsibly as well.

A.2.2 How to access

The code and experiment data are available on GitHub under
github.com/fuzzware-fuzzer/hoedur-experiments. We created
the tag sec23-ae-accepted as a stable reference.

From there, the complete reproduction is done in Docker
containers. These can be built from Dockerfiles, or our pre-
built containers can be used. The repository README con-
tains all information required to build and run the experiments.
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A.2.3 Hardware dependencies

None (no special hardware, for general compute requirements,
see Descriptions & Requirements above).

A.2.4 Software dependencies

To run the experiments, a Linux distribution is required. We
recommend a recent version of Ubuntu Server. On these hosts,
Python 3, rsync, sudo, and Docker need to be installed and
set up for the user. For the optional step of rebuilding our
target binaries, a small number of Python packets need to be
installed via the provided requirements.txt file.

A.2.5 Benchmarks

As a part of our firmware fuzzing targets, we use the firmware
binaries previously published in the P2IM, uEmu, and Fuz-
zware experiments. We include copies of these binaries in
the hoedur-experiments GitHub repository. Section 6.1 of the
paper explains that we adapt targets from the coverage mea-
surement data set by applying binary patches. You can find
these patches along with comments and reproduction scripts
at 02-coverage-est-data-set/binary-patching.

A.3 Set-up
All of our experiments use Docker as an execution environ-
ment. Docker needs to be installed on the system, and the user
under which the experiments will be run needs to be added
to the Docker group. Also, ensure that Python 3 is installed
on the system. In case you would like to rebuild our target
binaries using the reproduce_targets_and_configs.py script,
pip is required.

For each host on which the related work FUZZWARE might
be run, prepare the system to run FUZZWARE by running
scripts/fuzzware/set_limits_and_prepare_afl.sh as root.

The hosts to be used for the experiment are configured in
experiment-config/available_hosts.txt (see also experiment-
config/README.md) and looks like the following:

my-host-1 <number_of_physical_cores_1>
my-host-2 <number_of_physical_cores_2>

For example, if everything should be run and metrics be
generated on the same, single host with 70 cores, the configu-
ration is as simple as:

localhost 70

If two servers (my-host-1 and my-host-2) with 50 cores
each are to be used, and the results should be aggregated on
host-1, then the configuration would look like the following:

localhost 50
my-host-2 50

To allow some of the experiment scripts to access
each host via SSH/rsync, create an SSH config entry in
~/.ssh/config:

Host my-host-1
Hostname 12.34.56.78
User user
IdentityFile ~/.ssh/my_privkey.key
AddKeysToAgent yes

A.3.1 Installation

To install Hoedur, first, make the Docker containers avail-
able to your system. To re-build the Docker containers, run
install.py. To obtain the pre-built Docker containers, run
./install.py --prebuilt.

As an optional step, you may wish to reproduce our new
target firmware binaries and auto-converted configurations
and bug detection hooks. To reproduce these, run repro-
duce_targets_and_configs.py.

A.3.2 Basic Test

To make sure that the basic installation has been successful,
first run:

./scripts/check_install.py

You may also like to run one of the bug reproducing inputs
provided in the experiments repository. To run the reproducer
for CVE-2022-41873, run:

cd ./04-prev-unknown-vulns/repro-run-scripts
./run_reproducer_CVE-2022-41873.sh
./run_reproducer_CVE-2022-41873.sh --trace

This should indicate that the bug new-Bug-CVE-2022-41873
has been triggered by the reproducing input.

A.4 Evaluation workflow
Our experiments test four different aspects of Hoedur: The
ability to trigger bugs, to produce code coverage, to make
previously unavailable mutation types (by the example of
dictionaries) effective, and to find previously unknown bugs.

We organized the hoedur-experiments repository in such
a way that one subdirectory corresponds to one section in
the evaluation of the paper. We provide scripts to run these
experiments, and try to facilitate this process by providing the
additional utility generate_host_run_config.py which accepts
a description of computation resources (SSH-available hosts
as well as the number of cores to use on each host) and gener-
ates run scripts for each host that together allow reproducing
our results. We also created experiment profiles that repro-
duce the major insights of our experiments while reducing
the CPU requirements.
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A.4.1 Major Claims

(C1): HOEDUR outperforms the state of the art reference
FUZZWARE in terms of its ability to find bugs quickly.
This is proven by the experiment Bug Finding Ability
described in Section 6.2 in the paper and the results of
which are reported in Table 1 and Table 2. This cor-
responds to the directory 01-bug-finding-ability in the
artifact.

(C2): HOEDUR is either on par with or outperforms the
state of the art reference FUZZWARE and its version
SINGLE-STREAM-HOEDUR (which does not use our
multi-stream input representation) in terms of code cov-
erage. This is proven by the experiment Code Coverage:
Established Data Set described in Section 6.3 in the pa-
per, whose results are reported in Figure 6 and Figure 8.
This corresponds to the directory 02-coverage-est-data-
set in the artifact.

(C3): Our multi-stream input representation allows using
dictionary mutations effectively. These dictionaries do
not provide a significant benefit when using a flat binary
input format. This is proven by the experiment Advanced
Mutations via Dictionaries described in Section 6.4 in
the paper, whose results are reported in Figure 7. This
corresponds to the directory 03-advanced-mutations in
the artifact.

(C4): HOEDUR is able to find previously unknown vulnera-
bilities. This is proven by the experiments Bug Finding
Ability and Finding Unknown Vulnerabilities described
in Section 6.2 and Section 6.5 in the paper. The results
are reported in Table 2 and Table 3. This corresponds
to the directories 01-bug-finding-ability and 04-prev-
unknown-vulns in the artifact.

A.4.2 Experiments

In summary, the experiment workflow is the following:
1. Configure the experiment hosts via available_hosts.txt.
2. Install and setup: install.py and

set_limits_and_prepare_afl.sh on each experiment host.
3. Generate the experiment run configurations: gener-

ate_host_run_config.py. Upload via --upload.
4. Run experiment configs on the respective experiments

hosts (make sure to use tmux or similar).
5. Pool data together: sync_experiment_data.py
6. Generate metrics: compute_metrics.py.
7. Inspect the results (see per-experiment description).
Now we include more details on each step. Steps 1 to 6

need to be taken once to generate the data corresponding to
the results reported in our paper for the different experiments.
From there, the final experiment-specific step is to check the
relevant output for each experiment manually.

We provide the utilities available_hosts.txt, gener-
ate_host_run_config.py and run_experiment.py to help with
scheduling and running the fuzzing experiments for E1,

E2, E3 and E4. Before running these experiments, we as-
sume that the Docker containers are already installed on
each host on which any parts of the experiments are sup-
posed to be run (install.py), and that each host is avail-
able via an SSH configuration (see Section A.3.1) and
set up to run the reference fuzzer FUZZWARE (scripts/fuz-
zware/set_limits_and_prepare_afl.sh).

The first manual step after this installation is to deter-
mine the hosts on which to run the experiments and to
configure them in available_hosts.txt. The fuzzing run ex-
periment configurations can then be generated using gener-
ate_host_run_config.py. The experiment configuration YAML
files will be located in experiment-config/host-run-configs as
<hostname>.yml. These configurations need to be copied to
the corresponding hosts. Uploading the configurations can be
done either manually or by running:

./generate_host_run_config.py --upload

Given the experiment configuration file on a host, the ex-
periment can be started via:

./run_experiment.py <HOST_CONFIG>.yml

Please note that these are long-running experiments, such
that tmux or similar tools should be used to run them. After
running the fuzzers to completion, the workflow will be to syn-
chronize all results into the hoedur-experiments directory
of the main host via sync_experiment_data.py and running
the post processing script compute_metrics.py to generate all
metrics.

From here, the generated results need to be confirmed by
inspecting the results directory of each experiment. We
document which files within the results directory contain
the data from our paper for each experiment in the descrip-
tions below. You may also refer to the README of each
experiment directory of the published hoedur-experiments
repository for more info on the available data.
(E1): [01-bug-finding-ability] [60 human-minutes + 750

compute-days + max 100GB disk]:
How to: Reproduce claim C1 / Section 6.2 in the paper.
Preparation: Generate run configurations using gener-
ate_host_run_config.py (see above) and copy them to the
respective hosts. Make sure the required Docker contain-
ers are installed and the hosts are set up on all experiment
hosts via install.py and set_limits_and_prepare_afl.sh
(see above).
Execution: Run the fuzzers using the run scripts. En-
sure a stable execution environment when running via
SSH, such as tmux. After the fuzzers have finished exe-
cuting, sync the results via sync_experiment_data.py
and then compute all remaining metadata via com-
pute_metrics.py.
Results: After generating all metadata for the com-
pleted experiments, the results can be found in
01-bug-finding-ability/results/bug-discovery-timings. In
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this directory, the bug raw discovery timing data
can be found in timings.txt and timings.json
and represent the data also contained in Table 1
in the paper. The table representations as present
in the paper can be found in the results direc-
tory under table_1_cve_discovery_timings.tex and ta-
ble_2_add_bugs_discovery_timings.tex.
The overall results should resemble those in the paper:
It is expected that HOEDUR finds bugs more quickly
than FUZZWARE overall. Keep in mind that due to the
non-deterministic nature of fuzzing, these numbers may
vary. Also keep in mind that based on the experiment pro-
file used, the number of iterations and fuzzing duration
may be altered from the original experiments. For ex-
ample, the default experiment configuration shortens the
fuzzing runs from the original 15-day duration. For the
exact numbers of each experiment configuration/profile,
please refer to the experiment-config README. To
fully rerun the original configuration, please use the cor-
responding, pre-supplied experiment configuration/pro-
file name full-eval.

(E2): [02-coverage-est-data-set] [60 human-minutes + 180
compute-days + max 100GB disk]:
How to: Reproduce claim C2 / Section 6.3 in the paper.
Preparation: Already done in E1.
Execution: Already done in E1.
Results: After generating all metadata for the com-
pleted experiments, the results can be found in 02-
coverage-est-data-set/results/coverage. The raw plot data
can be found in the directory tree in compressed for-
mat under charts/<fuzzer_name>. It contains the raw
data also shown in Figure 6 in the paper. The graph-
ical plot representations as present in Figure 6 and
Figure 8 in the paper can be found in the parent di-
rectory under figure_6_baseline_coverage_plot.pdf and
figure_8_appendix_baseline_coverage_plot.pdf, respec-
tively. It is expected that HOEDUR is on par with or
generates more coverage than FUZZWARE and SINGLE-
STREAM-HOEDUR. See also the general disclaimer
about fuzzing experiment variance and experiment con-
figurations/profiles under item Results of E1.

(E3): [03-advanced-mutations] [60 human-minutes + 40
compute-days + max 50GB disk]:
How to: Reproduce claim C3 / Section 6.4 in the paper.
Preparation: Already done in E1.
Execution: Already done in E1.
Results: After generating all metadata for the com-
pleted experiments, the results can be found in 03-
advanced-mutations/results/coverage. The raw plot data
can be found in the directory tree in compressed format
under charts/<fuzzer_name>. It contains the raw data
also shown in Figure 7 in the paper. The graphical plot
representations, as present in Figure 6 and Figure 8 in
the paper, can be found in the parent directory under fig-

ure_7_baseline_dict_coverage_plot.pdf. It is expected
that HOEDUR+DICT performs best overall, while HOE-
DUR+DICT does not provide the same level of improve-
ment over its single-stream version.

(E4): [04-prev-unknown-vulns] [60 human-minutes + 50
compute-days + max 10GB disk]:
How to: Reproduce claim C4 / Section 6.1 and Sec-
tion 6.5 in the paper.
Preparation: Already done in E1.
Execution: Already done in E1.
Results: For this experiment we provide pre-extracted
samples of crashing inputs that trigger each reported bug
in the repository. For a full overview of the reported bugs,
see the tables in 04-prev-unknown-vulns/README.md.
Some of the new bugs have been found in the CVE
target set of FUZZWARE. As such, the correspond-
ing bug reproducing inputs can be found in 01-bug-
finding-ability/results/bug-reproducers. The other bug
reproducing inputs can be found in 04-prev-unknown-
vulns/results/bug-reproducers.
As part of the reproduction, we also run HOEDUR on
the remaining targets for a limited amount of time. As
some new bugs require more computation power for
HOEDUR to find and are found with some variance, it is
expected that this will find some of the newly reported
bugs, but may not reproduce all of them. The results
can be found in 04-prev-unknown-vulns/results/bug-
reproducers. The reproducers can be found in the direc-
tory tree of bug-reproducers. They represent triggers
for the bugs listed in Table 3 in the paper. It is expected
that HOEDUR triggers at least some of the bugs within
the fuzzer reruns and as a result, a set of reproducers
can be found and run via the scripts located in 04-prev-
unknown-vulns/repro-run-scripts.

A.5 Notes on Reusability

We designed our experiments to be extendable and con-
figurable in the computation resources required. Our
configurations allow adding more experiments, such as
05-my-other-experiment. Our scripts are built to be able
to compute metadata for new fuzzing runs, such that one
should only need to add another experiment and metrics as
configurations. Coverage metadata, alongside their plots, can
be configured to be computed using the provided scripts and
setup. Some additional metrics are already computed, even
though they are not referenced in this document. After run-
ning the experiments, one can find these metrics under the
results experiment sub-directories.

Regarding the fuzzer itself, our prototype is published open
source under https://github.com/fuzzware-fuzzer/hoedur. The
source code separates the emulator from the fuzzer rather
strictly, such that the community may make use of both com-
ponents.
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A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

This artifact allows the replication of the experiments and
results described in Section 6. We provide the following: (i) A
stand-alone repository containing the full source code for our
rehosting and fuzzing engine, ready to be compiled and used
(https://github.com/pr0me/SAFIREFUZZ), (ii) a reposi-
tory containing documentation, build- and setup scripts for
replicating our experiments and a copy of the data we gath-
ered during our evaluation (https://github.com/pr0me/
safirefuzz-experiments).

The artifact has been validated on a HoneyComb LX2
ARM workstation containing 16 ARM Cortex-A72 cores
with a clock rate of up to 2 GHz, 32 GB DDR4 memory with
a frequency of 3200 MT/s and a 128 GB m.2 SSD running
Ubuntu 18.04.05.

A.2 Description & Requirements

A.2.1 Security, Privacy, and Ethical Concerns

While running and evaluating SAFIREFUZZ does not require
destructive steps, small changes to the host system weakening
its security guarantees are needed to run our system.

In particular, we require ASLR to be disabled, to increase
determinism and avoid mapping of, e.g., linked libraries in
segments we need otherwise and expect to be empty. Addi-
tionally, we enable allocating virtual memory down to address
0 by adjusting mmap_min_addr, as we need to place parts of
the firmware image in low memory regions. Both can be con-
figured by running the SAFIREFUZZ/prepare_sys.sh script.
Those changes should be reverted after usage of our system,
either by manually reverting the changes or rebooting.

A.2.2 How to Access

We provide public access to our code and experiment setups
and data through the following GitHub repositories at specific
tags for artifact evaluation:

1. SAFIREFUZZ main repository: https://github.com/
pr0me/SAFIREFUZZ/tree/post_ae
DOI: https://zenodo.org/record/8223057

2. Artifact Evaluation data: https://github.com/
pr0me/safirefuzz-experiments/tree/post_ae
DOI: https://zenodo.org/record/8223055

The repositories contain detailed information on building,
running, and reproducing our experiments.

A.2.3 Hardware Dependencies

SAFIREFUZZ rehosts low-level Cortex-M firmware onto more
powerful Cortex-A cores. As such, a system containing a
Cortex-A core with 32-bit support is required, which can
for instance be found on a Raspberry Pi 4b featuring four
Cortex-A72 cores. Installation instructions for Raspberry Pis
can be found in our main repository. Additionally, due to
interoperability issues, our Fuzzware-specific experiments
were run on an x86-64 VM.

During artifact evaluation, we provided the reviewers with
access to the same hardware we used during our evaluation:
(M1) a HoneyComb ARM workstation, and (M2) an Ubuntu
18.04 x86-64 VM hosted on an AMD EPYC 7662 server.

A.2.4 Software Dependencies

1. Rust: Our artifact is implemented in the Rust program-
ming language. Per the rust-toolchain file provided
in the main repository [1], we pin the installation envi-
ronment to compiler version rustc 1.62.0-nightly.

2. Cross-Compilation: A cross compilation toolchain
is required. On Ubuntu, the corresponding
packets are gcc-arm-linux-gnueabihf and
g++-arm-linux-gnueabihf.

Install the armv7-unknown-linux-gnueabihf rust tar-
get for the above-mentioned compiler version. Note that
these steps are even required when directly building in
an ARM environment such as the HoneyComb. While
the processor can execute programs targeted for both
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ARMv7 and ARMv8 versions, if the OS is built for
aarch64, cross-compilation is required as the artifact
binary will execute in ARMv7’s 32-bit mode.

3. External Dependencies: The main artifact requires the
LibAFL and Keystone external dependencies that cannot
be automatically fetched by Rust’s package manager. We
include the dependencies as git submodules, pinned to
specific versions.
The evaluated third-party frameworks introduce their
own dependencies and can be set up as documented in
the HALucinator1 and Fuzzware2 repositories.

4. Python: For multiple build and automation scripts pro-
vided with the AE experiment repository, we require a
Python version > 3.9. Additionally, we require the fol-
lowing Python libraries for analyzing and plotting the re-
sults of our experiments: jupyter, numpy, matplotlib,
seaborn, scipy, pandas.

A.2.5 Benchmarks

To evaluate SAFIREFUZZ, we use a collection of 12+2
firmware samples: 12 samples from the original HALuci-
nator evaluation, and 2 previously untested samples (JPEG
Decoder and STM32 Sine). We include all samples in the
experiment repository under 00_firmware.

Using these samples, we evaluate our approach against the
following fuzzing setups:

1. HALucinator. State-of-the-art high-level-emulation-
based rehosting and fuzzing framework. We include
the fuzzing-ready hal-fuzz version as a submodule in
safirefuzz-experiments/01_fuzzing/hal-fuzz.

2. HALucinator - LibAFL. We replace HALucinator’s
legacy AFL forkserver with a LibAFL-based fork-
server. This new version is identical in configuration
to the forkserver backend we use in SAFIREFUZZ. We
conduct this comparison to eliminate variables such
as differences in mutation strategies. Details can be
found in the safirefuzz-experiments repository under
01_fuzzing/forkserver_LibAFL.

3. Fuzzware. A recent peripheral-modeling-based rehost-
ing approach. This is the only experiment we con-
ducted in an x86-64 environment, as, even after con-
sulting the authors, Fuzzware could not be brought to
run in our default ARM environment. We provide us-
age information and link the necessary submodule under
01_fuzzing/fuzzware.

We include setup guides and detailed usage instructions for
all evaluated frameworks under 01_fuzzing/README.md.

1https://github.com/ucsb-seclab/hal-fuzz
2https://github.com/fuzzware-fuzzer/fuzzware

A.3 Set-up
A.3.1 Installation

If you are using the provided access to the experiment ma-
chines, all systems are already set-up and below instructions
can be skipped. To manually install SAFIREFUZZ, the main
artifact, please follow these steps:
1. Checkout our experiments repository 2 and initialize the

submodules recursively.
2. Inside the experiments repository:

$> cd 01_fuzzing/SAFIREFUZZ
3. Install the Rust programming language.3

4. Install the cross-compilation toolchain with ‘rustup
target add armv7-unknown-linux-gnueabihf‘
and cross-arch linkers, e.g., on Ubuntu by running
‘sudo apt install gcc-arm-linux-gnueabihf
g++-arm-linux-gnueabihf‘.

5. Specify the correct linker by adding the following lines to
your ˜/.cargo/config:
[target.armv7-unknown-linux-gnueabihf]
linker = "arm-linux-gnueabihf-gcc"

6. Specify the target harness you want to execute / fuzz in
src/engine.rs:
use crate::harness::wycinwyc as harness;

7. Build with
$> cargo build -release -target
armv7-unknown-linux-gnueabihf

8. Run the prepare_sys.sh script as root.

A.3.2 Basic Test

After installing and compiling the main arti-
fact, you will find the safirefuzz binary under
./target/armv7-unknown-linux-gnueabihf/release/.
Compilation is always specific to a single target or harness,
so make sure to change the target (cf. Section A.3.1, step
6.) and re-compile before trying to execute a new firmware
image.

Start fuzzing a specific firmware image with a directory of
seeds by running:

./safirefuzz -b 00_firmware/wycinwyc.bin -i
01_fuzzing/seeds/wycinwyc/ -c 1.

When starting a fuzzing campaign, you should see
LibAFL’s status reports scrolling by. For running a test on
the WYCINWYC target, you should be able to see rapidly
increasing numbers for corpus, around 400-600 after approx.
30 seconds, which are interesting inputs leading to unique
new coverage, at roughly 7000 executions per second. You
can find these inputs in the queue directory while crashing
inputs are stored in crashes.

To then execute a single input, execute:

3https://www.rust-lang.org/tools/install
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./safirefuzz -b 00_firmware/wycinwyc.bin -i
01_fuzzing/crashes/SOMECRASHID

We automated most of these steps with the
safirefuzz_target.py script included in the experi-
ments repository under 01_fuzzing. For instance, running
$> ./safirefuzz_target.py nxp_http will automat-
ically build SAFIREFUZZ for the correct target and start
fuzzing. This script defaults to running on the third core (-c
2), change this if you are running multiple tests in parallel.

A.4 Evaluation Workflow

A.4.1 Major Claims

(C1): SAFIREFUZZ achieves statistically significant more
exec/s (ca. 690x on avg.) and coverage than HALuci-
nator, except for coverage on the P2IM PLC and P2IM
Drone targets. This is proven by experiment E1.

(C2): SAFIREFUZZ achieves more exec/s (ca. 1100x on
avg.) and coverage than HALucinator-LibAFL, except
for coverage on the UDP Echo Server, STM PLC,
P2IM PLC and P2IM Drone targets. These results are
statistically significant, except for coverage on the P2IM
PLC, STM PLC, WYCINWYC, and UDP Echo Client
targets. This is proven by experiment E2.

(C3): SAFIREFUZZ achieves more exec/s (ca. 145x on
avg.) and coverage than Fuzzware, except for coverage
on P2IM PLC4 and P2IM Drone. The results are
statistically significant except for coverage on the
6LoWPAN RX/TX, STM PLC, and WYCINWYC
targets and for execution speed on the SAMR21 target.
This is proven by experiment E3.

(C4): SAFIREFUZZ reliably re-discovers previously found
bugs during fuzzing (E0). This includes vulnerabilities
in the WYCINWYC and 6LoWPAN RX/TX targets as
discussed in Section 6.4.

(C5): SAFIREFUZZ finds crashes in the previously untested
firmware images JPEG Decoder and STM32 Sine. This
can be replicated with experiment E4. We discuss the
findings in Section 6.4 of our paper.

For C1, C2 and C3, we discuss our results in Section 6.2 in
the main paper. Table 3 reports numbers gathered during our

4The paper as published as part of the proceedings contains an error in
which the list of valid basic blocks for the P2IM PLC target was calculated
incorrectly. This led to underreporting achieved coverage, impacting Fuz-
zware the most. We would like to thank Chris Boyce for pointing this out,
based on the experiment data we published. A version with updated numbers
and graphs can be found under https://download.vusec.net/papers/
safirefuzz_sec23.pdf.

experiments and Figure 3 illustrates achieved coverage over
the course of a 24-hour fuzzing campaign for all targets and
frameworks.

A.4.2 Experiments

As a working SAFIREFUZZ installation is required for the
subsequent steps, refer to Section A.3.1 of this Appendix and
the README of our main repository [1] for instructions.
The following steps assume you work in the pre-configured
environments.

(E0): SAFIREFUZZ Baseline [20 human-minutes fuzzing
set-up time + up to 5x12x24 compute-hours + 10
human-minutes coverage collection set-up time +
2-6 compute-hours queue replay time]: Use the
./safirefuzz_target.py script in 01_fuzzing of
the experiments repository [2] to start a 24-hour fuzzing
campaign for the specified target with SAFIREFUZZ.

(E1): HALucinator Comparison [20 human-minutes
fuzzing set-up time + up to 5x12x24 compute-hours +
10 human-minutes coverage collection set-up time +
2-6 compute-hours queue replay time]: HALucinator is
readily set-up, you can start fuzzing with this framework
by executing the corresponding script in the hal-fuzz
submodule. For further details, refer to the HALucinator
section in 01_fuzzing/README.md.

(E2): HALucinator-LibAFL Comparison [20 human-
minutes fuzzing set-up time + up to 5x12x24
compute-hours + 10 human-minutes coverage collection
set-up time + 2-6 compute-hours queue replay time]:
For details how to start a HALucinator-LibAFL
fuzzing campaign, refer to the corresponding section in
01_fuzzing/README.md.

(E3): Fuzzware Comparison [15 human-minutes fuzzing
set-up time + up to 5x12x24 compute-hours + 15
human-minutes coverage collection set-up time + 2-6
compute-hours queue replay time]: In order to set up
and start fuzzing with Fuzzware, please refer to the
detailed instructions provided 01_fuzzing/fuzzware
as part of our experiments repository.

(E4): Vulnerability discovery [15 human-minutes fuzzing
set-up time + up to 24 compute-hours + 15 human-
minutes replay & verification]: To compile and fuzz the
previously untested targets, please refer to the README
included in 03_case_studies inside the experiment
repository.

Collecting Coverage. For all experiments except E3, cover-
age can be collected using the eval_bbs_halucinator.py
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script in 02_coverage_collection. For detailed instruc-
tions on this, refer to the README provided within the directory.
For E3, use the scripts fuzzware_genstats_with_hal.sh
and fuzzware_genstats_without_hal.sh provided in
02_coverage_collection and refer to the README for
details.

Analyzing Results. We provide scripts to test whether
achieved coverage and execution speeds are statistical
significant under 04_eval_data inside the experiment
repository. Please use the bb_mann_whitney.ipynb and
execs_mann_whitney.ipynb jupyter notebooks inside the
coverage and executions directories. We further provide a
gen_fig3.ipynb notebook to plot coverage data over time.
To use these notebooks with data from your experiments, you
will need to exchange the .data and .csv in the according
according subdirectories. Please refer to the README for more
details.

Time & Resource Considerations. Due the extent of the
experiments carried out during evaluation, it may not be pos-
sible to run all experiments for all reviewers in the time frame
allocated for artifact evaluation. Hence, we provide the raw
data collected from our runs under 04_eval_data in our ex-
periment repository. The raw data allows to reproduce our
claims without, or only partially, running the experiments.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

Our understanding of human drivers’ privacy perception and
decision of V2X communication in connected autonomous ve-
hicles (CAVs) is based on descriptive statistics and inference
statistical tests of quantitative data, as well as thematic anal-
ysis of qualitative data. We provide the data and explain the
analysis methods we used to replicate all results reported in
the paper. The artifact includes our collected data (for review
only), our quantitative analysis via R code, and the qualita-
tive analysis via excel spreadsheets and Python, such that one
can recreate all results in tables, figures, statistical tests, and
reported themes throughout the paper.

A.2 Description & Requirements

A.2.1 Artifact check-list (Meta-information)

Data set: Survey responses from the participants (quantita-
tive and qualitative data sets) in our study; non-public.

Run-time environment: We did our analysis on Windows
11 system.

Security, privacy, and ethical concerns: Maintaining the
confidentiality of participant data; the dataset will not be
publicly available based on the approved IRB protocol.

Metrics: Perceived benefits, perceived risks, willingness to
share data, and confidence of sharing decision.

Output: The artifact produces all results, containing tables,
figures, and the code counts in users’ answers to the
open-ended questions.

Experiments: Descriptive statistics, inference statistical
tests, and qualitative analysis of responses to the open-
ended questions.

How much disk space required (approximately)?: Negli-
gible, less than 1 GB.

How much time is needed to prepare workflow (approxi-
mately)?: This depends on whether the required environ-
ment (RStudio and PyCharm) and the required packages
are already installed. If none of the aforementioned are

present, the set-up should take less than 20 min on a
modern computer.

How much time is needed to complete experiments (ap-
proximately)?: This depends on hardware, but should
take less than 30 min on any recent PC or laptop.

Publicly available (explicitly provide evolving version ref-
erence)?: All scripts and code are made publicly avail-
able1.

Code licenses (if publicly available)?: The R code and
the Python script are licensed under Creative Commons
Attribution 4.0 International.

Archived (explicitly provide DOI or stable reference)?:
The DOI provided by Zenodo is 10.5281/zenodo.
7707330.

A.2.2 Security, privacy, and ethical concerns

All personal identifiable information has been removed from
both data sets. There is no risks in executing the analysis.
However, we cannot exclude the possibility of those data be-
ing used to deanonymize participants. Based on the approved
IRB protocol, the data will not be publicly available.

A.2.3 How to access

Along with the supplementary materials, we make all the
scripts and code used to analyze data publicly available (see
Footnote 1). The artifact includes four main parts: (1) the
“CLMM Tests” folder that contains anonymized Quantita-
tive_Data.csv, the R script “CLMM_Analysis.Rmd” for data
analysis and the expected output “CLMM_Analysis.pdf”; (2)
the “Thematic Analysis” folder that contains spreadsheets
Coder1_Coding.xlsx, Coder2_Coding.xlsx, Final_coding.xlsx,
and the script “Thematic_analysis.py” calculating the inter-
rater agreement of the coders and counting the agreed
codes. Code_book.txt describes the meanings of the codes;
and (3) “Supplementary Materials.pdf.” Additionally, the
“README.md” provides a detailed overview of all files.

1https://zenodo.org/record/7707330#.ZAh0q3bMIQ8
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A.2.4 Hardware dependencies

No specific hardware is needed. Our analysis requires less
than 1 GB of disk space.

A.2.5 Software dependencies

The quantitative analysis requires R to run. We use RStu-
dio (2022.12.0 Build 353) and R (version 4.2.2). RStudio
can be obtained online for free2. The following R packages
are needed to run the script: ordinal and emmeans. For the
qualitative analysis, the coding results are listed in Microsoft
Excel (Version 2301 Build 16.0.16026.20196). We use Python
(3.10) and PyCharm (2021.2.3), both of which are publicly
available3. To calculate inter-rater reliability (i.e., Cohen’s
Kappa) and count the frequencies of the themes, the follow-
ing Python packages are needed: pandas and numpy. Our
analysis is done on Windows 11 system.

A.2.6 Benchmarks

Datasets. We use the survey responses collected in our
user study. The quantitative analysis (i.e., Cumulative Link
Mixed-effects Model (CLMM) analysis) is conducted using
the dataset Quantitative_Data.csv. The qualitative analysis
(i.e., thematic analysis and Cohen’s Kappa) is conducted
based on Coder1_Coding.csv, Coder2_Coding.csv, and Fi-
nal_Coding.csv. The description of the codes can be found at
Code_book.txt.

The quantitative and qualitative data are provided for arti-
fact evaluation only. To maintain participants’ privacy, we do
not release the data publicly.

Models. We run CLMMs on the Quantitative_Data.csv via
the “CLMM_Analysis.Rmd.”

A.3 Set-up
A.3.1 Installation

Quantitative analysis. Installation time: about 15 min. The
quantitative evaluation is performed by using R. The set-up
consists of two steps.

Software. RStudio 2022.12.0 Build 353 with R 4.2.2 is
recommended because the authors used these versions. R and
RStudio are all publicly available and their instructions for
version-specific installation can be found at their respective
websites.

R packages. When RStudio is installed, it must be started
and the analysis script can be opened using the “File” menu.
Then the following R packages need to be installed: ordinal
and emmeans. To install these packages using RStudio, open
the “Tools” menu and then select “Install packages”. In the

2https://posit.co/download/rstudio-desktop/
3https://www.jetbrains.com/pycharm/download/#section=

windows

search box enter the first package. Then click “Install”. Repeat
these two steps for the second package. Installation of the
packages might take some time if they need to be compiled.
Once the two packages are installed, the analysis script can
be run. In our experiment, we generate a PDF to view the
results, which requires pdflatex. If there is no pdflatex in your
computer, you can install the R package tinytex in RStudio
to meet this requirement using the same method described
above.

Qualitative analysis. Installation time: about 5 min. Same
as the quantitative analysis, the set-up consists of two steps.

Software. Python (3.10) and PyCharm (2021.2.3) are both
publicly available and their instructions for version-specific
installation can be found at their respective websites.

Python packages. To run the .py script for thematic anal-
ysis, the following dependencies also need to be installed:
pandas and numpy. You can install them one by one from
the terminal using pip (which is automatically installed with
Python). In PyCharm, the packages can also be installed di-
rectly through “Python Packages” tool bar at the bottom-left
corner.

A.3.2 Basic test

After installing the dependencies (the R packages and the
Python packages), you can run “Basic_Test.R” and “Ba-
sic_Test.py” to see whether the required dependencies can be
loaded, respectively. There should not be any error messages
if the packages are successfully installed.

A.4 Evaluation Workflow
A.4.1 Major claims

The major claims made in the paper are as follows:
(C1): While participants perceived more benefits but fewer

risks in the three driving-related scenarios, they per-
ceived more risks but fewer benefits in the infotainment
scenarios (RQ1). This is proven by E1. Statistical infer-
ence test results are described in Section 4.1 and Table
3. The descriptive statistics are illustrated in Figure 2
(a) and (b).

(C2): Only the privacy priming was effective in reducing
participants’ perceived benefits than those in the control.
Instead of augmenting their privacy concerns, the pri-
vacy&security priming condition showed similar results
as those in the control (RQ2). This is proven by E1.
Statistical inference test results are described in Section
4.1 and Table 3. The descriptive statistics are illustrated
in Figure 2 (a) and (b).

(C3): Participants made more liberal privacy decisions in the
driving-related scenarios, which could have been caused
by perceiving both more benefits and fewer risks (RQ1).
Moreover, they made more conservative privacy deci-
sions as long as they were primed (RQ2). This is proven
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by E1. Statistical inference test results are described in
Section 4.2 and Table 3. The descriptive statistics are
illustrated in Figure 2 (c).

(C4): We observed a non-significant trend that participants
with much experience in driving assistance and connec-
tivity functions perceived more benefits and more risks
of data sharing. Moreover, there was a non-significant
trend that they showed higher willingness in sharing the
data (RQ3). This is proven by E1. Statistical inference
test results are described in Section 4.3 and Table 3. The
descriptive statistics are illustrated in Figure 3.

(C5): Our thematic analysis verified the privacy-safety trade-
off. The analysis revealed not only common factors simi-
lar to other settings, but also some unique factors for the
CAV context (RQ1). This is proven by E2. Inter-rater
agreement via Cohen’s Kappa and thematic analysis re-
sults are described in Section 4.5.

A.4.2 Experiments

(E1): Quantitative analysis
Execution Time: about 15 min. The results from Sec-
tions 4.1 to 4.3, Table 3, Figures 2 and 3 are produced
in the R code via the following steps:
1. Open the RStudio.
2. In RStudio, open the document

“CLMM_Analysis.Rmd” by clicking “File”, then
“Open File...”, and selecting “CLMM_Analysis.Rmd”.

3. Then click the drop-down arrow of “Knit” and select
“Knit to PDF”.

4. Once completed, you may view the produced PDF:
“CLMM_Analysis.pdf”.
The generated PDF will include results verifying claims
1-4 (C1-C4) (i.e., Findings 1-4 in the paper).

(E2): Qualitative analysis
Execution Time: about 1 min. Cohen’s Kappa (inter-
rater reliability) with the initial codes of two coders and
the frequencies of each theme with the final codes from
Section 4.5 are produced in the Python code via the
following steps:
1. Open the PyCharm.
2. In PyCharm, click “File”, then “Open...”, and select

the folder where “Thematic_Analysis.py” is located.
3. Then click “Run” and select “Run...”. In the pop-up

window, select “Thematic_Analysis” to run it.
Once completed, you will see the output results (should
be the same with “Thematic_Analysis.pdf”). The gener-
ated results will verify claim 5 (C5) (i.e., Finding 5 in
the paper).

A.5 Notes on Reusability

Our artifact (R and Python scripts) can be reused to analyze
other human-subject studies’ results using CLMM, Cohen’s

Kappa, and thematic analysis.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926.
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A Abstract

To fully understand the root cause of the NRDelegationAttack
and to analyze its amplification factor, we developed mini-
lab setup, disconnected from the Internet, that contains all
the components of the DNS system, a client, a resolver, and
authoritative name servers. This setup is built to analyze and
examine the behavior of a resolver (or any other component)
under the microscope. On the other hand it is not useful for
performance analysis (stress analysis).

Here we provide the code and details of this setup enabling
to reproduce our analysis. Moreover, researchers may find
it useful for farther behavioral analysis and examination of
different components in the DNS system.

A.1 Description & Requirements

DNS-FullProtocolSimulator is an Inner-Emulator environ-
ment for DNS protocol which was built as part of NRDele-
gationAttack research. DNS-FullProtocolSimulator includes
a client, resolver and three authoritative name servers. The
resolver is a BIND9 recursive resolver with both the NXNSAt-
tack patched version (BIND9 version 9.16.6) and a pre-NXNS
version (BIND9 version 9.16.2). The three authoritative name
servers are: a ‘root’, an attacker, and a malicious delegation
authoritative name servers.

Most of the NRDelegationAttack measurements were car-
ried out on a BIND9 version 9.16.6 resolver compiled to
work with the local ‘root’ authoritative name server. The
authoritative name servers are implemented with Name
Server Daemon (NSD) version 4.3.3. The clients are de-
ployed on the same machine, which was configured to send
DNS queries directly to the local recursive resolver. The
setup configuration and environment are provided in GitHub
(https://github.com/ShaniBenAtya/dnssim).

In order to use DNS-FullProtocolSimulator, a docker
docker is required.

*Member of the Checkpoint Institute of Information Security.
†The majority of this research was carried out while the author was at

Reichman University. Member of the Checkpoint Institute of Information
Security.

A.1.1 Security, privacy, and ethical concerns

To ensure that no harm may be done outside of the setup,
the environment runs locally in closed Docker container en-
vironment. It is thus important to use “–dns 127.0.0.1” flag
to configure this. Changing the “resolv.conf” configuration
inside the docker container is not enough (see Appendix A.2).

A.1.2 How to access

DNS-FullProtocolSimulator source code can be found at
DNS-FullProtocolSimulator GitHub (1.4 Tag). The environ-
ment docker image can be accessed through DockerHub (1.7
Tag).

A.1.3 Hardware dependencies

There is no hardware dependencies required for using DNS-
FullProtocolSimulator. During our research, we used an
Ubuntu computer or Virtual Machine (we recommend using
Ubuntu 20.04 or above) which is capable of running Docker
images according to "Install Docker Engine on Ubuntu" spec-
ification.

A.1.4 Software dependencies

1. Docker

2. WireShark (To install WireShark on Ubuntu use: apt
install wireshark).

3. Kcachegrind (To install Kcachegrind on Ubuntu use:
apt install kcachegrind).

A.1.5 Benchmarks

In order to conduct the experiments described in NRDele-
gationAttack paper (Section 5), the setup should contain a
resolver with a non vulnerable to NXNSAttack version (e.g.
bind-9.16.6) and at least two authoritative servers (local root
authoritative and at least one more authoritative to simulate
the “referral.com” authoritative in Figure 1). In addition, a
malicious zone file is required for the attacker authoritative
(i.e., “home.lan” server). The malicious zone file may contain
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as many malicious name servers as necessary for the specific
test, we used malicious referral list with 1500 NRDelegation
name servers which all delegate the resolver to a server IP ad-
dress that is non-responsive to DNS queries through another
authoritative server (the local root server can also be used to
delegate the resolver to this IP address).

For instance, if the malicious request from the client is
“attacker.home.lan”, the malicious referral response should
include a long list of name servers. In order to create such
referral list the “/env/nsd_attack/home.lan.forward” zone file
needs to have 1500 records per one malicious request. That
is, the malicious zone file includes 1500 records for the ma-
licious request which leads to a none existent domain name
(e.g., attacker IN NS ns0...1500.fake0...1500.fake) and the
root authoritative server, which does not have any record to
the non-responsive domain name, includes a wildcard record
delegating the resolver to a non responsive IP address (e.g., *
IN A 127.0.0.89).

A.2 Set-up

The following tree structure represent relevant folders and file
in the environment with description for each one of them.

env
client ... (127.0.0.1).
resolver ... (127.0.0.1).
nsd_root ... (127.0.0.2) - Root

authoritative server
configuration folder.

lan.forward ...
Zone file for SLD server
".lan".
lan.reverse
net.forward ...
Zone file for root server
".net".
net.reverse
nsd.conf ... Configuration file for NSD,

contains the IP address of
the root server.

nsd.db ... NSD DB, for internal NSD
usage.

nsd_attack ... (127.0.0.200) “home.lan”
malicious authoritative
server configuration
folder, (which simulates
‘referral.com” server in
Figure 1).

home.lan.forward ...
Zone file for sld
".home.lan", this sld
represents the malicious
authoritative.
home.lan.reverse

nsd.conf ... Configuration file for NSD,
contains the IP address of
the malicious authoritative
server.

nsd.db ... NSD DB, for internal NSD
usage.

.3 named.conf ...
Bind9 configuration,
contains the IP address
of the local environment.

bind9_16_6, bind9_16_2 OR bind9_16_33 ...
Bind source code with
modification to use local
root server.
nsd ... NSD source code from

https://github.com/NLnetLabs/nsd,
this folder relevant in
case of changes to the
original NSD code (In our
experiment we didn’t change
this code).

A.2.1 Installation

1. Pull the docker image from Docker Hub (docker pull

shanist/dnssim:1.7).

2. Run the docker image as a container interactively so
you can control the environment (docker container

run --dns 127.0.0.1 --mount type=bind,source
=<local_folder_path>,target=/app -it shanist/

dnssim:1.7 /bin/bash).
It is important to use the dns 127.0.0.1 flag so the envi-
ronment DNS will be local, changing the resolv.conf

file inside a Docker container does not work. Note that
we are mounting <local_folder_path> to the folder
/app inside the docker container so it will be easier to
copy files to and from the docker container.

3. Now you have a terminal inside the environment.

4. In order to open another terminal for the environment
first run sudo docker container ls, look for dnssim

docker image name and copy its <CONTAINER ID>.
Then, run sudo docker exec -it <CONTAINER ID>

bash.
To open more terminals into the environment, repeat
this process.

To conduct the experiments described in NRDelegationAt-
tack paper, the setup needs to include a resolver and at least
two authoritative servers.

Environment IP address:

1. 127.0.0.1 – Client

2. 127.0.0.1 – Our own Resolver (The client and resolver
have the same IP address)
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3. 127.0.0.2 – Root authoritative

4. 127.0.0.200 – “home.lan” TLD authoritative (which sim-
ulates “referral.com” server in Figure 1).

5. 127.0.0.53 – The default resolver – DO NOT USE IT
WHILE TESTING!

Authoritative Servers: Our authoritative servers are located
at “/env/nsd_root” and “/env/nsd_attack”. To use them, first
configure their zone files which are located inside their folder
and called “ZONE_NAME.forward”. After changing the zone
file a restart to the authoritative is required in order to apply
the changes.

Resolver: First, go to the resolver implementation folder
(We have bind-9.16.2 (Which is vulnerable to NXNSAttack),
Bind-9.16.6 (Which is non-vulnerable to NXNSAttack and
vulnerable to NRDelegationAttack) and bind-9.16.33 (Which
is non-vulnerable to both attacks)). You can easily replace
the Bind9 version by going to the correct Bind9 version
folder (e.g.,“/env/bind9_16_6”, “/env/bind9_16_2” or “/en-
v/bind9_16_33”) and run: make install. NOTE: The envi-
ronment is pre-installed with Bind 9.16.6 which was the main
Bind9 resolver version tested in NRDelegationAttack paper.

Starting the environment: Open three terminals in the
Docker container: First, turn on the Resolver using the fol-
lowing commands:

cd /etc
named -g -c /etc/named.conf

If there is a key-error run rndc-confgen -a and try to start
it again. If you are getting the error: “loading configuration:
Permission denied”, use the following commands to correct
the error:

chmod 777 /usr/local/etc/rndc.key
chmod 777 /usr/local/etc/bind.keys

Now, turn on the Authoritative servers in a different envi-
ronment terminal: Navigate to the Authoritative server folder
(/env/nsd_attack and /env/nsd_root), then run in each authori-
tative server folder: nsd -c nsd.conf -d -f nsd.db

If there is an error stating that the port is already in use, run
service nsd stop and start it again.

A.2.2 Basic Test

To make sure that the setup is ready and well configured, the
following steps are required:

1. Run another shell inside the docker container us-
ing docker exec -ti <container id> bash and run
tcpdump -i lo -s 65535 -w /app/dump

2. Query the resolver from within the docker container dig
firewall.home.lan and make sure that the correct IP ad-
dress is received, you should see Address: 127.0.0.207

3. Stop tcpdump (you can use ^C), Open WireShark, load the
file <local_folder_path>/dump and filter DNS requests.
You should observe the whole DNS resolution route for
the domain name requested (firewall.home.lan).

(a) firewall.home.lan query from client to resolver
(ip 127.0.0.1 to ip 127.0.0.1)

(b) Resolver query to the root server (from 127.0.0.1

to 127.0.0.2)

(c) Root server return the SLD address (from
127.0.0.2 to 127.0.0.1)

(d) Resolver query the SLD (from 127.0.0.1 to
127.0.0.200)

(e) SLD return the address for the domain name
(127.0.0.207)

(f) Resolver return the address to the client
(127.0.0.207)

NOTE: The address firewall.home.lan is configured in /

env/nsd_attack/home.lan.forward and by performing the
above test ensures that the resolver accesses the authoritative
through the root server.

A.3 Evaluation workflow
As explained in Appendix A.1.5, in order to test NRDele-
gationAttack using DNS-FullProtocolSimulator a client, a
resolver (The environment is pre-installed with Bind 9.16.6
which was the main Bind9 resolver version tested in NRDele-
gationAttack paper) and at least two authoritative servers with
pre-configured zone files are required. See Appendix A.1.5
for detailed example of such zone file configuration.

A.3.1 Major Claims

(C1): If the number of names in the referral list is large, e.g.,
1,500, then each NRDelegationAttack malicious packet
costs at least 5,600 times more CPU instructions relative
to a benign query. This is proven by experiment (E1)
below, as described in Section 5.2 and whose results are
reported in Figure 3. The reproduction (proof) of this
claim does not require significant resources of any sort,
neither compute nor memory (10 human minutes + 2
compute minutes).

(C2): The resolver exhibited a significant performance degra-
dation in its throughput measurements during the NRDel-
egationAttack. This is may be proven by experiment (E2)
below, as described in Section 6.2 and whose results are
reported in Figure 5 in the paper. While in the paper this
test and measurements were done on a cloud setup with
each DNS component implemented on a separate server,
here we show that the same test can be carried out on the
closed virtual setup. The results on this isolated virtual
setup provide an indication of the phenomena and are
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not reliable as those presented in Section 6 in the paper.
The reproduction (proof) of this claim does not require
significant resources of any sort, neither compute nor
memory (20 human minutes + 4 compute minutes).

(C3): The attack is empowered mainly due to the NXNSAt-
tack mitigations: NRDelegationAttack is much worse
for NXNS-patched servers than unpatched servers (See
Section 4). This is proven by experiment (E3) below.
The reproduction (proof) of this claim does not require
significant resources of any sort, neither compute nor
memory (10 human minutes + 2 compute minutes).

(C4): The proposed NRDelegationAttack mitigation greatly
reduces the attacks effectiveness (see Section 8). This
is proven by experiment (E4) below. The reproduction
(proof) of this claim does not require significant re-
sources of any sort, neither compute nor memory (10
human minutes + 2 compute minutes).

(C5): NRDelegationAttack affects open resolvers as well as
the vendors. This claim is problematic to reproduce due
to ethical considerations, in addition, most of the open re-
solvers patched their implementations to NRDelegation-
Attack as part of the responsible disclosure procedure
(see Section 7 in the paper).

A.3.2 Experiments

For the following experiments, Resperf, Valgrind and
Kcachegrind tools are needed.
(E1): Instructions measurement experiment

Preparation: For this experiment Valgrind and
Kcachegrind are required:
First, make sure that your resolver is configured to
use Bind9.16.6 resolver which is patched to NXN-
SAttack (first run: cd /env/bind9_16_6 and then
run: make install). Turn on the resolver with the
Valgrind tool with the following command (make sure
to run the resolver from “/etc”) valgrind --tool=

callgrind named -g -c /etc/named.conf. In addition,
the malicious referral response should include a long
list of name servers, in order to create such referral
list the “/env/nsd_attack/home.lan.forward” zone
file needs to have 1500 records per one malicious
request. For example, you can create one malicious
request using a short script we provided (python /env
/reproduction/genAttackers.py) that generates the
malicious request configuration and copy its output
from the “attackerNameServers.txt” output file into
the zone file For your convenience we uploaded our
“/env/nsd_attack/home.lan.forward” zone file which
includes our attackers to “/env/reproduction” folder.
Execution: Query the resolver with a malicious query
(e.g., “dig attack0.home.lan”). Stop the resolver and
restart it using with Valgrind as explained before.
Query the resolver with a legitimate query (e.g., “dig

test.home.lan”).
Results: Copy the results file from the docker con-
tainer /etc/callgrind.VALGRIND_TEST_NUMBER (which
is the folder from which the resolver is exe-
cuted) to the host, cp /path/in/docker/callgrind
.VALGRIND_TEST_NUMBER /app/ so you could access
the file in <local_folder_path> alternatively you
can use (docker cp <CONTAINER_ID>:/path/in/docker
/callgrind.VALGRIND_TEST_NUMBER /path/in/host.
Note that the VALGRIND_TEST_NUMBER is a number given
by Valgrind. Open the results files in Kcachgrind:
first add permissions to open the file (sudo chown

USERNAME:USERNAME OUTFILE_NAME) and then open the
file: (kcachgrind ./OUTFILE_NAME).
In the tool, choose Instructions Fetch tab and record
the Incl. value of fctx_getaddresses function.
Please make sure that the “relative” button is unchecked.
Repeat this step with each file and compare the results.
Benign query results should be around 200,000 instruc-
tions, while the malicious query should have more than
2,000,000,000.

(E2): Throughput measurement experiment
Preparation: For this experiment Resperf is required:
To configure the malicious authoritative zone file (“/en-
v/nsd_attack/home.lan.forward” file) with multiple ma-
licious domain names (multiple attackers, each of them
configured as explained in E1 and multiple benign do-
main names, you can use the script we provided (python
/env/reproduction/genAttackers.py) and change the
number of attackers generated by changing the AT-
TACKERS_NUM variable (e.g. ATTACKERS_NUM
= 50). Note that the zone file length is bounded by
the file size, therefore we used only 50 different at-
tacker malicious requests in our measurements. In ad-
dition, we uploaded a script that generates a list of
names for the Resperf tool (python /env/reproduction
/genNamesToCheck.py), the script creates two output
files: “benignNamesE2.txt” for benign user domain
names and “attackerNamesE2.txt” for that attacker.
Execution: First make sure that the resolver is using
Bind 9.16.6 version (checking Bind9 version can be
done by running named -v on the resolver terminal
and changing its version can be done by running:
cd /env/bind9_16_2 and then: make install) and that
both the resolver and authoritative servers are running.
Benign and malicious users commands are being
executed from two terminals inside the docker container,
so two instances of Resperf tool are required:
The first simulates the attacker and issues queries each
time at a fixed rate, and the second tool ramps up the
benign user requests until things start to fail.
The malicious user command should be run first but
ultimately in parallel to the benign user command.
In your benign user run: resperf -d INPUT_FILE -s
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127.0.0.1 -v -R -P OUTPUT_NAME.
And from the malicious user run: resperf -d

INPUT_FILE -s 127.0.0.1 -v -m 15000 -c 60 -r 0 -

R -P OUTPUT_NAME

Where: -m is the number of QPS that are sent, -c is
the duration of time in which Resperf tries to send the
queries, -r is the duration of time in which Resperf
ramps-up before sending the packets in a constant time,
we want the ramp-up to be zero and OUTPUT_NAME
is the output file name of your choice (make sure to use
different file names for each test).
The benign and malicious input files should include only
benign or malicious domain names respectively.
You should run two “sub”-experiments: First, you need
to measure the effect of the attack on benign users
throughput, in this experiment “INPUT_FILE” = “be-
nignNamesE2.txt” for benign user, and “INPUT_FILE”
= “attackerNamesE2.txt” for attacker user. Then, to
measure the resolver throughput without any attack
restart the resolver (in order to test with clean cache),
and run the experiment using the “benignNamesE2.txt”
file created using the “genNamesToCheck.py” script as
the “INPUT_FILE” to both Resperf commands.

Results: Open only the benign output files from both
“sub”-experiments using a text editor (from both the be-
nign and attacker terminal) and compare the benign user
throughput presented in the “responses_per_sec” col-
umn. A major obstacle in reproducing the experiment
was the use of docker instead of multiple clients. The
experiment required different computers to send attack
and benign queries simultaneously and was originally
done using our cloud setup environment as described
in Section 6.2 of, but using the docker forced us to use
only one machine for all the tests. Nevertheless when
performing the test within the docker, we are still able
to observe that the resolver throughput for benign users
while the attack takes place is degraded. The difference
was much smaller than in the original experiment (Sec
6.2), but it was statistically significant and can be mainly
seen at the first 10 lines of the output file (in which the at-
tack QPS is high and the resolver throughput is degraded
by more than 90% (actual_qps are around 5000 but the
responses_per_sec are around 100) or even complete
denial of service).
Nevertheless, we are still able to observe that the resolver
throughput for benign users while NRDelegationAttack
takes place is degraded. The difference was much smaller
than in the original experiment, but it was statistically
significant and can be mainly seen at the first 10 lines of
the file (in which the attack QPS is high and the resolver
throughput is degraded by more than 90% (“actual_qps”
are around 5000 but the “responses_per_sec” are around
100) or even complete denial of service).

(E3): Instructions measurement experiment - NXNSAttack
unpatched server
Preparation: For this experiment follow E1 instruc-
tions using Bind9.16.2 resolver (which is not patched
to NXNSAttack) instead of Bind9.16.6 resolver (which
is patched to NXNSAttack). Checking Bind9 version
can be done by running named -v on the resolver termi-
nal and changing its version can be done by running:
cd /env/bind9_16_2 and then: make install).
Execution: Follow E1 instructions.
Results: Follow E1 instructions. Benign query results
should be around 200,000 instructions, while the mali-
cious query should be around 200,000,000.

(E4): Instructions measurement experiment - NRDelegation-
Attack mitigation
Preparation: For this experiment follow E1 instruc-
tions using Bind9.16.33 resolver (which is not patched
to NRDelegationAttack). Checking Bind9 version can
be done by running named -v on the resolver terminal
and changing its version can be done by running: cd /

env/bind9_16_2 and then: make install).
Execution: Follow E1 instructions.
Results: Follow E1 instructions. Benign query results
should be around 200,000 instructions, while the mali-
cious query should less than 10,000,000.

Acknowledgements: The authors are grateful to the
USENIX Security artifact referees for their dedicated careful
review and discussions which have significantly improved the
artifact.

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
Our paper proposes an online learning algorithm, called Adap-
tive Conformal Consensus. Our artifact consists of source
code, datasets, docker files, and scripts to generate paper re-
sults. We aim for Artifacts Available, Artifacts Functional,
and Results Reproduced badges.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Code of our artifact will run a proposed machine learning
algorithm over Python without external communication and
a local blockchain with a forked Ethereum mainnet, so we
do not expect to see any security, privacy, or ethical concerns.
Note that in forking Ethereum mainnet, a script will use an
author’s API key for Alchemy, so we would not expect related
security, privacy, and ethical issues.

A.2.2 How to access

Our artifacts are accessible via Github https://github.
com/sslab-gatech/ACon2/tree/AEStableVersion1.

A.2.3 Hardware dependencies

We expect a standard computing environment, i.e., a com-
puting machine with CPU, HDD, and Internet access. In par-
ticular, a 4 or 5 core CPU machine would be preferred for
multi-processing. The results and docker require about 4 GB
HDD. Internet access is required to fork the Ethereum main-
net during experinents.

A.2.4 Software dependencies

Docker is required, as we provide docker images for repro-
ducing our results.

1git clone –depth 1 –branch AEStableVersion git@github.com:sslab-
gatech/ACon2.git

A.2.5 Benchmarks

We include required datasets (i.e., USD/ETH data and
INV/ETH data) into docker images; thus, additional actions
to get datasets are not required.

A.3 Set-up

A.3.1 Installation

Our code repository is cloned via git
clone -depth 1 -branch AEStableVersion
git@github.com:sslab-gatech/ACon2.git. We provide
docker files, so Docker needs to be installed. Other than these,
all executions are done over docker images.

A.3.2 Basic Test

Once two docker images are installed and
the code repository is cloned, (1) change
the working directory to python and execute
./docker_scripts/docker_plot_INV_ETH_precomp.sh;
and (2) change the working directory to solidity and ex-
ecute ./docker_scripts/plot_sim_precomp.sh. These
two scripts sould not introduce errors if set-up is right.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): ACon2 generates consensus sets that follows well
USD/ETH price data change when K = 1. This is proven
by the experiment (E1) whose results are illustrated in
Figure 4(a).

(C2): ACon2 generates consensus sets that follows well
USD/ETH price data change when K = 2. This is proven
by the experiment (E2) whose results are illustrated in
Figure 4(b).

(C3): ACon2 generates consensus sets that follows well
USD/ETH price data change when K = 3. This is proven
by the experiment (E3) whose results are illustrated in
Figure 4(c).

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium    181

https://github.com/sslab-gatech/ACon2/tree/AEStableVersion
https://github.com/sslab-gatech/ACon2/tree/AEStableVersion


(C4): ACon2 generates consensus sets that satisfy a desired
pseudo-miscoverage rate over USD/ETH price data
when K = 1. This is proven by the experiment (E4) whose
results are illustrated in Figure 5(a).

(C5): ACon2 generates consensus sets that satisfy a desired
pseudo-miscoverage rate over USD/ETH price data
when K = 2. This is proven by the experiment (E5) whose
results are illustrated in Figure 5(b).

(C6): ACon2 generates consensus sets that satisfy a desired
pseudo-miscoverage rate over USD/ETH price data
when K = 3. This is proven by the experiment (E6) whose
results are illustrated in Figure 5(c).

(C7): ACon2 generates reasonable small consensus sets over
USD/ETH price data when K = 3. This is proven by the
experiment (E7) whose results are illustrated in Figure
6(a).

(C8): a baseline algorithm σ-ACon2 generates large consen-
sus sets and conservative pseudo-miscoverage rates over
USD/ETH price data when K = 3. This is proven by the
experiment (E8) whose results are illustrated in Figure
9(a) and 9(b).

(C9): ACon2 generates meaningful consensus sets under
price manipulation, while trigger alarms for downstream
applications over INV/ETH price data. This is proven
by the experiment (E9) whose results are illustrated in
Table 1 and Figure 1.

(C10): ACon2 generates consensus sets that follows well
INV/ETH price data change when K = 1. This is proven
by the experiment (E10) whose results are illustrated in
Figure 7(a).

(C11): ACon2 generates consensus sets that follows well
INV/ETH price data change when K = 2. This is proven
by the experiment (E11) whose results are illustrated in
Figure 7(b).

(C12): ACon2 generates consensus sets that follows well
INV/ETH price data change when K = 3. This is proven
by the experiment (E12) whose results are illustrated in
Figure 7(c).

(C13): ACon2 generates consensus sets that satisfy a desired
pseudo-miscoverage rate over INV/ETH price data when
K = 1. This is proven by the experiment (E13) whose
results are illustrated in Figure 8(a).

(C14): ACon2 generates consensus sets that satisfy a desired
pseudo-miscoverage rate over INV/ETH price data when
K = 2. This is proven by the experiment (E14) whose
results are illustrated in Figure 8(b).

(C15): ACon2 generates consensus sets that satisfy a desired
pseudo-miscoverage rate over INV/ETH price data when
K = 3. This is proven by the experiment (E15) whose
results are illustrated in Figure 8(c).

(C16): ACon2 generates reasonable small consensus sets
over INV/ETH price data when K = 3. This is proven
by the experiment (E16) whose results are illustrated in
Figure 6(b).

(C17): ACon2 generates reasonable small consensus sets
and achieves a desired pseud-miscoverage rate over lo-
cal Ethereum network data when K = 3. This is proven
by the experiment (E17) whose results are illustrated in
Figure 10(a) and 10(b).

(C18): ACon2 achieves a desired pseudo-miscoverage rate
over local Ethereum network data with different K and
α. This is proven by the experiment (E18) whose results
are illustrated in Figure 11(a), 11(b), and 11(c).

(C19): ACon2 uses a reasonable gas amount for computation.
This is proven by the experiment (E19) whose results are
illustrated in Table 2.

A.4.2 Experiments

This section includes detailed instructions to reproduce
results. Also, see https://github.com/sslab-gatech/
ACon2/tree/AEStableVersion, which contains instruc-
tions with pre-computed data, which do not require heavy
computation. Note that the measured compute-hours are esti-
mated based on a server-level environment (i.e., 128 2GHz-
CPUs with 500G memory); we expect one CPU with at least
500MB memory as minimal requirements, but the actual com-
putation time could vary, depending on a HW setup.
Common preparation step.

1. Install Docker

2. Pull docker images via dockerpullghcr.io/

sslab-gatech/acon2:latest and dockerpullghcr.

io/sslab-gatech/acon2-sol:latest

3. Clone our code repository

(E1-8): [0 human-minutes + 30 compute-hour + 5GB disk]:
This experiment generates results for Figure 4, Figure 5,
Figure 6(a), and Figure 9.
How to: First collect required data by executing a
script.
Preparation: change the working directory to python
Execution: Run ./docker_scripts/docker_run_

USD_ETH.sh and Run ./docker_scripts/docker_

plot_USD_ETH.sh

Results: Ways to interpret results are described in (E1-
8)

(E1): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 4(a).
How to: Check a generated figure.
Preparation: change the working directory to python
Results: For Figure 4(a), see output_docker/one_

source_USD_ETH_UniswapV2_K_1_beta_0/figs/plot_

ps.pdf

(E2): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 4(b).
How to: Check a generated figure.
Preparation: change the working directory to python
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docker pull ghcr.io/sslab-gatech/acon2:latest
docker pull ghcr.io/sslab-gatech/acon2:latest
docker pull ghcr.io/sslab-gatech/acon2-sol:latest
docker pull ghcr.io/sslab-gatech/acon2-sol:latest
./docker_scripts/docker_run_USD_ETH.sh
./docker_scripts/docker_run_USD_ETH.sh
./docker_scripts/docker_plot_USD_ETH.sh
./docker_scripts/docker_plot_USD_ETH.sh
output_docker/one_source_USD_ETH_UniswapV2_K_1_beta_0/figs/plot_ps.pdf
output_docker/one_source_USD_ETH_UniswapV2_K_1_beta_0/figs/plot_ps.pdf
output_docker/one_source_USD_ETH_UniswapV2_K_1_beta_0/figs/plot_ps.pdf


Results: For Figure 4(b), see output_docker/two_

sources_USD_ETH_UniswapV2_coinbase_K_2_beta_1/

figs/plot_ps.pdf

(E3): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 4(c).
How to: Check a generated figure.
Preparation: change the working directory to python
Results: For Figure 4(c), see output_docker/three_

sources_USD_ETH_UniswapV2_coinbase_binance_K_

3_beta_1/figs/plot_ps.pdf

(E4): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 5(a).
How to: Check a generated figure.
Preparation: change the working directory to python
Results: For Figure 5(a), see output_docker/one_

source_USD_ETH_UniswapV2_K_1_beta_0/figs/plot_

miscoverage.pdf

(E5): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 5(b).
How to: Check a generated figure.
Preparation: change the working directory to python
Results: For Figure 5(b), see output_docker/two_

sources_USD_ETH_UniswapV2_coinbase_K_2_beta_1/

figs/plot_miscoverage.pdf

(E6): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 5(c).
How to: Check a generated figure.
Preparation: change the working directory to python
Results: For Figure 5(c), see output_docker/three_

sources_USD_ETH_UniswapV2_coinbase_binance_K_

3_beta_1/figs/plot_miscoverage.pdf

(E7): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 6(a).
How to: Check a generated figure.
Preparation: change the working directory to python
Results: For Figure 6(a), see output_docker/

one_source_USD_ETH_UniswapV2_K_1_beta_0_two_

sources_USD_ETH_UniswapV2_coinbase_K_2_beta_

1_three_sources_USD_ETH_UniswapV2_coinbase_

binance_K_3_beta_1/figs/plot_size.pdf

(E8): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 9(a,b).
How to: Check a generated figure.
Preparation: change the working directory to python
Results: For Figure 9(a), see output_docker/three_

sources_OneSigma_USD_ETH_UniswapV2_coinbase_

binance_K_3_beta_1/figs/plot_ps.pdf and for
Figure 9(b), see output_docker/three_sources_

OneSigma_USD_ETH_UniswapV2_coinbase_binance_K_

3_beta_1/figs/plot_miscoverage.pdf

(E9-16): [0 human-minutes + 2 compute-hour + 5GB disk]:
This experiment generates results for Table1, Figure 1,
Figure 7, Figure 8, and Figure 6(a).
How to: First collect required data by executing a

script.
Preparation: change the working directory to python
Execution: Run ./docker_scripts/docker_run_

INV_ETH.sh and Run ./docker_scripts/docker_

plot_INV_ETH.sh

Results: Ways to interpret results are described in (E9-
16)

(E9): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Table 1 and Figure
1.
How to: Check a generated figure.
Preparation: change the working directory to python
Results: For Table 1, see stdout of ./docker_
scripts/docker_plot_INV_ETH.sh and for
Figure 1, see output_docker/highlight/figs/plot_

ps.pdf

(E10): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 7(a).
How to: Check a generated figure.
Preparation: change the working directory to python
Results: For Figure 7(a), see output_docker/one_

source_INV_ETH_SushiSwap_K_1_beta_0/figs/plot_

ps.pdf

(E11): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 7(b).
How to: Check a generated figure.
Preparation: change the working directory to python
Results: For Figure 7(b), see output_docker/two_

sources_INV_ETH_SushiSwap_UniswapV2_K_2_beta_

1/figs/plot_ps.pdf

(E12): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 7(c).
How to: Check a generated figure.
Preparation: change the working directory to python
Results: For Figure 7(c), see output_docker/three_

sources_INV_ETH_SushiSwap_UniswapV2_coinbase_

K_3_beta_1/figs/plot_ps.pdf

(E13): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 8(a).
How to: Check a generated figure.
Preparation: change the working directory to python
Results: For Figure 8(a), see output_docker/one_

source_INV_ETH_SushiSwap_K_1_beta_0/figs/plot_

miscoverage.pdf

(E14): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 8(b).
How to: Check a generated figure.
Preparation: change the working directory to python
Results: For Figure 8(b), see output_docker/two_

sources_INV_ETH_SushiSwap_UniswapV2_K_2_beta_

1/figs/plot_miscoverage.pdf

(E15): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 8(c).
How to: Check a generated figure.
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./docker_scripts/docker_plot_INV_ETH.sh
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./docker_scripts/docker_plot_INV_ETH.sh
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Preparation: change the working directory to python
Results: For Figure 8(c), see output_docker/three_

sources_INV_ETH_SushiSwap_UniswapV2_coinbase_

K_3_beta_1/figs/plot_miscoverage.pdf

(E16): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 6(b).
How to: Check a generated figure.
Preparation: change the working directory to python
Results: For Figure 6(b), see output_docker/

one_source_INV_ETH_SushiSwap_K_1_beta_0_two_

sources_INV_ETH_SushiSwap_UniswapV2_K_2_beta_

1_three_sources_INV_ETH_SushiSwap_UniswapV2_

coinbase_K_3_beta_1/figs/plot_size.pdf

(E17-19): [0 human-minutes + 30 compute-hour + 5GB
disk]: This experiment generates results for Table 2, Fig-
ure 10, and Figure 11.
How to: First collect required data by executing a
script.
Preparation: change the working directory to
solidity
Execution: Enter into the docker image via
./docker_scripts/enter.sh, execute
./scripts/run.sh, execute ./scripts/run_
baseline.sh, exit from the docker image, and gener-
ate plots via ./docker_scripts/plot_sim.sh.
Results: Ways to interpret results are described in (E17-
19)

(E17): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 10(a,b).
How to: Check a generated figure.
Preparation: change the working directory to
solidity
Results: For Figure 10(a), see output_docker/figs/

acon2/plot-ps-K-3-alpha-0d01-iter-1.pdf and
for Figure 10(b), see output_docker/figs/acon2/

plot-error-var-K-3-alpha-0d01.pdf

(E18): [1 human-minutes + 1 compute-minutes + 5GB disk]:
This experiment generates results for Figure 11(a-c).
How to: Check a generated figure.
Preparation: change the working directory to
solidity
Results: For Figure 11(a), see output_docker/

figs/acon2/plot-error-var-K-3-alphas.pdf,
for Figure 11(b), see output_docker/figs/

acon2/plot-error-var-K-4-alphas.pdf, and
for Figure 11(c), see output_docker/figs/acon2/

plot-error-var-K-5-alphas.pdf,
(E19): [1 human-minutes + 1 compute-minutes + 5GB disk]:

This experiment generates results for Table 2.
How to: Check a generated figure.
Preparation: change the working directory to
solidity
Results: For Table 2, see stdout of ./docker_

scripts/plot_sim.sh.

In all of the above blocks, please provide indications about
the expected outcome for each of the steps (given the sug-
gested hardware/software configuration above).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

In this artifact, we showcase SANDDRILLER, the first tool
for testing language-based sandboxes JavaScript, supporting
both client-side and server-side sandboxes. SANDDRILLER
takes as input a set of self-contained JavaScript files (cor-
pus), interposes oracles using instrumentation, and executes
each instrumented test case inside a target sandbox. Addition-
ally, SANDDRILLER also recombines ingredients from known
exploits to generate variants of the files in the corpus that
are more likely to trigger a bug in the target sandboxes. We
present experiments that demonstrate how SANDDRILLER
works overall (single input file, variant generator) and partially
replicate important results from the paper (V8 tests corpus
with the vm2 sandbox). SANDDRILLER is publicly available at
https://github.com/vdata1/SandDriller. For this arti-
fact evaluation, we seek the following badges: available and
functional.

A.2 Description & Requirements

In this section, we describe the software and hardware require-
ments for running SANDDRILLER and explain how to obtain
the corpora used in the evaluation of the paper.

A.2.1 Security, privacy, and ethical concerns

There are no risks for the reviewers of this artifact with respect
to security and privacy of their machines. SANDDRILLER
identified 12 zero-day vulnerabilities in widely-used, open-
source sandboxes. A security advisory was published for each
of these findings.

A.2.2 How to access

The source code is available on our GitHub repository
https://github.com/vdata1/SandDriller/releases/
tag/1.0, including an important README file that describe
in detail the usage of the tool and the different configuration
options available.

A.2.3 Hardware dependencies

For the paper’s evaluation, we ran SANDDRILLER on a server
with 64 Intel Xeon E5-4650L@2.60GHz CPU cores and
768GB of memory. However, SANDDRILLER does not re-
quire any specific hardware feature, so it can run on any other
machine running a Linux distribution. Nonetheless, since
SANDDRILLER makes extensive use of multi-threading dur-
ing testing, we recommend that the number of parallel workers
be set to maximum the number of physical threads available
on the machine. In Section A.4.2, we explain how to set this
important configuration option.

A.2.4 Software dependencies

While SANDDRILLER might run on other operating systems,
we require a Linux distribution for the evaluation. For obtain-
ing the results described in this artifact, we require running
the tool using Node.js version 14.15. We recommend using
the Node Version Manager (nvm) 1 to install this exact ver-
sion of Node.js. We also expect the machine to have git
and npm installed and correctly configured. To showcase the
tool’s capability we run tests using two sandboxes: vm2 and
safe-eval. Both these tools are declared as third-party de-
pendency in the package.json file, so they do not need to
be installed separately. However, since we do not ship them
with our tool, the input corpora need to be downloaded and
configured separately, as described below.

A.2.5 Benchmarks

To test the sandboxes, we used ECMAScript Conformance
Test Suite and V8 engine’s test suites as benchmarks.
SANDDRILLER takes each of these tests, instrument
them, and run them inside the sandbox under test. In
our experiments, we used ECMAScript test cases avail-
able at https://github.com/tc39/test262/tree/
99b2a70789b27d433f9036b98572a4443d91e01f/
test, and V8 test cases available at
https://github.com/nodejs/node/tree/
e46c680bf2b211bbd52cf959ca17ee98c7f657f5/deps/

1https://github.com/nvm-sh/nvm/
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v8/test/mjsunit. As described below, during installation,
these repositories need to be cloned into a specific subfolder.

A.3 Set-up
A.3.1 Installation

First, clone the SANDDRILLER repository locally in a di-
rectory we will call $PATH_TO_SANDDRILLER. To install the
required third-party packages, run in the project’s main di-
rectory npm -prefix . install .. This will install all the
required dependencies and all the npm-available (vulnerable)
sandboxes used in our experiments.

Next, clone the V8 corpus inside the
$PATH_TO_SANDDRILLER/Dataset/ folder:

cd D a t a s e t
g i t c l o n e h t t p s : / / g i t h u b . com / n o d e j s / node /
g i t r e s e t −− ha rd e46c680
cd . .

A.3.2 Basic Test

To run a simple test with SANDDRILLER, go to
test directory by typing on the command line
cd $PATH_TO_SANDDRILLER/test and run node
run-multi-proc.js.
As a result, RESULTS.csv will be written on
$PATH_TO_SANDDRILLER/Results/ showing the test
results of SANDDRILLER. Results will also be shown on the
terminal, i.e., a JSON result object for each test, followed by
a summary of the results.

When executing SANDDRILLER on a fresh installation, it
uses a toy corpus containing three JavaScript files. SAND-
DRILLER should report two security violations and a crash
for this corpus.

A.4 Evaluation workflow
A.4.1 Major Claims

SANDDRILLER is a testing approach for automatically detect-
ing sandbox escape vulnerabilities in real-world JavaScript
sandboxes. To successfully isolate untrusted code, JavaScript
sandboxes must block access to foreign references and prevent
the side effects of hosting third-party code during runtime,
such as getting stuck in an endless loop. SANDDRILLER aims
to automatically synthesize exploits that violate this objective
by escaping the sandbox. It first interposes checks that at exe-
cution time detect foreign references pointing outside of the
sandbox, and subsequently exploits such references, creating
an end-to-end exploit.

We make the following claims about our prototype:
(C1): Starting with (a set of) benign JavaScript file(s) as in-

put, SANDDRILLER can detect problematic references

at runtime, which can be used to escape the sandbox.
Concretely, SANDDRILLER synthesizes exploits that at-
tempt to access privileged operations outside the sand-
box, and/or test write values into the global scope, out-
side the sandbox. We have conducted experiment (E1)
and (E3) as described in Section A.4.2 to demonstrate
this capability.

(C2): SANDDRILLER can construct exploits by synthesizing
variants of the input files. By using a variant generator
it provides more comprehensive tests for verifying the se-
curity of a sandbox. We have demonstrated this through
experiment (E2) as described in Section A.4.2.

These claims collectively support our paper’s main assertion
that SANDDRILLER is an effective testing approach for auto-
matically detecting zero-day sandbox escape vulnerabilities.

A.4.2 Experiments

Since replicating our entire testing campaign would incur a
significant effort on the reviewers’ side, we show how SAND-
DRILLER works with a single file as input and with a fairly
large corpus (5,000+ JavaScript files from the V8 tests), for
both using a single sandbox and a single Node.js version.
(E1): [First exploit] [For one valid test case: 15 human-

minutes + 5 compute-minutes]: In this experiment, we
show step-by-step how to come up with the first working
exploit using vm2 sandbox and a single test case.
How to: To successfully accomplish this experiment,
we start with configuring and running our tool, then run
the instrumented code on the sandbox, and finally, apply
delta debugging to reach the minimal working code for
the exploit.
Preparation: First, we start editing the source code of
the tool for the corpus for this experiment by uncomment-
ing line number 138 in test/run-multi-proc.js (set
regress-746909.js as the single file in the corpus).
Moreover, go to test/process-runner.js and make
vm2 as the sandbox to test by editing line number 10 to
const sandbox = "vm2";.
Execution: Run SANDDRILLER as mentioned
in A.3.2. As a result, SANDDRILLER will write
the successful instrumented test case on path
/tmp/res/. First, let us inspect the content of
the generated file regress-746909.js, which is an
instrumented version of the file in our corpus https:
//github.com/nodejs/node/blob/main/deps/v8/
test/mjsunit/regress/regress-746909.js. It
contains code for verifying potential foreign references
and for attempting to escape the sandbox using such
references. For example, for each function invocation,
SANDDRILLER obtains the root prototype of its result
let grtA = getRootPrototype(r); and attempts
to modify the corresponding root prototype grtA.FIA
= ’FI: Got it?’;. Copy the exploit (instrumented
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test case) and host it on the target sandbox, vm2. To
this end, we provided template for each sandbox in
templates_sandboxes for time-saving. Paste the
generated exploit in exploit.js and run the vm2.js
file using Node.js. Observe how the global root
prototype changes as a result of running the code inside
the sandbox, i.e., a new property is added on the root
prototype. Optionally, apply manual delta debugging by
deleting the unnecessary lines of code in the exploit to
get the minimal working exploit. To that end, after any
removing spurious lines in the code, rerun the exploit
to verify that the desired side-effect in the global scope
is still present. To get the minimal working exploit, a
sequence of lines of code deletion and reruning of the
code might be required. For this specific test case, we
recommend deleting the first 122, 139-148, 150-180,
180-192, 204-end of the code lines to get a working
exploit. The code at this stage requires more editing to
produce the final working exploit showed in Figure 1 of
the paper. However, we provided a working exploit for
this experiment, showing the possible steps performed
during delta debugging in demo_results/E1.js.
Results: After completing the experiment, the detailed
result can be found in Results/RESULTS.csv

(E2): [Use the Variant Generator] [For one valid test case
20 human-minutes + 5 computing-minutes]:
How to: To successfully accomplish this experiment,
we start with configuring our tool to enable the gen-
erator, then run the instrumented code on the sandbox,
and finally, apply delta debugging to reach the minimal
working code for the exploit.
Preparation: First we enable the generator in
test/process-runner.js by assigning const
useGenerator = true at line 11 and using safe-eval
as the sandbox to test. Then, uncomment line number
141 in test/run-multi-proc.js, and comment line
138.
Execution: Run SANDDRILLER as mentioned in
A.3.2. As a result, SANDDRILLER will write vari-
ants of successful instrumented test cases with on path
/tmp/res/. Copy the instrumented test case, named
“array-push2_v1.js” and host it on the target sand-
box, safe-eval. As before, we provided a template
for each sandbox in templates_sandboxes for time-
saving: paste the explit in the exploit.js file and
run safe-eval.js with Node.js to observe its side ef-
fect in the global scope (a new property on the root
prototype). We Optionally, apply delta debugging by
deleting the unnecessary lines of code in the exploit
to get the minimal working exploit. For this specific
test case, we recommend deleting 3-123, 127-157, 129-
162, 165-196, 199-261, 266-284, 289-422, 426-514 lines
to get working exploit. The code at this stage requires
more editing to come up with the final working exploit.

However, we provided a working exploit for this ex-
periment, showing a possible result of delta debugging
in demo_results/E2.js. We draw the reader’s atten-
tion to the code throw function thrower() {...},
which is a code fragment that was not part of the orig-
inal file in the corpus, but was injected by the variant
generator.
Results: After completing the experiment, the statistical
result can be found in Results/RESULTS.csv

(E3): [Running SANDDRILLER on a benchmark] [ 5 human-
minutes + 1 computing-hour]:
How to: To successfully accomplish this experiment we
run SANDDRILLER on a fairly large corpus consisting
of 5,000+ V8 tests. For simplicity, the variant generator
is disabled.
Preparation: First make sure to delete all generated test
cases on /tmp/res and delete the results file to work
in a clean environment. Then, uncomment line num-
ber 144 in test/run-multi-proc.js and change the
number of threads to 16 at line 12 by const POOL_SIZE
= 16;. Make sure the generator is disabled by setting
const useGenerator = false;. The sandbox from
the previous experiment should remain the same for this
experiment.
Execution: Run SANDDRILLER as mentioned in A.3.2.
Results: After completing the experiment, the detailed
results can be found in Results/RESULTS.csv, and a
summary of the the experiment will be printed in the
terminal. The results list all the tests in which SAND-
DRILLER succeeded to break the sandbox, test cases
that cause a hard crash of the sandbox, and more de-
tails such as execution time or number of oracle checks
performed at runtime. Feel free to attempt hosting any
of the produced exploits inside the vulnerable sandbox
(safe-eval) and observe its side effect in the global
scope, as before.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

The artifacts for Instructions Unclear: Undefined Behaviour
in Cellular Network Specifications consist of two main parts:
The TLA+ models used to discover undefined behaviours and
the modified srsRAN implementations used to test smart-
phone implementations of undefined behaviour. For each of
the three LTE features, PWS, SMS, and RRC that we evaluate
against, there is a separate TLA+ model and srsRAN version.

This document describes how to use the models to derive
concrete examples of undefined behaviour in LTE specifi-
cations, and then employ our srsRAN forks to replay these
concrete examples against a commercial UE. This way, one
can verify the presence of undefined behaviour in multiple
LTE feature specifications, as well as determine their real
world impact.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Evaluating the TLA+ models for undefined behaviour does
not entail any direct risks.

Replaying the counter examples using srsRAN and an SDR
against real UEs, however, imposes multiple risks:

1. You will create a (small) LTE cell; doing so without an
RF shielding box might violate local laws.

2. Since you will replay network packets (PDUs) that you
cannot target to a specific phone, any phone in the vicin-
ity of your SDR will receive these PDUs and might be
temporarily or permanently affected by that PDU. As
our experiments have shown, this may cause a Denial of
Service attack, information leakage, or potentially even
more severe problems. This is why it is absolutely essen-
tial to use an RF shielding box, even if your local laws
would permit running the experiment without it.

3. You might brick any phones that you test. We had at least
one non-reproducible case where a phone temporarily
refused any connection until we reset its NVRAM.

4. If misconfigured, you might brick the SDR that you are
using. To mitigate this, we recommend that you read and
obey its instruction manual carefully.

A.2.2 How to access

The artifact is available for download at https://zenodo.
org/record/8013704.

A.2.3 Hardware dependencies

TLA+ models. The TLA+ models are CPU intensive. To re-
produce the CPU time in Table 1 of our paper, a dual Intel
Xeon Gold 6230R system, totaling 52 cores with 128
GB RAM is required. Using a different setup is possible,
but might result in a different core-hour measurement.
All other results will remain the same, no matter which
CPU is used.

Replaying counter examples via srsRAN. To be able to
replay concrete examples of undefined behaviour, the
following components are required:

• Computer with Gigabit LAN
• Ettus Research USRP X300 with SFP+ to Gigabit

RJ45 module
• 2x Ettus Research VERT900 antennas
• GPSDO for USRP X Series (PCB-Mounted GPS-

Disciplined OCXO)
• Programmable SIM-card (e.g. Sysmocom

sysmoISIM-SJA2)
• RF shielding box (faraday cage)
• Smartphone(s): We evaluate against a Samsung

A41, Samsung S20 5G (European edition), Oppo
A73 5G, Huawei P40 Lite 5G and OnePlus 8. To
reproduce our exact results, all of these phones
must be updated to firmware patch level April 2022
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for the SMS and PWS tests and January 2023 to
reproduce the RRC results.

A.2.4 Software dependencies

TLA+ models. To run the TLA+ models, a tlc is required.
We recommend to use https://github.com/pmer/
tla-bin. This requires Linux or a BSD derivative with
at least Java 11 and curl installed.

Replaying counter examples via srsRAN. Installing
srsRAN 4G requires multiple external libraries, drivers,
and firmware for the USRP. As the requirements of our
forks mostly match the requirements of the upstream
version, we recommend following the official setup
guide at https://docs.srsran.com/projects/
4g/en/latest/general/source/1_installation.
html#installation-from-source.
SMS: For the SMS fork, you will also have to install
libosmocore (we tested with version 1.6.0), Python
3.8 and the pyzmq package (version 22.3.0).
Virtualisation: We recommend against using virtual
machines to run srsRAN, as the overhead induced by the
virtualisation interferes with the delicate timing require-
ments of the connection between computer and USRP.

A.2.5 Benchmarks

The data set (concrete counter examples that represent unde-
fined behaviour) used for the UE evaluation is derived via the
TLA+ models. If you do not want to rerun the TLA+ model
checking procedure, you can use the counter examples that
we prepopulated our srsRAN forks with.

A.3 Set-up
A.3.1 Installation

TLA+ models. Assuming that tlc has bin installed via
tla-bin as described in A.2.4, no more setup steps are
required.

Replaying counter examples via srsRAN. Assuming that
all dependencies of srsRAN have been installed as de-
scribed in A.2.4, the next step is compiling one of our
srsRAN forks. To do so, cd into the directory of the fork,
and then run the following commands:

mkdir b u i l d
cd b u i l d
cmake . . /
make
sudo make i n s t a l l
s r s r a n _ i n s t a l l _ c o n f i g s . sh s e r v i c e

The next step is to configure srsRAN correctly.
To do so, please follow the instructions at https:
//docs.srsran.com/projects/4g/en/latest/

app_notes/source/cots_ue/source/index.html.
Since srsRAN has undergone multiple name changes,
files might be named slightly differently in our
forks (e. g., srsran_install_configs.sh instead of
srsran_4g_install_configs.sh).

A.3.2 Basic Test

TLA+ models. Open a shell in the models/rrc directory
of the artifact and run tlc -deadlock rlc. After 5-
20 minutes (depending on your system), this results in
a message saying Model checking completed. No
error has been found.. The number of threads can
be controlled using the -workers n parameter.
You can perform the same test for the SMS and
PWS models. They require that you also supply
-maxSetSize 10000000 and take significantly longer
(e. g., the SMS model will arrive at the same output after
75 days on 100 threads).

Replaying counter examples via srsRAN. Change into
the directory of one of the three srsRAN clones. Then
compile and install according to Section . You can now
run the clone as follows:

1. (Only applies to SMS testing:
cd zmq_server && python3 zmq_server.py).

2. Launch srsepc:
sudo srsepc \
--config /usr/local/share/srsran/epc.conf

3. Launch srsenb:
sudo \
UHD_IMAGES_DIR=/usr/share/uhd/images/ \
srsenb /usr/local/share/srsran/enb.conf

4. On the phone under test: Ensure that your APN is
set to srsapn

5. Open an adb connection to the phone and run ping
8.8.8.8. You should see that 8.8.8.8 is reachable.

If you receive any error regarding missing UHD
firmware, double check with the srsRAN and Ettus doc-
umentation that the supplied path matches the location
of the firmware binaries. This is not specific to our mod-
ifications.
Similarly, if srsRAN does not work or the internet con-
nection of you phone does not work, we recommend
following the srsRAN documentation – unless you are
running a test case (more on that later), our srsRAN forks
operate exactly the same as the upstream versions, such
that all their troubleshooting guides apply.

A.4 Evaluation workflow
A.4.1 Major Claims

For your convenience, we summarize major claims our paper
makes:
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(C1): Modelling via TLA+ of LTE specification parts is com-
putationally feasible. This is demonstrated by experi-
ment E1, described in Sections 4.1 to 4.3 in the paper,
with the results shown in Table 1 in the paper.

(C2): Using our approach, one can find more undefined
behaviours than using the state-of-the-art approach
“DoLTEst”. This is discussed in Table 2 and Section
5.1 of our paper and demonstrated using Experiment E2.

(C3): Our approach can find undefined behaviours that lead
to real world vulnerabilities. We list these in Table 2
of our paper and describe the vulnerabilities in sections
5.3.1-5.3.3. We reproduce these results in E3.

A.4.2 Experiments

(E1): [< 1 human-hour + up to 180,000 compute-hours]:
Execution: To measure the number of States and CPU
hrs. according to Table 1 of our paper, run tlc with the
same parameters described previously in A.3.2.
To measure the number of Undefined Behaviours and
number of PDUs shown in Table 1, you have to read the
.cfg file of the model (e. g., models/rrc/rrc.cfg)
and modify the corresponding .tla file. The .cfg
file contains a CONSTANTS section listing each test
case. These test cases also correspond to the test
cases listed in Tables 4-6 in the Appendix of our
paper. To verify that each of these test cases is an
undefined behaviour, you change the ConstTestCase
variable in the .tla file to the test case you want
to run. The line in the file is marked by a com-
ment saying Modify this value to choose
the behaviour that you want to generate a
counter example for. An example of a correct
assignment in the RRC model is ConstTestCase ==
RRCConnectionReject_AFTER_SECURITY.
Results: for the first part, the model checking will even-
tually terminate. Note that this takes 180,000 core hours
for the SMS model, so we recommend parallelising us-
ing the -workers flag. If you do not supply a number
of workers, TLC might choose a (suboptimal) number
below the number of available CPU threads. The com-
mand line output should look like the following (for the
RRC model).

3019102 s t a t e s g e n e r a t e d ,
955 d i s t i n c t s t a t e s found ,
0 s t a t e s l e f t on queue .
[ . . . ]
F i n i s h e d i n 07 min 00 s a t ( [ . . . ] )

The number of distinct states (here, 955) and the “Fin-
ished in” time multiplied by the number of threads
should match the corresponding columns in Table 1.
Note that the timing will vary a bit for the shorter test
cases (RRC and PWS), as it is dominated by startup time.

The measurement for the SMS test case is much more
stable as it is dominated by the actual model checking
time.
When evaluating a test case (i. e., after modifying
ConstTestCase), the model checking will terminate
early. You should see the following command line out-
put (this example corresponds to ConstTestCase ==
RRCConnectionReject_AFTER_SECURITY):

E r r o r : I n v a r i a n t I n v a r i a n t i s v i o l a t e d .
E r r o r : The b e h a v i o r up t o t h i s p o i n t i s :
[ . . . ]
S t a t e 4 : <Next l i n e 603 ,
c o l 9 t o l i n e 713 ,
c o l 43 of module r r c >
[ . . . ]
/ \ c u r r e n t S e q u e n c e =

<< << " RRCConnect ionSetupMessage " ,
[ r r c T r a n s a c t i o n I d e n t i f i e r | − > 0 ,

[ . . . ]
] >> ,

<< " SecurityModeCommandMessage " ,
[ r r c T r a n s a c t i o n I d e n t i f i e r | − > 0 ,

[ . . . ]
] >> ,

<< " RRCConnec t ionRejec t " ,
[ c r i t i c a l E x t e n s i o n s | − >

[ . . . ]
>> >>

[ . . . ]

This illustrates that to trigger this undefined behaviour, a
counter example has been generated that contains 3 sep-
arate PDUs and their value assignments: RRCConnec-
tionSetupMessage and SecurityModeCommandMessage
to setup the state, followed by a RRCConnectionReject
that ultimately triggers the transition into an undefined
state. By counting the number of different undefined
behaviours (assignments of ConstTestCase) and the
number of PDUs (entries in currentSequence of the
final state before model checking procedure terminates),
you can reproduce the #UBs and calculate Avg. PDUs
columns of Table 1 in our paper.

(E2): [10 human-hours + 5 compute-hours]:
Execution: Repeat the procedure of setting
ConstTestCase for each undefined behaviour
that we found, to generate a counter example for each of
these. Then, compare these to the RRC section of Table
5 in the DoLTEst paper1. To match our and their test
cases, you must compare their message setup2 to the
sequences generated by our approach.

1https://www.usenix.org/system/files/
sec22-park-cheoljun.pdf

2https://github.com/SysSec-KAIST/DoLTEst/blob/
e2251bfa8cd74f49b23369619722255ed895ef5e/srsepc/src/mme/
fzmanager_epc.cc#L560
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Results: For each test case, you should get a different
currentSequence. In the cases where the Guideline
column in Table 2 of our paper contains a number, you
will find a test case in the DoLTEst code that corresponds
to the final message of the generated sequence. For cases
where our table does not show a number, the DoLTEst
authors do not provide a corresponding test case.

(E3): [3 human-hours + 200 compute-hours]:
Execution: To reproduce our CVEs, you will need
to use the PWS and SMS srsRAN forks. To
verify that our test cases match what was gen-
erated by our TLA+ models, open the following
files: srsran/pws/srsenb/src/stack/rrc/rrc.cc
(PWS) and srsran/sms/srsepc/src/mme/sms.cc
(SMS) and compare the values assigned to the structs to
the TLA+-generated counter examples. As the counter
example generation is not deterministic, you might end
up with different assignments (counter examples), but
the same undefined behaviours.
To run the tests, turn on the phone and the SDR, and
start srsenb and srsepc as described previously in
Section A.3.2. For the PWS samples, you have to
schedule SIB12 in the sib.conf, by including 12 in
si_mapping_info and adding a sib12 entry to the
same file. For the SMS test case, zmq_server.py must
be started. To choose a test case, you enter the test cases
index into the enb window (PWS) or enter it in the
zmq_server.py shell (SMS) and press enter. For se-
quences longer than one PDU, you have to repeat this as
many times as there are PDUs in the sequence. The in-
dexes can be found in the code, the ZMQ command line
output, or by using the row indices of our result tables
4 and 5. Remember to restart enb, epc and the phone
between each test case. Also remember to increase the
system time of the phone by a week for each PWS test,
as described in the paper (Section 3.5).
Results: You should see the behaviours described in
Sections 5.3.1, 5.3.2 (PWS), and 5.3.3 (SMS) of our pa-
per. To trigger a modem crash you might have to make
the adjustments described in the paper. To determine
the modem indeed crashed we recommend setting the
phone into debug mode by dialling *#9900# and setting
"Debug Level" to "HIGH" in the resulting hidden menu.
Note that this setting only exists on Samsung phones
(A41 and S20 in our case).
For the OOB read on Samsung S20 phones, please note
that you might have to perform multiple attempts, as
it depends on the current heap memory contents. We
recommend indicating 5-7 pages (first two digits of the
first warning_msg_segment_r9), as this demonstrates
the attack while working relatively reliably.
We have reported the issues to Mediatek and Sam-
sung, and the vulnerabilities might have been patched in
firmware versions released after April 2022.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

MOBILEATLAS is a scalable, cost-efficient test framework
for cellular networks that takes international roaming mea-
surements to the next level. It implements the promising ap-
proach to geographically decouple SIM card and modem,
which boosts the scalability and flexibility of the measure-
ment platform. It offers versatile capabilities and a controlled
environment that makes a good foundation for qualitative and
fine-grained cellular measurements.

A.1 Abstract
Physically moving devices and SIM cards between countries
to enable measurements in a roaming environment is costly
and does not scale well. Therefore, we introduce an approach
to geographically detach the SIM card from the modem
by tunneling the SIM card’s protocol over the Internet and
emulating its signal on the cellular modem. This allows us to
test roaming effects on a large number of operators without
physically moving any hardware between different countries.

To make it accessible to other researchers, we fully
release the hard- and software documentation of our
measurement framework.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

MOBILEATLAS is meant to be used in live mobile networks.
Our measurement experiments usually mimic normal user
behavior and just transmit minimal data traffic (i.e., several
MB of data) to get deeper insights into the operator’s core
network mechanisms and interplay during roaming scenarios.
However, due to SIM tunneling, SIM cards could change the
“country” in an irregular and fast fashion, which might spark

*Supported by the UniVie Doctoral School Computer Science DoCS.
†Partly as postdoc at University of California, Irvine.

confusion among the operator’s systems or trigger fraud con-
trol alerts. In order to exercise caution, we manually imposed
a waiting time of 2 hours between country switches in our ex-
periments. When testing for potential free-riding possibilities,
we always made sure not to enrich ourselves by not oversizing
the generated test traffic and by letting an equal or greater
amount of our monthly traffic allowance expire at the end of
the month (as if we were billed for the traffic).

A.2.2 How to access

The hard- and software documentation of the MOBILEAT-
LAS measurement platform that is presented in our paper is
hosted on GitHub.

A.2.3 Hardware dependencies

SIM Providers require a host system (e.g., a linux
laptop), a SIM reader device (e.g., PC/SC reader)
and a SIM card that will be made accessible (i.e., to
an external Measurement Probe via a SIM tunnel).

Measurement Probes require a dedicated hardware
setup. To support future upgrades, most of the used hardware
components are easily interchangeable. We based our current
probe version on a Raspberry Pi 4 and a Quectel EG25G
modem. Furthermore, we use a HAT adapter to connect
the modem to the Pi. To tunnel and emulate the SIM card
protocol we leverage the Pi’s GPIO ports and connect
them to the modems SIM socket via a self-made SIM PCB.

More details and some pictures of the used hardware
can be found on GitHub in a dedicated README file.

A.2.4 Software dependencies

Our python-based source code relies on external dependencies
that need to be installed via the package manager or via pip (cf.
Section A.3). Besides common and officially available python
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packages, we also require a customized version of pySIM.

Furthermore, we use ModemManager 1 to interact with the
modem during measurement experiments. Therefore, good
ModemManager support is essential when using different
hardware (i.e., a different modem) for the Measurement
Probe.

A.2.5 Benchmarks

None

A.3 Set-up
A.3.1 Installation

We use Ansible to patch and setup the system of our
Measurement Probes. The Ansible playbooks are meant
to be executed on a fresh installation of the Rasp-
berry Pi OS, as described in a dedicated README file.

The software dependencies that are needed for the
SIM Provider are referenced in the next section.

A.3.2 Basic Test

To run the SIM Provider and Measurement Probe soft-
ware components it is required to setup a Python virtual-
environment as described in the responsible README file.

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

1https://modemmanager.org/
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A Artifact Appendix

A.1 Abstract

This artifact implements comparative analysis in a static ap-
proach for detecting discrepancies with the specification in the
integrity protection of cellular baseband software. The system
comprises mainly two components; probabilistic inference
and symbolic execution. Probabilistic inference locates the
integrity protection function and is implemented with Python
APIs provided by IDA Pro. Symbolic execution reports the
mismatches and is implemented above angr. We evaluate the
system’s probabilistic inference by the effectiveness of find-
ing the genuine integrity protection function within baseband
firmware. We then evaluate the system by the number of bugs
found. Further, we evaluate the capability of finding different
types of bugs compared to dynamic testing methods. All of
the artifact evaluation results refer to Section 7 and the Ap-
pendix of the paper. The artifact evaluation aims for the three
badges: available, functional, and reproducible.

A.2 Description & Requirements

Here we describe the hardware and software requirements to
run the artifact, as well as the tested targets of our evaluation.

A.2.1 Security, privacy, and ethical concerns

There are no risks for the evaluators while executing the arti-
fact to their machine’s security, data privacy, or other ethical
concerns. This artifact has been used to detect 29 bugs in 16
images of baseband software and all have been responsibly
disclosed to the vendors.

A.2.2 How to access

The artifact is available on GitHub at the address https:
//github.com/kaist-hacking/BaseComp.

*These two authors equally contributed.

A.2.3 Hardware dependencies

We perform the experiments on AMD Ryzen 9 5900X 12-
Core Processor CPU, 3.70GHz, 64GB DDR4 RAM. No spe-
cific hardware feature is required for the artifact evaluation.

A.2.4 Software dependencies

We perform the experiments on Windows 11 Pro. For ana-
lyzing baseband firmware, we require IDA Pro v7.6. Codes
are written for Python 3.10.5 and require the packages
pgmpy, NetworKit, and angr. To build libraries for supporting
MIPS16e2, Visual Studio Build Tools are also required.

A.2.5 Benchmarks

We provide the 16 images from Table A1 of the paper. The
root directory of the artifact repository contains a folder
named artifact. The corresponding folder contains fold-
ers for each image which is named after the "Nick" column
of Table A1. In each folder, the image is provided.

A.3 Set-up
To prepare the environment to be used for the evalua-
tion of our artifact, clone the BaseComp repository https:
//github.com/kaist-hacking/BaseComp and checkout
commit cd6d118.

To load the provided images to IDA Pro, follow the steps
below. We provided the .idb files for images from MediaTek
separately through a link to external storage.
(S1): Run python parse_modem.py in the idb-creation

folder and provide the target image’s path.
(S2): Load the binary created with MAIN in its name to IDA

Pro. Set ARM Little Endian as the architecture and select
Manual Load.

(S3): Set the ROM start address and Loading address
as the starting address written in the binary’s name. This
should look something like 0x40010000.

(S4): Load the script file analyze.py in the idb-creation
folder to IDA Pro.
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(S5): Repeat the steps above for images to be newly loaded.
To support the MIPS16e2 architecture later on in the sym-

bolic execution phase, follow the steps below after installing
all the software dependencies described in Section A.3.1.
(S1): Run python build_pyvexlib.py with mips16e2 as

the working directory in x64 Native Tools Command
Prompt for VS.

(S2): Copy the pyvex.dll and pyvex.lib
file created under the pyvex_c folder to
your_path_to_python/Lib/site-packages/pyvex/lib.
This should replace the library files originally located
there. Back up the original files if needed.

All the instructions are also described in the README files
of each directory of the artifact.

A.3.1 Installation

The experimental evaluation requires the following software.
(I1): pgmpy: https://pgmpy.org
(I2): NetworKit: https://networkit.github.io
(I3): angr: https://docs.angr.io
(I4): Visual Studio Build Tools: https://visualstudio.

microsoft.com/downloads/?q=build+tools

A.3.2 Basic Test

We prepared a simple functionality test inside the
function-identification folder of the artifact. The ex-
ecution of command python -m run_tests from the direc-
tory function-identification/tests performs construc-
tion of the call graph on a test code and checks its values. The
test should end within seconds and no assertions should be
raised.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The utilization of probabilistic inference in our sys-
tem significantly reduces the number of functions to be
analyzed manually. The average rank of the genuine in-
tegrity protection function we seek is 1.56 as illustrated
in Table 4 of the paper. This is evaluated in (E1).

(C2): Our system detects a total of 34 mismatches from the
3 vendors we test. 29 of them are actual bugs including
those that can lead to NAS AKA bypass. This is evalu-
ated in (E2) and the results are summarized in Table 5
of the paper.

(C3): Our system complements dynamic testing in terms of
completeness for analyzing integrity protection. Com-
pared to DoLTEst and DIKEUE, which are previous
works that use dynamic testing for analyzing integrity
protection, our system covers more types of integrity pro-
tection bugs. This is evaluated with the same results of

(C2) and the comparison results are illustrated in Table
6 of the paper.

A.4.2 Experiments

(E1): Identifying Integrity Protection [5 human-minute +
30 compute-minute] for each image: Ranks possible
integrity protection functions in the target image.
Preparation: Follow the steps in Section
A.3 to prepare the .idb files for analysis. To
test with a different probability parameter
value, change the PROBABILITY_PARAMETER
value in the utils.py file under
function-identification/scripts/analyses.
Execution: Load the
identify_integrity_function.py file in
function-identification/scripts to the .idb
file of the target image.
Results: The results of the analysis should be written in
the results.txt file of the target image’s folder. A list
of functions should be under the line written Integrity
Function Probability. Starting with the function
with the highest rank, the address of the function
and probability is listed. The address of the genuine
integrity protection function (reference result) is in the
symbolic-execution/config_firmware.yaml file
written as integrity_func. The rank should be the
same as in Table 4 in the paper. Probability values may
slightly differ by the number of functions identified.
The time consumed for each step is also at the end of
the file. We repeated the experiment several times while
removing the cache every iteration and recorded the
average in Table 7 of the paper.

(E2): Symbolic Execution [5 human-minute + 5 compute-
minute] for each image: Finds mismatches with the spec-
ification in the integrity protection functions.
Preparation: Additional information about the image
earned by manual analysis is required to be writ-
ten in symbolic-execution/config_firmware.py.
However, those for the provided images are already writ-
ten down. Therefore, there is no preparation required for
the evaluators to process.
Execution: Run the command python
analyze_base.py -fn {name_of_target} in
the symbolic-execution directory for each image.
Results: The results will be created under the
symbolic-execution/results/{name_of_target}
folder with the current time as the file name. The
Errored Results and Errored States indicate
the mismatches found by the system. The list under
Errored Results consists of [security state,
security header, protocol discriminator,
message type, reason_why_it_is_errored] and
the list under Errored States just indicates the reason
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it is errored. We gathered the mismatches by the vendor
and Table 5 in the paper indicates the results.

A.5 Notes on Reusability
To use our system on baseband firmware other than those
provided in the artifact, mainly 2 steps would be required.
(S1): Based on whether our current implementation supports

the vendor, a vendor-specific module might be needed to
be written. The instructions for writing the module are
well specified in the README files in the artifact.

(S2): Collect firmware-specific information such as the ad-
dresses of the security state, functions to skip, and so
on.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

This artifact provides a dataset of Compiler-Introduced Se-
curity Bugs (CISBs). Our dataset comprises various types of
CISBs, which we manually identified from GCC and Clang
Bugzilla reports and Linux git history. We organize these
CISBs in a taxonomy based on their root causes, formation,
and security impacts. Additionally, we include test cases and
their triggering oracles for all the reproduced CISBs. Please
note that the user study data cannot be shared due to ethical
considerations. We have promised our participants that we
will only share statistics of their data.

To validate the results of our paper, we also prepare scripts
to obtain statistics on the bugs in our dataset, reproduce the
evaluation of compiler mitigations based on our dataset, and
obtain statistics on the targeted bugs in our dataset for auto-
matic prevention works in a console.

The minimum required disk space for the program is ap-
proximately 20 GB. We have tested it on Ubuntu 20.04. The
software prerequisite for the program is an operating system
that can run Docker and supports Ubuntu 20.04 as a container
image. The whole experiment takes about 3 human-hours and
60-70 compute-hours.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The included scripts should not pose a greater risk to evalua-
tors than regular benign Python scripts when running them.

A.2.2 How to access

The aritifact and dataset can be got from Github
https://github.com/H0w1/CISB-dataset/tree/
aac22565c96744a13f0786854b3257d64421acef.

A.2.3 Hardware dependencies

To run our evaluation, a x64 machine with a network connec-
tion is required.

A.2.4 Software dependencies

To evaluate the artifact, you need an operating system that can
run Docker and supports Ubuntu 20.04 as a container image.

A.2.5 Benchmarks

Please note that running one experiment requires SPEC CPU
2006, which is not provided as it is not a free software. Re-
viewers will need to obtain their own copy of SPEC CPU
2006 to run this experiment.

A.3 Set-up
We provide a Dockerfile that automatically downloads the
dataset and evaluation materials, as well as installs all the
necessary software requirements.

Instructions for downloading and using the Dockerfile can
be found on the README page https://github.com/H0w1/
CISB-dataset#aritifact-setup.

A.3.1 Installation

After installing the Docker container from the Dockerfile,
the dependencies and main artifact will be automatically pre-
pared.

A.3.2 Basic Test

A basic functionality test can be easily executed by running
the Python script ’check-compiler.py’ using the command
’python3 check-compiler.py’. Upon successful execu-
tion, the script will output a list of notes indicating that each
compiler used has been installed correctly. You can find this
script in the main directory of the Git repository https:
//raw.githubusercontent.com/H0w1/CISB-dataset/
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b122ac42ff52ecb59b94a319c4558b1275cc9166/
check-compiler.py.

A.4 Evaluation workflow
The overall workflow comprises the following steps:

1. Obtain the Dockerfile;

2. Obtain the dataset and test scripts and install the neces-
sary dependencies automatically using the Dockerfile;

3. Execute a Python script to check the statistics of CISBs
in the dataset;

4. Execute scripts and review some CISB details in the
dataset to evaluate the effectiveness of current mitiga-
tions and the performance overhead of current compiler
mitigations;

5. Execute a Python script to obtain statistics on the per-
centage of CISBs in our dataset that can be targeted
by automatic prevention works. Check the statistics by
reviewing related CISBs.

A.4.1 Major Claims

(C1): We identify a large set of different kinds of CISB in the
real world. This is proven by the CISBs in the dataset.
The statistic of these bugs can be viewed by running the
script ’statistic.py’.

(C2): We investigate and show the risks of existing mitiga-
tions. Specifically, (i) we show CISB prevention per-
formed by programmers is risky, derived from real cases;
(ii) we perform a comprehensive evaluation of existing
mitigations provided by compilers, with our dataset. We
can prove (i) by pointing to the existence of a few bugs in
our dataset. As for (ii), we can provide the script ((’statis-
tic.py’)) we used to re-run the analysis and generate
Table 6 (an evaluation of the mitigations provided by the
compiler.)

(C3): The CISBs we studied have not been extensively stud-
ied before. This is proven by the script (’statistic.py’)
to get the results shown in Table 7, which shows the
statistics of CISBs that can theoretically be prevented by
automatic prevention works.

A.4.2 Experiments

We provide a guide of the experiments in the Github
repository. https://github.com/H0w1/CISB-dataset#
aritifact-experiments
(E1): [CISB statistics] [30 human-minutes + 1 compute-

second]: Execute the Python script to obtain the statistics
of CISBs in our dataset. Check the dataset and script for
mistakes. The result should be in line with the data in
Figure 2 and Figure 3 of the paper.

(E2): [Evaulation of mitigations] [30 human-minutes + 60-
70 compute-hours]: (i) Review a list of bugs where
the prevention performed by programmers failed. This
list can be obtained by executing a script. It takes one
compute-second. (ii) Run a script to obtain statistics
on the effectiveness of compiler mitigations. It takes
about two compute-minutes. (iii) Run scripts to measure
the overhead of different compiler prevention strategies
using the SPEC CPU 2006 benchmark. It takes about
60 compute-hours. For (i), the expected result is those
CISBs exist. For (ii) and (iii), the output results should
be in line with the data shown in Table 6 of the paper.

(E3): [Target bugs of automatic prevention works] [2 human-
hours + 2 compute-minutes]: (i) Execute the script to
obtain the statistics of CISBs that can theoretically be
prevented by automatic prevention works. (ii) Check the
lists of CISBs we summarized and shown in the script.
For (i), the result should be in line with the data in Figure
7 of the paper. For (ii), these bugs should be within the
scope of the corresponding prevention work.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
BugHog is a comprehensive framework designed to identify
the complete lifecycles of bugs, from their introduction to
mitigation, and potential regression. For each bug’s proof
of concept (PoC) integrated in the BugHog experiment web
server, the framework can perform automated and dynamic
experiments using Chromium and Firefox revision binaries.

Each experiment is performed within a dedicated Docker
container, ensuring the installation of all necessary dependen-
cies, in which BugHog downloads the appropriate browser
revision binary, and instructs the browser binary to navi-
gate to the locally hosted PoC web page. Through obser-
vation of HTTP traffic, the framework determines whether the
bug is successfully reproduced. Based on experiment results,
BugHog can automatically bisect the browser’s revision his-
tory to identify the exact revision or narrowed revision range
in which the bug was introduced or fixed.

The framework offers a graphical user interface, accessible
through a locally hosted web page. The experiment results are
visualized using a Gantt chart, facilitating easy interpretation
and analysis.

In our study, BUGHOG was employed to identify the lifecy-
cles of 75 bugs related to the Content Security Policy, across
its complete development history in Chromium and Firefox.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Executing our artifact on evaluators’ machines poses no risk.

A.2.2 How to access

The stable version of BugHog as part of the USENIX artifact
evaluation process is available at https://github.com/D

istriNet/BugHog/tree/usenix23-artifact-stable.
The most recent version, which will also be maintained and
updated in the future, can be found at https://github.c
om/DistriNet/BugHog. To clone the repository, use the
following command:

git clone https://github.com/DistriNet/BugHog.git

Or use the GitHub web interface.

A.2.3 Hardware dependencies

To run the framework, the following minimum hardware spec-
ifications are required:

• 2 CPU cores (more cores may be necessary for concur-
rent experiments).

• 8 GB of RAM.

• 5 GB of disk space.

• Internet connection.

Ideally, the number of CPU cores should match or exceed
the number of concurrent experiments the user allows BugHog
to perform. Insufficient disk space may cause the framework
to crash since this could prevent it from temporarily storing
downloaded binaries.

A.2.4 Software dependencies

The BUGHOG framework only relies on Docker, making it
compatible with any operating system that supports Docker
(e.g. Windows, macOS, Linux). All necessary dependencies
are included in the Docker images, eliminating the need for
additional software installations.

A.2.5 Benchmarks

No specific benchmarks are associated with this artifact.
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A.3 Set-up
The installation instructions that follow can be found in our
GitHub repository’s README.md as well.

A.3.1 Installation

Follow these steps to install BUGHOG:

1. Clone the repository, and navigate to the root directory:

git clone https://github.com/DistriNet/BugHog.git
cd BugHog

The project can also be downloaded through GitHub’s
web interface at https://github.com/DistriNet/B
ugHog instead.

2. Obtain the required BUGHOG Docker images:

• Option A: Pulling (fastest)
Use the following command to pull the necessary
pre-built Docker images:

docker compose pull core worker web

• Option B: Building
If you intend to modify the source code, use the
following commands to build the required Docker
images. Rerun this script if you make any changes
to the source code:

docker compose up node_install_deps
docker compose up node_build
docker compose build core worker web

For reference, building the images takes approxi-
mately 4 minutes on a machine with 8 CPU cores
and 8 GB of RAM.

3. (Optional) Use your own MongoDB instance.

If you prefer using your own MongoDB instance, pro-
vide the connection parameters in a .env file at the
project’s root:

bci_mongo_host=[ip_address_of_host]
bci_mongo_database=[database_name]
bci_mongo_username=[database_user]
bci_mongo_password=[database_password]

If not provided, BUGHOG will spin up a MongoDB in-
stance in a Docker container. The data is persisted be-
tween runs within the database folder, allowing you to
safely stop and start BUGHOG without losing any data.

A.3.2 Basic Test

To start the framework, execute the following command:

docker compose up core web

Depending on the installation option chosen earlier, a
pulled or locally built image will be used. You can switch
between the two options by executing the appropriate instal-
lation step before starting the framework.

To access the web interface, open your web browser and
navigate to http://localhost:5000. BUGHOG is ready
for use when the following message is logged in either the
terminal window or the web interface:

[INFO] bci.master: BugHog is ready!

Perform a simple test by following these steps:

1. Select the CSP project and Chromium browser from the
dropdown menus in the upper left corner of the web
interface.

2. Choose the c1064676 experiment from the
Experiments pane. 1

3. Set the Evaluation range with a lower version of 20
and an upper version of 110.

4. Input 1 for the Number of parallel containers. 2

5. Click the green Start evaluation button.

As the evaluation progresses, the framework will provide
updates in the terminal window or Log pane at the bottom
of the web interface. The information and Gantt chart in
the Results pane will be updated automatically as well, if
c1064676 is selected in the Select an experiment drop-
down menu. Please note that the Gantt chart requires a mini-
mum of two completed experiments before it can be generated.
Each dot in the Gantt chart represents whether the bug can
be reproduced in the corresponding revision binary. By hov-
ering over a dot, the associated revision number and browser
version can be observed. To prevent the Gantt chart from
refreshing automatically, the Auto-refresh Gantt chart
checkbox can be unchecked. This might be necessary when
zooming in on a specific part of the chart, since the zoom
level will be reset when the chart is refreshed. A refresh can
be triggered manually by clicking the Refresh button.

You have the option to stop the evaluation at any time by
clicking either the yellow Stop gracefully button, which
allows the ongoing experiments to finish before stopping,
or the red Stop forcefully button, which immediately at-
tempts to halt all experiments. When all experiments have
ended, either by user intervention or because the last available
revision has been evaluated, the following line will be logged:

[INFO] bci.master: BugHog has finished the evaluation!

1Experiments are named after the bug report ID. Experiments with a c as
prefix are Chromium reported bugs, while experiments with an f as prefix
are Firefox reported bugs.

2Feel free to increase this number if you have more available CPU cores.
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(a) Chromium. (b) Firefox.

Figure 1: Resulting Gantt chart of experiment (E1).

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): BUGHOG is capable of running all browser revision
binaries that support CSP enforcement3 required for our
study, without the need for manual dependency man-
agement. This claim is supported by experiment (E1)
conducted on both browsers.

(C2): We successfully identified the complete lifecycles of
75 bugs in Chromium and Firefox using BUGHOG. Con-
sidering the impracticality of evaluators individually pin-
pointing the lifecycles of all bugs, we will provide our
comprehensive MongoDB lifecycle dataset.4 Evaluators
can utilize BUGHOG to pinpoint the lifecycle of any bug
in our dataset and compare them with our findings. Fur-
thermore, as an example, we describe experiment (E2)
where we trace the lifecycle of one of the CSP bugs.

A.4.2 Experiments

The experiments were conducted on a machine equipped
with 8 CPU cores and 8 GB of RAM, where BUGHOG was
configured to use 8 parallel containers.

(E1): [Support for the complete CSP browser development
history] [20 human-minutes + 15 compute-minutes]:

Description: BUGHOG is capable of running all
necessary browser revision binaries that support CSP
without the need for manual dependency manage-
ment. To demonstrate this capability, we conduct an
experiment to identify the introduction of CSP in
Chromium and Firefox. For this experiment, we utilized
a PoC that employs a CSP policy blocking all resource
loading through the default-src directive, which
is supported since CSP’s introduction. In revisions

3CSP support starts from revision 165317 and 144546 for Chromium and
Firefox, respectively.

4A dump of this dataset is available at: https://github.com/DistriN
et/lifecycle-data

without CSP support, requests are allowed to reach our
server, indicating successful reproduction. The PoC can
be found in the experiments/pages/Support/CSP
directory.

Execution: Select the following evaluation parameters:

• Project: Support

• Browser: Chromium for one evaluation, Firefox for
the other

• Experiment: CSP

• Evaluation range: 20 to 110

• Search strategy: Binary search

• Reproduction id: csp

• Number of parallel containers: any number
from 2 to 8 (higher numbers will result in faster
evaluation)

Click the green Start evaluation button to begin the
evaluation.

Results: By refreshing the Results pane in the web
interface, you will eventually observe that BugHog suc-
cessfully identifies a specific revision range in which the
introduction of CSP occurred. The Gantt chart for both
browsers will also exhibit a distinct pattern indicating
the utilization of binary search. Figures 1a and 1b show
the resulting Gantt charts for Chromium and Firefox,
respectively.
By solely using downloaded publicly available revision
binaries, we can infer that the introduction of CSP in
Chromium took place at revision 165317.5 This revision
corresponds to a WebKit roll, where WebKit’s revision
range [133029 - 133116] was integrated into Chromium.
Through manual analysis of revision metadata, we deter-
mined that revision 1331316 is the exact revision respon-
sible for introducing CSP.

5https://crrev.com/165317
6https://trac.webkit.org/changeset/133131/webkit
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(a) Chromium. (b) Firefox.

Figure 2: Resulting Gantt chart of experiment (E2).

For Firefox, the framework narrows down the revision
range to [144529 - 144643]. Here, through a combi-
nation of self-built binaries and manual analysis, we
inferred that revision 1445467 indeed introduced CSP.

(E2): [Full lifecycle analysis] [20 human-minutes + 40
compute-minutes]:

BUGHOG provides a comprehensive lifecycle analysis
of bugs through the Composite search method. This
approach involves two stages:

• In the first stage, N evenly spread out revisions are
evaluated over the whole indicated range, with N
determined by the value of Sequence limit.

• In the second stage, the analysis focuses on identi-
fying smaller revision ranges where reproducibility
shifts are observed.

In this experiment, we will conduct a lifecycle analysis
of bug f1441468, which was reported for Firefox.8 Al-
though we did not find this bug reported for Chromium,
BugHog has revealed that the bug is reproducible in
Chromium as well in our cross-browser analysis. There-
fore, we will perform this evaluation on both browsers
again in this experiment.
Unlike the previous experiment, our goal here is not just
to determine when the bug was introduced. We aim to
obtain a complete view of the bug’s lifecycle. To achieve
this, we will employ the Composite search strategy.
To ensure that we evaluate approximately one binary per
release version, we will set the Sequence limit to 100.

Execution: Select the following evaluation parameters:
• Project: CSP
• Browser: Chromium for one evaluation, Firefox for

the other
7https://hg.mozilla.org/releases/mozilla-release/rev/6b1

81afc9fadbd4bb9d04648aa24a34bd9731e82
8https://bugzilla.mozilla.org/show_bug.cgi?id=1441468

• Experiment: f1441468
• Evaluation range: 20 to 110
• Search strategy: Composite search
• Sequence limit: 100
• Reproduction id: f1441468
• Number of parallel containers: any number

from 2 to 8 (higher numbers will result in faster
evaluation)

Click the green Start evaluation button to begin the
evaluation.

Results: Figures 2a and 2b show the resulting Gantt
charts for Chromium and Firefox, respectively.
For Chromium, BUGHOG shows that this bug is founda-
tional, as the bug is reproducible since the introduction
of CSP. BUGHOG also identifies a narrow revision range,
specifically [435165 - 435177], where an effective fix
was applied. By manually analyzing revision metadata,
we can determine that the bug was fixed in revision
435165.9

In the case of Firefox, the results indicate that the bug
is non-foundational since it could not be reproduced at
the time of CSP introduction. Instead, the bug was intro-
duced within revision range [428395 - 428677], and sub-
sequently fixed within revision range [587121 - 587215].
Through a combination of self-built binaries and manual
analysis of revision metadata, we can identify the intro-
ducing revision as 42856810 and the fixing revision as
587202.11

Both results can be cross-referenced against the lifecycle
data dump by opening the json file in any text editor
with string search functionality, and searching for the bug
ID without the single-letter prefix (i.e. 1441468). The
object associated with this ID contains the bug’s life-

9https://crrev.com/435165
10https://hg.mozilla.org/releases/mozilla-release/rev/428

568
11https://hg.mozilla.org/releases/mozilla-release/rev/587
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cycles for both browsers, in which the aforementioned
revisions are listed.

A.5 Notes on Reusability
As mentioned in our paper, BUGHOG is not limited to evalu-
ating CSP bugs but can also be used to analyze other types of
bugs, including those impacting other (security) policies and
functionalities. By integrating the bug’s PoC into the frame-
work, BUGHOG can uncover its complete lifecycle. This in-
tegration is performed by adding the necessary web page
files to the experiments/pages folder and by including the
URL queue of pages to be visited during the experiment
in the experiments/url_queues folder. Since the integra-
tion format may evolve in the future, we provide more de-
tailed instructions on how to integrate new bug PoCs in the
README.md file of our GitHub repository.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: <Remote Code Execution from SSTI in
the Sandbox: Automatically Detecting and Exploiting Template Escape

Bugs>

Yudi Zhao1, ¶, Yuan Zhang1, ¶, and Min Yang1

1School of Computer Science, Fudan University, China
¶co-first authors

A Artifact Appendix

A.1 Abstract

This artifact is a tool named TEFuzz for paper <Remote Code
Execution from SSTI in the Sandbox: Automatically De-
tecting and Exploiting Template Escape Bugs>. TEfuzz can
detect the template escape bugs in the template engine and
generate exploit synthesis.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The artifact don’t have any risk for evaluators while execut-
ing your artifact to their machines security, data privacy or
others ethical concerns. Evaluators can run this artifact with
confidence.

A.2.2 How to access

Evaluators can access the artifact and source code by github
repository (https://github.com/seclab-fudan/TEFuzz).

A.2.3 Hardware dependencies

None

A.2.4 Software dependencies

The TEFuzz part of the artifact run under ubuntu 18.04 and
require support for Python3.8 and related libraries, a list of
which is included in the requirements.txt file in the github
repository. The TE driver part of the artifact needs to run in
Apache2 and PHP7.2.34 environment. We provide a complete
docker image on github repository, and evaluators can directly
pull the docker image without manual configuration.

A.2.5 Benchmarks

None

A.3 Set-up
A.3.1 Installation

First clone the source code from the Github repository, set up
Python3.8 environment.

1 g i t c l o n e h t t p s : / / g i t h u b . com / s e c l a b − fudan / TEFuzz
2 sudo ap t − g e t u p d a t e
3 sudo ap t − g e t i n s t a l l py thon3 . 8 python3 − p i p
4 python3 . 8 −m p i p i n s t a l l − r r e q u i r e m e n t s . t x t
5 cd $YOUR_TEFUZZ_PATH / CodeWrapper
6 composer i n s t a l l
7 sed − i ’ s / p r o t e c t e d $ a t t r i b u t e s ; / p u b l i c

$ a t t r i b u t e s ; / g ’ vendor / n i k i c / php − p a r s e r / l i b /
P h p P a r s e r / N o d e A b s t r a c t . php

Listing 1: Bash command

Then pull the docker image , evaluators need to mount
docker’s ‘/var/www/html/tefuzz‘ directory to the host so that
tools can read the information.

1 d oc ke r p u l l a l tm4nz / t e f u z z : 1 . 0
2 d oc ke r run − i t d −p 80 :80 −v / v a r /www/ html / t e f u z z : /

v a r /www/ html / t e f u z z −−name t e f u z z a l tm4nz /
t e f u z z : 1 . 0

3 d oc ke r cp t e f u z z : / tmp / t e f u z z / / v a r /www/ html /
4 d oc ke r cp t e f u z z : / tmp / seed / $YOUR_TEFUZZ_PATH /

r e s u l t /
5 d oc ke r exec − i t t e f u z z / b i n / bash −c ’ s e r v i c e

apache2 s t a r t ’

Listing 2: Docker command

A.3.2 Basic Test

After installing the artifact, evaluators can perform a basic test
using the ‘python3 check.py ‘ command to determine whether
the artifact was successfully installed. If success is displayed,
the evaluators can continue the follow test evaluation.
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A.4 Evaluation workflow
A.4.1 Major Claims

(C1): TEFuzz can detect template escape bugs in the tem-
plate engine of the data set and generate exploit synthe-
sis.

A.4.2 Experiments

(E1): [Vulnerability detection] [30 human-minutes + 50
compute-hour + 5GB disk]
Preparation: After the artifact have been success-
fully installed, set TARGET_IP as your docker ip, set
TE_NAME in ‘config.py‘ to the target template engine
name, such as ’smarty’.
Execution: Run the artifact using ‘python3 main.py‘.
Detecting a different template engine requires re-running
the artifact after replacing the TE_NAME parameter.
Results: After completion of the run, the TEFuzz will
output the number of generated exploit synthesises, this
result corresponding to the third column of Table 2 in the
paper. For example, “generate 3 EXP“ means 3 exploit
synthesises were generated. Meanwhile, TEFuzz will
output intermediate data in the process of vulnerability
detection, including the number of seeds, the number of
Testcases generated, the number of interesting Testcases
, etc., which correspond to Table 6 in the paper.

A.5 Notes on Reusability
If you want to evaluate more template engines by using my
artifact, first you need to collect the seed data for that template
engine, store it in the result/seed directory, and configure the
appropriate adaption rules (optional). The most important
thing is that you need to set up a TE driver environment for
the new template engine, The TE driver environment can refer
to the environment in the docker image.

If you want to test new seeds in an existing template en-
gine, it’s easier to just update your seeds into the result/seed
directory.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
SMACK is an adversarial audio attack that leverages manip-
ulation of the prosody attributes to craft adversarial speech
examples. Our artifact comprises the source code, the gener-
ative model for controlling speech prosody, along with the
automatic speech recognition (ASR) and speaker recognition
(SR) models for attack testing. To operate the attack frame-
work, the user needs to run the program in the command line,
providing attack types (i.e., against ASR or SR system) and
specifying attack targets (i.e, targeted transcription or speaker
label). The expected results are the adversarial audio samples.

Given the complexity of the speech generative model in-
volved in SMACK, a machine with a moderate CPU and a
GPU of at least 8GB VRAM is recommended. Please note
that run-time may vary depending on the user’s hardware. We
have compiled a list of required dependencies into a YML
configuration file.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact provided does not contain any harmful materials
that may compromise machine security or pose threats to
human health. The generative model was trained on public
speech corpus, and there is no privacy concern associated
with the use of artifacts. We have taken the utmost care to
ensure that the artifact meets all necessary safety standards
and guidelines.

A.2.2 How to access

We have made the code and models available on Zen-
odo. The stable URL link pointing to the repository is
https://github.com/WUSTL-CSPL/SMACK/commits/
895f19b35350c5aded3362508c4a770f5e36342f.

A.2.3 Hardware dependencies

The attack framework can run on a machine with a moderate
CPU, at least 16GB of available RAM, and a GPU with at least
8GB VRAM. The system was tested stable with AMD Ryzen

9 3900X 12-Core Processor accompanying RTX 3070Ti and
32GB memory. No other specific hardware is required, but
the variance in hardware can lead to differences in run-time.

A.2.4 Software dependencies

SMACK was implemented in Python, and the environment
was set up using Miniconda 4.12.0 on Ubuntu 22.0.4. The
used machine learning framework is Pytorch, and other
associated dependencies are encapsulated in a YAML file.
For the installation process please see Section A.3. Due
to the file size limit of GitHub, some of the files used for
testing need to be downloaded from the Google Drive link,
https://drive.google.com/file/d/12vUxRaIRDaD_
prg8F-vpb5oUvWMOPqsl/view?usp=sharing, containing
custom scripts and pre-trained models. Please refer to
README.md for detailed guidance.

A.2.5 Benchmarks

The data required by the experiments are the generative model
and speech audio used in adversarial optimization. For speech
recognition, we provide two ASR cloud services, iFlytek and
Google Speech-to-Text. For speaker recognition, we provide
two state-of-the-art models (GMM-UBM and ivector-PLDA)
as targets. The SR models are provided in the artifact, which
can be found in the ./FAKEBOB directory.

A.3 Set-up
A.3.1 Installation

Conda or Miniconda is recommended for setting up the en-
vironment. It can be installed via the official link https://
docs.conda.io/en/latest/miniconda.html and the pro-
cess can differ based on the user’s OS. The commands for
setting up the environment with the smack.yml file are:

$ cd <the_path_to_the_folder>
$ conda env create -f smack.yml
$ conda activate smack

For the setup of speaker recognition systems, we follow the
existing work FAKEBOB and use the Kaldi toolkit. Notably,
this process can be time-consuming and requires modification

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium    209

https://github.com/WUSTL-CSPL/SMACK/commits/895f19b35350c5aded3362508c4a770f5e36342f
https://github.com/WUSTL-CSPL/SMACK/commits/895f19b35350c5aded3362508c4a770f5e36342f
https://drive.google.com/file/d/12vUxRaIRDaD_prg8F-vpb5oUvWMOPqsl/view?usp=sharing
https://drive.google.com/file/d/12vUxRaIRDaD_prg8F-vpb5oUvWMOPqsl/view?usp=sharing
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html


of the shell configuration file. Therefore, we wrote a dedicated
tutorial detailing all steps in the setup_SR.md file.

A.3.2 Basic Test

The SMACK attack framework consists of two main com-
ponents, the adapted genetic algorithm (AGA) and gradient
estimation scheme (ES), each can be individually tested. Due
to limited space, some printed outputs are omitted in this ap-
pendix and some of the commands are broken into multiple
lines to fit the template. The full basic test can be found in
the README.md document in the Basic Tests section, please
copy the commands from there.

The command for basic tests of the AGA is:

$ python3 genetic.py

You are expected to see printed outputs comprising the
unique ID of individuals in the population and their fitness
value breakdown, including fitness value, confidence score,
adversarial term value, and audio quality term value.

Similarly, the basic functionality of the gradient estimation
part can be tested with:

$ python3 gradient.py

Note that the above two tests are based on speaker recogni-
tion systems, so they examine the setup and functionality of
both attack algorithms and SR models. If the SR models are
not properly setup prior to tests, the basic tests would fail
automatically.

Besides, the normal functionality of the target models can
be tested by running corresponding scripts. For ASR, we can
use an adversarial example to test iflytekASR model:

$ python3 iflytek_ASR.py \
"SMACK_Examples/iflytekASR_THEY DID NOT HAVE \
A LIGHT.wav"

And you are expected to see the output as follows:

iflytek ASR Result after 1 connection retries:
THEY DID NOT HAVE A LIGHT

Similarly, the command and expected output for Google
speech-to-text model is:

$ python3 google_ASR.py \
"SMACK_Examples/success_gmmSV_librispeech_p1089.wav"

Google ASR Result after 0 retries:
MY VOICE IS THE PASSWORD

For SR models, the testing command with the provided
adversarial example is:

$ python3 speaker_sv.py \
"SMACK_Examples/success_gmmSV_librispeech_p1089.wav" \
gmmSV librispeech_p1089

And you are expected to see the output saying the tests
on GMM-UBM models passed, with additional information
on the decision, acceptance threshold, and score. The com-
plete commands and associated outputs can be found in the
"README.md" in the artifact.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): SMACK can be used to generate natural speech that
misleads the state-of-the-art automatic speech recogni-
tion models, including commercial products such as iFly-
Tek and Google speech-to-text. This is proven by the
experiment (E1) and (E2) described in Section 8.1 whose
results are reported in Table 1 and Table 2.

(C2): SMACK can be used to generate natural speech that
misleads the state-of-the-art speaker recognition mod-
els. The attack can also be achieved for the challenging
inter-gender attack scenario, where the speaker of the
adversarial example and targets are of different genders.
This is proven by the experiment (E3) and (E4) described
in Section 8.2 whose results are reported in Table 3.

A.4.2 Experiments

(E1): [iFlyTek ASR Attack] [10 human-minutes + 4 compute-
hour + 15GB disk]:
Preparation: The environment installation is detailed
in the previous section. Since the target models are com-
mercial products, the speech recognition query is limited
and comes with a cost. Please don’t hesitate to contact
us if you find the service no longer available. We will
replace a valid token for your use.
Execution: In the attack against ASR systems, we pro-
vide two real-world speech recognition services as the
target models, iFlytek and Google. In this experiment
against iFlyTek, please use the following command:
$ python3 attack.py \
--audio "./Original_TheyDenyTheyLied.wav" \
--model iflytekASR \
--content "They deny they lied" \
--target "They did not have a light"
Results: You are expected the see printed outputs sim-
ilar to the basic tests. All the intermediate audio files
generated throughout the attack process are stored
in the "./SampleDir" directory. An example termi-
nal output produced by this attack is recorded in the
"SMACK_Examples/iflytekASR_THEY DID NOT HAVE
A LIGHT.txt" file, and the resulted adversarial example is
provided as "SMACK_Examples/iflytekASR_THEY DID
NOT HAVE A LIGHT.wav". The example is named as
its transcription by the target model. To validate the ad-
versarial example, please use the same command in the
basic test:
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$ python3 iflytek_ASR.py \
"SMACK_Examples/iflytekASR_THEY DID NOT \
HAVE A LIGHT.wav"

(E2): [Google ASR Attack] [10 human-minutes + 1 compute-
hour + 15GB disk]:
Preparation: The environment setup is detailed in the
previous section. The Google speech-to-text is a commer-
cial cloud service that requires user token. It is already
provided in the "google_token.json" file in the artifact
and no other setup is needed as long as the token is still
valid. Please contact us for a renewed token if it expires.
Execution: Similar to the attack against iFlyTek, please
use the following command to launch the attack against
Google ASR:
$ python3 attack.py \
--audio "./Original_SamiGotAngry.wav" \
--model googleASR \
--content "Sami got angry" \
--target "Send me that"
Results: The expected results are similar to the ex-
periment (E1). We also provide a sample adversar-
ial example "SMACK_Examples/googleASR_SEND ME
THAT.wav", along with its terminal prints recorded in the
"SMACK_Examples/googleASR_SEND ME THAT.txt"
file. To validate the adversarial example, please use the
command:
$ python3 google_ASR.py \
"SMACK_Examples/googleASR_SEND ME THAT.wav"

(E3): [GMM-based SR Attack] [10 human-minutes + 8
compute-hour + 15GB disk]:
Preparation: It requires the setup of both attack frame-
work and speaker verification encapsulated in the
Kaldi toolkit. The detailed guidance for installing
Kaldi and associated dependencies are included in the
"setup_speakerRecog.md" file in the artifact.
Execution: In this attack, we target a well-established
model GMM-UBM deployed with the Kaldi toolkit. The
command for running the attack is as follows:
$ python3 attack.py \
--audio "./Original_MyVoiceIsThePassword.wav" \
--model gmmSV
--content "My voice is the password" \
--target librispeech_p1089
By using this command, we conduct an inter-
gender attack, that is, the reference audio "./Origi-
nal_MyVoiceIsThePassword.wav" is uttered by a woman
while the target speaker librispeech_p1089 is a man.
Results: All the intermediate audio files generated
throughout the attack process are stored in the
"./SampleDir" directory. The adversarial examples
that successfully achieve the adversarial goal will be
stored in the "./SuccessDir" directory. The terminal
prints also reveal the process of that attack and
intermediate results (such as loss values). An adver-

sarial example generated by the attack is provided in
"SMACK_Examples/success_gmmSV_librispeech_p1089.wav,
and its success can be validated in the basic
test 4. The associated printed output through-
out the optimization process is also provided in
"SMACK_Examples/success_gmmSV_librispeech_p1089.txt.

(E4): [ivector-based SR Attack] [10 human-minutes + 8
compute-hour + 15GB disk]:
Preparation: The setup required by this experiment is
the same with experiment (E3).
Execution: In this attack, we target another well-
established model ivector-PLDA deployed with the
Kaldi toolkit. The command for running the attack is
as follows:
$ python3 attack.py \
--audio "./Original_MyVoiceIsThePassword.wav" \
--model ivectorCSI
--content "My voice is the password" \
--target librispeech_p1089
The launched attack specified by this command is also
an inter-gender attack.
Results: The expected results are similar to that
of the experiment (E3). We also provide two
adversarial examples generated by the attack in
"SMACK_Examples/success_ivectorCSI_librispeech_p1089.wav",
"SMACK_Examples/success_ivectorCSI_librispeech_p1089_1.wav",
and their success can be validated in the ba-
sic test. The associated printed output through-
out the optimization process is also provided in
"SMACK_Examples/success_ivectorCSI_librispeech_p1089.txt.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
The provided artifact contains URET as described in the paper.
The tools provided are sufficient to allow users to perform
custom adversarial evaluations on machine learning classifiers
regardless of input domain. Specifically, this version includes
input transformer definitions for the common input types (e.g.,
numerical, text, and categorical) as well as the binary file
input type described in the paper. With respect to results
reproduction, it contains the model checkpoints, evaluation
data, and notebooks used to generate most of the results in
Table 6.

Some components described in the paper have been pur-
posely left out of the provided artifact for proprietary reasons:

• No implementation of the “Model Guided” algorithm.
This implementation was deemed proprietary.

• No data/notebooks for the Malware experiments. The
malware samples used for evaluation are proprietary and
may pose a risk if improperly handled.

• No data/notebooks for the DGA experiments. The train-
ing and evaluation data are proprietary. The model code
is also proprietary.

Despite these limitations, the provided artifact can be used
to perform the custom evaluations described in the paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There should be no security, privacy, and ethical concerns.

A.2.2 How to access

URET is an evaluation toolkit for adversarial evasion at-
tacks. The public URET repository is accessible at https:

*These authors contributed equally.

//github.com/IBM/URET. It should contain the code nec-
essary to perform an evaluation as well as notebook exam-
ples of how to use URET. The stable URL used for Arti-
fact Evaluation is https://github.com/IBM/URET/tree/
8bd1b4f4d78ac19f026e862b31ae933983c99551.

A.2.3 Hardware dependencies

Our artifact does not have any hardware requirement. Of note,
a GPU is not required to run the evaluation notebooks and
pre-trained model checkpoints have been provided. We tested
our artifact on an Ubuntu 18.04 system with 8 CPU cores.

A.2.4 Software dependencies

The artifact repository contains a setup script for installing
the required python libraries to use URET, independent of any
machine learning libraries (e.g., Tensorflow, PyTorch, etc.).
However, the example notebooks require a different setup
script, which is included in the artifact, as the model check-
points were trained using older libraries. The example note-
books were tested using Python 3.8. In Section A.3., we detail
the necessary steps to install the required python libraries. We
recommend evaluators create a virtual environment prior to
running the setup script.

A.2.5 Benchmarks

The artifact requires the 2018 Home Mortgage Disclosure Act
(HMDA) dataset to run the evaluation notebooks. We have
already included a copy of the dataset in the artifact.

A.3 Set-up
A.3.1 Installation

Here, we provide instructions to deploy URET and run the
evaluation notebooks. This was tested using Python 3.8.

1. Clone the artifact from the stable URL:
https://github.com/IBM/URET/tree/
8bd1b4f4d78ac19f026e862b31ae933983c99551
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2. In the artifact directory, replace the existing setup.py file
with the version from from notebooks/setup.py.

3. Run the setup script in the top level directory (i.e. pip in-
stall -e .) to install the evaluation libraries. It is suggested
you do this in a virtual environment.

After step 3, URET should be ready for use. To re-
produce most of the results in Table 6, move in to the
notebooks/ directory and run HMDA_results.ipynb. We
have included pre-computed adversarial examples gener-
ated from running each of the exploration algorithms de-
scribed in the paper. This samples are stored in note-
books/data/HMDA_adv_samples. Note that running a genera-
tion notebook (e.g., notebooks/HMDA_random.ipynb) will
overwrite the saved samples by default.

A.3.2 Basic Test

After setting up URET, the easiest method to test functionality
is to run one of the adversarial generation notebooks. We
recommend running notebooks/HMDA_random.ipynb as it is
the fastest algorithm to run. The notebook should run without
errors, though you may get some warning messages. Cell 4
should display several progress bars and text related to the
model being evaluated and the adversarial success rate of the
generated samples.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): URET can be used to perform generating adversarial
evasion examples for a variety of input domains and for-
mats. This claim proven by experiment E1 and Sections
6.2 and 6.3 in the paper. Experiment E1 is described in
Section 6.1 of the main paper and its results are reported
in Table 6.

(C2): URET can generate adversarial examples for inputs
containing a multiple features in the input. This claim
proven by experiment E1.

(C3): URET can generate adversarial examples for inputs
containing a single feature. This claim proven by Sec-
tions 6.2 and 6.3 in the paper.

(C4): URET presents several different exploration confirma-
tions that can be selected based on user needs. Experi-
ment E1 shows results for several exploration configu-
rations as well as a baseline (Random) to highlight the
success rate/speed tradeoff.

A.4.2 Experiments

(E1): [HMDA Adversarial Examples][6 Human-hours]:
Generate adversarial examples for five HMDA classifi-
cation models using a baseline four exploration configu-
rations.

Preparation: Follow the installation instructions in
Section A.3.1. Once URET has been installed along with
its required libraries, change to the notebooks/ directory
before beginning the experiment.
Execution: We have pre-computed adversarial exam-
ples for each of the generation notebooks. If the evalua-
tor wants to re-generate the adversarial examples, then
run the following notebooks:

1. notebooks/HMDA_random.ipynb - [ 25 Human-
minutes] This generates adversarial examples where
every transformation edge is selected randomly.

2. notebooks/HMDA_brute.ipynb - [ 1.5-2 Human-
hours] This generates adversarial examples by ex-
ploring every edge.

3. notebooks/HMDA_lookup.ipynb - [ 1 Human-hour]
This generates adversarial examples using the
lookup table algorithm. Each generation process
will first compute a transformation weight lookup
table followed by generation.

4. notebooks/HMDA_simanneal.ipynb - [2.5-3
Human-hours] This generates adversarial examples
using the simulated annealing algorithm. The
default configuration file assigns 1 sec of attack
time per sample.

Of the models, we found that the random forest and
multi-layer perception models require the most amount
of time to generate.
Results: To generate attack success rate and transforma-
tion count results on generated adversarial examples, run
notebooks/HMDA_results.ipynb. It expects that there
are adversarial examples for each exploration configura-
tion and model.
To get the per sample generation times, we divide the
generation time shown in the generation notebooks by
the number of samples (2000). We have noticed that the
simulated annealing generation time can be sometimes
longer than the specified amount.

We have provide configuration files for each of the exper-
iments shown in Table 6 of the paper. Due to randomness,
there may be some slight variation in the success rate, trans-
formation count, and per sample generation time between
adversarial example generations. The configuration files can
be found in notebooks/configs/HMDA. If interested, the eval-
uator can alter these configuration files to try different explo-
ration settings. For the non-simulated annealing configuration
files, consider modifying the beam width (i.e., how many po-
tential transformation candidates are considered) and beam
depth (i.e., how many transformations can be applied). For
simulated annealing, consider modifying the transformation
parameters:

• max_transform_i_sampled - Upper limit on feature trans-
formation applied in a single transformation step
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• global_max_transforms - how many transformations can
be applied

or the attack time. We note that for simulated annealing, modi-
fying the number of transformations without increasing attack
time may result in decreasing the success rate given its ran-
dom exploration process.

Note that we do not include the code, models, or data for the
experiments show in sections 6.2 and 6.3 in main paper. We
are unable to share the relevant material due to the proprietary
nature of data. Section 6.1 is the only experiment that uses
entirely non-proprietary data.

A.5 Notes on Reusability
URET is intended to be an evolving set of tools that can
be used to evaluate adversarial robustness of classifiers with
respect to evasion. If users find the current set of modules
insufficient for their needs, they are encouraged to implement
their own custom modules using the common interfaces ex-
posed by URET. Specifically, we expect users may need to
customize some or all of the following component:

• Input Transformers and Subtransformers (found in
uret/transformers) - For data types beyond the basic and
binary types we include in URET, users will need to
provide new implementations, which the exploration al-
gorithms can use.

• Custom Loss Functions (found in uret/transformers) -
URET uses two common loss types: 1) classification
loss based on ground truth labels or model predictions
and 2) Distance based loss function. Users that require
alerted or unique loss functions (e.g., a loss based on
time series input data) can define their own function to
provide to the explorer during initialization.

• Dependencies - Some feature relationships need to be
handled outside of the transformation interface, such
as normalization of a multi-feature vector input. These
dependencies can be functionally defined and specified
in the URET configuration file for the explorer to enforce
during example generation.

The goal of URET was to provide a basic, but easily ex-
pandable set of tools to be used for adversarial evaluations.
We hope that as users customize URET for their own needs,
their implementations can be integrated into the public repos-
itory to expand URET’s capabilities and help other users.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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1 Artifact Appendix

1.1 Abstract

The source code for our single- and multi-server authenticated-
PIR schemes and the Keyd public-key server is available
at https://github.com/dedis/apir-code under open-
source license. The same repository contains unauthenticated-
PIR schemes that we implemented as baselines for compar-
ison; as single-server PIR baseline we use the original im-
plementation of SimplePIR [HHCMV22]. Our implemen-
tation and the implementation of SimplePIR use C for the
performance-critical functions. We perform all the experi-
ments on machines equipped with two Intel Xeon E5-2680 v3
(Haswell) CPUs, each with 12 cores, 24 threads, and operating
at 2.5 GHz, and 256 GB of RAM.

1.2 Description & Requirements

1.2.1 Security, privacy, and ethical concerns

None.

1.2.2 How to access

The source code for all the authenticated-PIR
schemes, the classic-PIR schemes and Keyd under
which this artifact evaluation was tested is available
at https://github.com/dedis/apir-code/tree/
af3202e3776d4cb880256372dd51613ee34532ba.

1.2.3 Hardware dependencies

We perform all the experiments on machines equipped with
two Intel Xeon E5-2680 v3 (Haswell) CPUs, each with 12
cores, 24 threads, and operating at 2.5 GHz. Each machine
has 256 GB of RAM, and runs Ubuntu 20.04 and Go 1.17.5.
Machines are connected with 10 Gigabit Ethernet. In the ex-
periments for the multi-server schemes and Keyd (Sections
7.1, 7.2 and 7.4), the client and the servers run on separate
machines—the experiments use at most six machines. For
single-server schemes we use a single machine that runs both
client and server. However, it is possible to run the code,

together with the accompanying tests, benchmarks and exper-
iments, on any machine equipped the software dependencies
listed in the next section.

1.2.4 Software dependencies

Running run the code requires Go (tested with Go 1.17.5 and
1.19.5) and a C compiler (tested with GCC 9.4.0).

Reproducing the evaluation results requires GNU Make,
Screen, Python 31, Fabric, Tomli, Numpy and Matplotlib.

1.2.5 Benchmarks

None.

1.3 Set-up
1.3.1 Installation

Installation instructions are given in the Setup sections of
https://github.com/si-co/vpir-code/blob/main/README.md
and we report them here. To run the code in the repository
install Go (tested with Go 1.17.5) and a C compiler (tested
with GCC 9.4.0). To reproduce the evaluation results, install
GNU Make, Screen, Python 3, Fabric, Numpy and Matplotlib.

1.3.2 Basic Test

To run all basic tests, users should clone the repository, and
download the dump of the SKS PGP key directory using the
command

bash scripts/download_sks_parsed.sh

in the repository’s root directory.
To run the basic test, use the following command:

go test

in the repository’s root directory. This command takes about
six minutes to run and outputs the time taken by each test. If
all the tests pass, the output ends as follows:

PASS
ok github.com/si-co/apir -code

1The package python-is-python3 might be needed.
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1.4 Evaluation workflow

1.4.1 Major Claims

Our paper claims what follows.

Multi-server point queries (Section 7.1).
(C1): The maximum overhead for our multi-server

authenticated-PIR scheme for point queries, in compari-
son with classic unathenticated PIR is 2.9× for user
time and 1.8× for bandwidth. This is the outcome of
experiment (E1), whose results are presented in Fig. 3.

(C2): The impact of the number of servers on our multi-
server authenticated-PIR scheme for point queries is
almost negligible for user time and imposes a linear
increase for bandwidth. This is the result of experiment
(E2), whose results are reported in Fig. 4 in the body of
the paper.

(C3): The preprocessing cost for our multi-server authen-
ticated PIR scheme for point queries is linear in the
database size. This is the result of experiment (E3),
whose results are reported in Fig. 8 in Appendix C.

Multi-server complex queries (Section 7.2).
(C4): The user time and bandwidth overheads of the

authenticated-PIR schemes for complex queries against
classic unauthenticated-PIR schemes are less than 1.1×.
This is the outcome of experiment (E4), whose results
are presented in Fig. 5.

Single-server point queries (Section 7.3).
(C5): The authenticated-PIR schemes from the decisional

Diffie-Hellman assumption (DDH) and from the
learning-with-errors assumption (LWE) have integrity
error 2−128. The DDH construction has a smaller digest,
i.e., lower offline bandwidth, but has twice the online
bandwidth of the LWE construction. The LWE construc-
tion is also faster (3-79×). The scheme with integrity am-
plification (LWE+) has integrity error 2−64 but the same
classic-PIR privacy as SimplePIR [HHCMV22]. LWE+

is faster than LWE for the 1 KiB and 1 MiB databases,
but slower (1.4×) for the 1 GiB database. SimplePIR is
30-100× faster than LWE+. These results are the out-
come of experiment (E5), whose results are presented in
Fig. 6 in the body of the paper.

Application evaluation (Section 7.4).
(C6): For classic key look-ups we measure the wall-clock

time needed to retrieve a PGP public-key with authen-
ticated PIR, classic PIR without authentication, and by
direct download. We measure 1.11 seconds for authen-
ticated PIR, 1.10 seconds for unauthenticated PIR and
0.22 seconds for non-private direct look-up. This is the

result of experiment (E6), whose results are discussed in
Section 7.4 in the body of the paper.

(C7): To analyze the performance of Keyd in computing
private statistics over keys, we measure user-perceived
time and bandwidth of different predicate queries. For
all the predicates, the user-perceived time and bandiwdth
overheads of authenticated PIR are upper bounded by a
factor of 1.05×. This is the outcome of experiment (E7),
whose results are presented in Table 7 in the body of the
paper.

1.4.2 Experiments

The experiments use at most six server machines (to run the
client and servers) and an additional machine (that we call
local) to manage the experiments. The local machine can
be a commodity computer, since it is used only to run light
scripts and gather results. Clone the repository on all the
server machines and on the local machine.
(E1): [15 human-minutes + 2 compute-hour]: This experi-

ment measures the user-time and bandwidth overheads of
two-server authenticated-PIR schemes for point queries
in comparison with unauthenticated PIR. This experi-
ments uses three server machines: one client and two
servers.
Preparation: Edit simulations/multi/config.toml
on the local machine to indicate the IP address of the
client machine and the IP addresses and ports of the two
server machines. The default port numbers are safe to
use.
Execution: Run the following commands from the
repository’s root on the local machine:

cd simulations/multi
APIR_USER=<username >
APIR_PASSWORD=<password >
APIR_PATH=<path >
python simul.py -e point

where <username> and <password> are the username
and password for the servers, respectively, and <path>
is the path of the repository’s root on the servers.
Results: Run the following commands from the reposi-
tory’s root:

cd simulations/multi
python plot.py -e point

The command stores the figure in
simulations/multi/figures/point.eps.

(E2): [15 human-minutes + 18 compute-minutes]: This ex-
periment measures the impact of the number of servers
on our multi-server authenticated-PIR schemes for point
queries. This experiments uses six server machines: one
client and five servers.
Preparation: Edit simulations/multi/config.toml
on the local machine to indicate the IP address of the

218    Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2022/949


client machine and the IP addresses and ports of the five
server machines. The default port numbers are safe.
Execution: Run the following commands from the
repository’s root on the local machine:

cd simulations/multi
APIR_USER=<username >
APIR_PASSWORD=<password >
APIR_PATH=<path >
python simul.py -e point_multi

where <username>, <password> and <path> are as in
experiment E1.
Results: Run the following commands from the reposi-
tory’s root:

cd simulations/multi
python plot.py -e point_multi

The command stores the figure in
simulations/multi/figures/multi.eps.

(E3): [5 human-minutes + 9 compute-minutes]: This experi-
ment measures the cost of preprocessing for our multi-
server authenticated-PIR scheme for point queries. This
experiment uses one server machine.
Preparation: Nothing.
Execution: Run the following commands from the
repository’s root on the server machine:

cd simulations
make preprocessing

Results: Run the following commands from the reposi-
tory’s root:

cd simulations
python plot.py -e preprocessing

The command stores the figure in
simulations/figures/preprocessing.eps.

(E4): [15 human-minutes + 36 compute-minutes]: This ex-
periment measures the user-time and bandwidth over-
heads of two-server authenticated-PIR schemes for com-
plex queries in comparison with unauthenticated PIR.
This experiments uses three server machines: one client
and two servers.
Preparation: As in experiment E1. The file
simulations/multi/config.toml on the local
machine must list only two servers.
Execution: Run the following commands from the
repository’s root on the local machine:

cd simulations/multi
APIR_USER=<username >
APIR_PASSWORD=<password >
APIR_PATH=<path >
python simul.py -e predicate

where <username>, <password> and <path> are as in
experiment E1.

Results: Run the following commands from the reposi-
tory’s root:

cd simulations/multi
python plot.py -e predicate

The command stores the figure in
simulations/multi/figures/complex_lines.eps.

(E5): [15 human-minutes + 21 compute-hour]: This experi-
ment measures the user-time and bandwidth overheads
of single-server authenticated-PIR schemes for point
queries in comparison with SimplePIR [HHCMV22].
This experiment uses one server machine.
Preparation: Nothing.
Execution: Run the following commands from the
repository’s root on the server machine:

cd simulations
make single

To evaluate SimplePIR, clone the following repository:
https://github.com/si-co/simplepir. The code
is the same as the original repository, but it runs the
evaluation on the same database sizes as authenticated
PIR and produces a compatible JSON file for the results.
Run the following command (45 compute-minutes) from
the repository’s root on the server machine:

cd pir
go test -timeout 0 -run=PirSingle

Copy the file simplePIR.json (in the pir directory) in
simulation/results.
Results: Run the following commands from the reposi-
tory’s root:

cd simulations
python plot.py -e single

The command stores the figure in
simulations/figures/single_bar.eps.

(E6): [20 human-minutes + 10 compute-minutes]: This ex-
periment measures the user-time needed download a
PGP public-key with authenticated PIR for point queries,
classic unauthenticated PIR for point queries and by di-
rect download. This experiment uses three machines:
one client and two servers.
Preparation: Download the dump of the SKS PGP key
directory using the command

bash scripts/download_sks_parsed.sh

in the repository’s root directory on the two
servers. Set the IP addresses of the two servers
in simulations/real/real_client_pir.sh and in
config.toml (in the repository’s root) on the client
machine.
Execution: Run the following commands from the
repository’s root on the first server:
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cd simulations/real
bash real_server_pir.sh 0

Similarly, on the second server run:

cd simulations/real
bash real_server_pir.sh 1

A server is running properly when it logs:

gRPC server started at <ip>:<port >

Once both servers started, run the following command
on the client machine:

cd simulations/real
bash real_client_pir.sh

This command executes 30 look-ups with unauthenti-
cated PIR and 30 with authenticated PIR. At the end, the
client automatically shuts both servers down.
Results: Copy simulations/results/stats_*
from the three machines (two servers and
the client) on the local machine in the folder
/simulations/results. Run the following com-
mands:

cd simulations
python plot.py -e real

The command prints the results directly on the terminal.
(E7): [20 human-minutes + 5 compute-hours]: This experi-

ment measures the user-time needed to compute statistics
on the PGP public-keys with authenticated PIR for pred-
icate queries and unauthenticated PIR. This experiment
uses three machines: one client and two servers.
Preparation: As in Experiment E6, but
set the IP addresses of the two servers in
simulations/real/real_client_fss.sh.
Execution: Run the following commands from the
repository’s root on the first server:

cd simulations/real
bash real_server_fss.sh 0

Similarly, on the second server run:

cd simulations/real
bash real_server_fss.sh 1

For this experiment, it is not needed to wait for the
servers to properly start. Run the following command on
the client machine:

cd simulations/real
bash real_client_fss.sh

Results: Copy simulations/results/stats_*
from the three machines (two servers and
the client) on the local machine in the folder
/simulations/results. Run the following com-
mands:

cd simulations
python plot.py -e realcomplex

The command prints the results directly on the terminal.
Table 7 has a different formatting, but values are the
same as the one that the command prints on screen.

1.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

The artifact for the USENIX’23 paper "GigaDORAM: Break-
ing the Billion Address Barrier" is this GitHub repository.
The repository contains a C++ implementation of the Gi-
gaDORAM protocol, benchmarking scripts, and explanations
helpful to reproducing the experiments in the paper. The ex-
planations are composed of a standard README file and a
detailed video walkthrough which we believe to be the most
convenient way to install GigaDORAM and reproduce our
results.

A.1.1 What is GigaDORAM?

GigaDORAM is a 3-party state-of-the-art Distributed ORAM
protocol (DORAM) protocol. DORAM is a stateful mul-
tiparty cryptographic protocol. We envision the proto-
col holding a secret shared state, Memory, with N 0-
initialized cells, Memory[0],...,Memory[N-1]. An execu-
tion of the protocol takes secret shared variables Xquery,
Ynew, IsWrite as input. The output of the protocol is se-
cret shared Memory[Xquery]. If IsWrite=1, a stateful update
Memory[Xquery] := Ynew is preformed. Under certain non-
collusion assumptions, an execution of the protocol does not
reveal any information to the participating parties.

GigaDORAM is a 3-party DORAM protocol specialized
for the low-latency, large N setting. In these settings, GigaDO-
RAM significantly outperforms previous protocols. In other
settings, GigaDORAM preforms comparably to previous pro-
tocols. See the paper, and in particular Section 9, for more
details.

A.2 Description & Requirements

Roughly speaking, we benchmarked GigaDORAM in 2 dif-
ferent settings

• Single machine tests: we execute GigaDORAM through
3 processes on the same machine. This enables us to
artifically restrict the network between the machines

*Authors are in alphabetical order.

processes via the tc command and benchmark the per-
formance of GigaDORAM in a variety network settings.

• Multi machine tests: we execute GigaDORAM on 3
different AWS EC2 instances in the same AWS region.
These tests are meant to demonstrate the “real world”
potential of GigaDORAM.

In Section A.3 and Section A.4 we show how to set-up and
execute both kinds of tests, respectively. Again, we suggest
that the best way to follow along with setup, installation, and
experiment-replication is our detailed video walkthrough

A.2.1 Security, privacy, and ethical concerns

single_server_experiments.py runs sudo tc qdisc
replace dev lo root to simulate network latency and
bandwidth limits on the loopback interface, which can slow
down other programs running on the machine. We recommend
running on a dedicated VM. If anything strange happens, the
network changes can be undone with sudo tc qdisc del
dev lo root

A.2.2 How to access

Our artifact can be accessed via this GitHub repository. It is
not our development repository and will not be evolving.

A.2.3 Hardware dependencies

For evaluation, a processor supporting the Intel SSE2 instruc-
tion set is and we recommend at least 8 CPU cores and 8GB
of RAM. While local evaluation of our artifact is possible,
benchmarking on AWS is necessary for replicating our results.
If AWS credits are not available to reviewers, please reach
out to us via the anonymous submission portal.

A.2.4 Software dependencies

• A Linux machine with processor supporting the Intel
SSE2 instruction set.

• sudo access is unfortunately required; this isn’t an issue
on AWS.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium    221

https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact
https://www.youtube.com/watch?v=ZRLwktR-1cI&ab_channel=JacobZhang
https://en.wikipedia.org/wiki/Secret_sharing
https://www.youtube.com/watch?v=ZRLwktR-1cI&ab_channel=JacobZhang
https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact


• For compilation, the EMP-toolkit library. Follow the
instructions at EMP-toolkit repository to install EMP
and its dependencies.

– EMP’s dependencies are extremely basic (python3
cmake git build-essential libssl-dev)
and are all needed to build GigaDORAM. Those
can be installed using the apt package manager.

• On a typical Linux system there are no dependencies
needed to run the compiled binary.

A.2.5 Benchmarks

No data is needed to run our tests.

A.3 Set-up
In this section we describe set-up for single-server GigaDO-
RAM tests, multi-server GigaDORAM tests, and tips for op-
tionally testing other DORAM constructions.

A.3.1 Installation

Single server tests.

1. Clone our repository

2. Run compile.sh. If this fails, make sure you’ve in-
stalled EMP-toolkit.

Multi server tests. The multi-machine tests are designed to
be run on AWS EC2. Warning: Follow the directions below
carefully; it is easy to miss something which will cause the
benchmarks to not be able to run.

• You will need choose an AWS region and create and
start AWS EC2 instances named DORAM_benchmark_1,
DORAM_benchmark_2, DORAM_benchmark_3 in that re-
gion.

– Use the same SSH key for access to all 3 instances,
as it will be an argument to the script later.

– Set security group settings to allow TCP traffic
between the 3 instances.

– We used c5n.metal instances, which guaranteed
that our parties were not running on the same phys-
ical host, and also provided high multi-threaded
performance.

– We used Ubuntu 22.04 but any modern enough
Linux distribution should work. Recall that Intel
processors are required.

• For most tests, the instances should be created in a cluster
placement group. A quick how to is covered in our video
tutorial. For more information about cluster placement
groups, see here.

• In addition to the requirements for single server tests, the
AWS CLI (package awscli in apt) needs to be installed
on the machine used for builds.

• After installing, configure your region and access keys
with aws configure.

• Additionally, you will need to add these lines to
~/.ssh/config/ on the build machine: Host *
StrictHostKeyChecking no

Without disabling StrictHostKeyChecking, the experi-
ment script will be unable to ssh to new hosts in the
background, since user input would be required to con-
tinue connecting to a new host.

• Nothing needs to be installed on the benchmark in-
stances!

Optional: other DORAM constructions. In this section,
we briefly comment on the procedure we took to install and
set-up other DORAM constructions.

• DuORAM: We benchmark DuORAM via their well docu-
mented dockerization.Detailed information can be found
in their README.

• 3PC-ORAM: We benchmarked 3PC-ORAM via the
convenient dockerization graciously provided by the
DuORAM team. Again, details can be found in the
README.

• Sqrt ORAM, Circuit ORAM, fss-FLORAM, cprg-
FLORAM: We benchmark Sqrt ORAM, Circuit ORAM,
fss-FLORAM, and cprg-FLORAM via Doerner and
shelats’ original code. Due to a reliance on the somewhat
aged obliv-c framework, we ran into some difficulties
running their code. We try to give some helpful tips
here (note: some of this steps may be redundant or
incomplete – we simply note here what worked for us):

– We started two Ubuntu 18.04.6 EC2 instances in
a cluster placement group, one to be the “server”
and the other to be the “client”

– To install the needed old version of ocaml,
run sudo apt install opam, opam switch
create 4.06.0, and eval $(opam env
--switch=4.06.0)

– To install the needed old version gcc, sudo apt
install -y gcc-9 g++-9 cpp-9

– Then follow the obliv-c README to install.

– Then follow the FLORAM README to install

– PFEDORAM: PFEDORAM is proprietary, and
we obtained benchmarks directly from Bingsheng
Zhang, one of the authors of the paper.
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A.3.2 Basic Test

Single server. ./benchmark_doram_locally.sh
100us 10Gbit -prf-circuit-filename
LowMC_reuse_wires.txt
-build-bottom-level-at-startup false
-num-query-tests 10 -log-address-space
20 -num-levels 3 -log-amp-factor 4
-num-threads 4

Multi server. ./run_3_server_experiment.sh
../my_key.pem -prf-circuit-filename
LowMC_reuse_wires.txt
-build-bottom-level-at-startup false
-num-query-tests 10 -log-address-space
20 -num-levels 3 -log-amp-factor 4
-num-threads 20

Optional: other DORAM constructions. Other
DORAMs contain simple tests in their respective
READMEs

A.4 Evaluation workflow

A.4.1 Major Claims

The main claim of our paper is the performance of Gi-
gaDORAM that can be seen in various network settings
/ configurations. These can be found in Figure 5, Figure
6, Table 1, and Table 2.

A.4.2 Experiments

Below we provide descriptions of how to execute our
main results. In the repositories README we also pro-
vide descriptions on how to run any set of parameters in
both the single server and multiserver setting

(E1): Reproducing Figures 6a and 6b, 10 human-
minutes + 1.5 compute hour + 20 compute threads
and 20 GB RAM. These tests reproduce the per-
formance of GigaDORAM in simulated varying
latency and varying bandwidth settings. :
Preparation: noted in Section A.3.
Execution: The single server experiments are run
by ./single_server_experiments.py which
prints usage information with the -h flag.
To reproduce the tests used to generate the GigaDO-
RAM data in Figures 6a and 6b in the paper, run
./single_server_experiments.py Figure6a
./single_server_experiments.py Figure6b
We ran these tests on a machine with 96 CPUs and
saw best results with 20 threads per party (which
is the default). If you are running on a smaller
machine, you should use a num_threads which is

less than 1/3 the number of CPUs available, for
example:
$ ./single_server_experiments.py Figure6a

--threads 2
$ ./single_server_experiments.py Figure6b

--threads 2
Results: The concatenated output from
all experiments will be written to
single_server_results/doram_timing_report${i}.txt
for party i in 1, 2, 3.
These files are are human readable and formatted
in blocks as, for example:
DORAM Parameters
Number of queries: 1000
Build bottom level at startup: 0
Log address space size: 16
Data block size (bits): 64
Log linear level size: 8
Log amp factor: 4
Num levels: 3
PRF circuit file: LowMC_reuse_wires.txt
Num threads: 1

Timing Breakdown
Total time including builds: 2.89467e+06 us
Time spent in queries: 2.83478e+06 us
Time spent in query PRF eval: 1.21668e+06 us
Time spent querying linear level: 751191 us
Time spent in build PRF eval: 8775 us
Time spent in batcher sorting: 0 us
Time spent building bottom level: 0 us
Time spent building other levels: 20811 us

SUMMARY
Total time including builds: 2.89467e+06 us
Total number of bytes sent: 2.7828e+07
Queries/sec: 345.462
The SUMMARY section is the most important to look
at, as it gives the total time and communication to
run the test.
WARNING: single_server_experiments.py runs
sudo tc qdisc replace dev lo root to sim-
ulate network latency and bandwidth limits on the
loopback interface, which can slow down other
programs running on the machine. We recommend
running on a dedicated VM. If anything strange
happens, the network changes can be undone with
sudo tc qdisc del dev lo root

(E2): Multi server tests, reproducing Figure 5, Table 1,
and Table 2, 10 human-minutes + 1 compute-hour
+ 3 strong, running AWS EC2 machines
Preparation: Noted in Section A.3.
Execution: ./multi_server_experiments.py
-h for syntax help. Run the following experiments
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one by one, checking the results output after each
$ ./multi_server_experiments.py Figure5

../my_pem_file.pem
$ ./multi_server_experiments.py Table1

../my_pem_file.pem
$ ./multi_server_experiments.py Table2

../my_pem_file.pem
$ ./multi_server_experiments.py Figure8

../my_pem_file.pem
Results: The concatenated output from
all experiments will be written to
multi_server_results/doram_timing
_report${i}.txt for party i in 1, 2, 3, fol-
lowing the same format as the single server
results.

(Optional E3): reproducing the results of other DO-
RAMs [1.5 human-hours (including setup) + 4
compute-hour + several AWS EC2 instances (num-
ber pending on how many tests are ran in paral-
lel)]: benchmark the performance (in queries/sec)
of other DORAM constructions.
Preparation: Noted in Section A.3.
Execution: In this section, we briefly comment
on the procedure we took to benchmark other DO-
RAM constructions. We describe below which
command For the settings we tested each construc-
tion in and additional discussions, please see Sec-
tion 9, Figures 5 and 6, and Appendix E of the
paper. As each figure describes the benchmark set-
ting, here we only describe the code commands we
used.

– DuORAM: For varying numops and
size, we summed ./run_experiment
read size numops preproc 3P and
./run_experiment readwrite size
numops online 3P to account for both the
online and offline costs of protocol.

– 3PC-ORAM:Using ./run-experiment
size numops we benchmarked 3PC-
ORAM’s reads, which are no more expensive
than writes.

– Sqrt ORAM, Circuit ORAM, fss-FLORAM,
cprg-FLORAM: On the “server” EC2
machine call ./bench_oram_write
-e ADDRESS_SPACE_SIZE -o TYPE -i
1024 and then on the “client” EC2
machine call ./bench_oram_write
-e ADDRESS_SPACE_SIZE -o TYPE -i
1024 -c ADDRESS_OF_SERVER where
ADDRESS_SPACE_SIZE is N, not log_N, TYPE
can be either {sqrt, circuit, fssl,
fssl_cprg}, -i marks the number of writes
to be done, and ADDRESS_OF_SERVER is the
IP address of server (make sure AWS security

group is set to allow for TCP traffic).
– PFEDORAM: PFEDORAM is proprietary,

and we obtained benchmarks directly from
Bingsheng Zhang, one of the authors of the
paper.

Results: Each of these constructions respective
READMEs explains the output format.

A.5 Notes on Reusability

We believe the GigaDORAM implementation and bench-
marks we provide reflect the performance of GigaDO-
RAM accurately in various network settings. However,
our implementation is not production ready. For instance,
it may contain timing attacks and lacks several important
optimizations.

It is possible to execute GigaDORAM on data other than
the (dummy) benchmark data, but at this stage that might
require some slight understanding of our codebase.

To start, we suggest https://github.com/
jacob14916/GigaDORAM-USENIX23-Artifact/
blob/main/doram/doram_array.h in our repository
which, via several subclasses, implements the GigaDO-
RAM protocol. For black-box usage, other than the
constructor, the only function from this class that that
should be called publicly is read_and_write. Unfor-
tunately, because GigaDORAM is a multi-machine,
multi-threaded program, running GigaDORAM is
not as simple as calling the constructor and then the
method. For an example we suggest https://github.
com/jacob14916/GigaDORAM-USENIX23-Artifact/
blob/main/test/doram/doram.cpp which shows
initialization the resources (e.g. Psuedorandom func-
tion seeds) necessary for executing GigaDORAM,
proceeds to construct a GigaDORAM object, and then
calls read_and_write on it repeatedly. To see how
doram.cpp gets called, we suggest https://github.
com/jacob14916/GigaDORAM-USENIX23-Artifact/
blob/main/run_3_server_experiment.sh which,
for example, is called by https://github.com/
jacob14916/GigaDORAM-USENIX23-Artifact/
blob/main/multi_server_experiments.py.

A.6 Version

Based on the LaTeX template for Artifact Evalua-
tion V20220926. Submission, reviewing and badging
methodology followed for the evaluation of this artifact
can be found at https://secartifacts.github.io/
usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

Our source code for our two new, high-throughput PIR
schemes, SimplePIR and DoublePIR, is available under
the MIT open-source license at https://github.com/
ahenzinger/simplepir. SimplePIR and DoublePIR, in-
cluding their extensions to support databases with long
records and batch queries (cf. Sections 4.3 and 5.2), are im-
plemented in roughly 1,400 lines of Go code, along with 200
lines of C (for the performance-critical matrix-multiplication
routines). For each PIR scheme, the code implements the
Setup, Query, Answer, and Recover routines. Our repository
additionally contains a suite of correctness tests and perfor-
mance benchmarks. To obtain our performance numbers, we
run our benchmarks on an AWS EC2 c5n.metal instance.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The source code for SimplePIR and DoublePIR is available
at https://github.com/ahenzinger/simplepir/tree/
438b4590aceedf76c7588b03125dfc0db39e361f.

A.2.3 Hardware dependencies

We run our evaluation on an AWS EC2 c5n.metal instance
running Ubuntu 22.04. However, it is possible to run the
SimplePIR and DoublePIR code on any machine with an
installation of Go and of a C compiler (see Section A.2.4),
though this might require amending the command-line flags
passed to the C compiler.

A.2.4 Software dependencies

Running SimplePIR and DoublePIR requires installations of
Go and GCC. We additionally require Python, NumPy, and
Matplotlib to generate our evaluation plots.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

Instructions for installing the required dependencies are
given in the Setup section of https://github.com/
ahenzinger/simplepir/blob/main/README.md. Users
should install Go (tested with version 1.19.1) and GCC (tested
with version 11.2.0) to run SimplePIR and DoublePIR. Users
should additionally install Python (tested with Python3),
NumPy, and Matplotlib to generate our evaluation plots.

A.3.2 Basic Test

To run all SimplePIR and DoublePIR correctness tests, users
should run the command

go test

in the simplepir/pir directory. The suite of correctness
tests runs SimplePIR and DoublePIR on random databases of
fixed dimensions and checks that the PIR outputs are correct.
The test suite should take roughly 2.5 minutes to run.

This command should produce logging output, followed
by this message to indicate that all tests have passed:

PASS
ok github.com/ahenzinger/simplepir/pir
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A.4 Evaluation workflow
A.4.1 Major Claims

Our paper makes the following claims:
(C1): SimplePIR performance. On a database 1 GB in size

containing 233 1-bit entries, SimplePIR has:

1. a throughput of roughly 10 GB/s/core when run-
ning on an AWS EC2 c5n.metal instance,

2. 121 MB of offline download, and

3. 242 KB of online communication.

This is shown by experiment (E1), whose results are
displayed in Table 8 in the body of our paper.

(C2): DoublePIR performance. On a database 1 GB in size
containing 233 1-bit entries, DoublePIR has:

1. a throughput of roughly 7.4 GB/s/core when run-
ning on an AWS EC2 c5n.metal instance,

2. 16 MB of offline download, and

3. 345 KB of online communication.

This is shown by experiment (E2), whose results are
displayed in Table 8 in the body of our paper.

(C3): Throughput with batching. SimplePIR and Dou-
blePIR’s throughput increases when the client makes
batches of many queries at once. This is shown by ex-
periment (E3), whose results are displayed in Figure 9
in the body of our paper.

(C4): Application evaluation. On a database 8 GB in size
containing 236 1-bit entries, DoublePIR has:

1. a throughput of roughly 7 GB/s/core when running
on an AWS EC2 c5n.metal instance,

2. 16 MB of offline download, and

3. 756 KB of online communication.

This is shown by experiment (E4), whose results are
reported in Section 8.2 in the body of our paper.

A.4.2 Experiments

(E1): SimplePIR performance [5 compute-minutes]: This
experiment benchmarks (1) the communication and (2)
the throughput of SimplePIR, when running on a 1 GB
database consisting of 233 1-bit entries.
How to: Run the command

LOG_N=33 D=1 go test -bench SimplePirSingle
-timeout 0 -run=^$↪→

from the simplepir/pir directory. The command will
run SimplePIR 5 times on a database consisting of 233

1-bit entries, and print logging information including the
communication and the per-core throughput of each run.
Results: For each run of SimplePIR, this experiment
prints logging information that look as follows:

• Offline download: 123572 KB, indicating that
SimplePIR’s offline download consists of roughly
121 MB.

• Online upload: 120.000000 KB, indicating
that SimplePIR’s offline upload consists of 120 KB.

• Rate: 10177.282855 MB/s, indicating that Sim-
plePIR’s throughput was 10,177 MB/s/core.

• Online download: 120.000000 KB, indicating
that SimplePIR’s offline download consists of 120
KB.

(E2): DoublePIR performance [5 compute-minutes]: This
experiment benchmarks (1) the communication and (2)
the throughput of DoublePIR, when running on a 1 GB
database consisting of 233 1-bit entries.
How to: Run the command
LOG_N=33 D=1 go test -bench DoublePirSingle

-timeout 0 -run=^$↪→

from the simplepir/pir directory. The command will
run DoublePIR 5 times on a database consisting of 233

1-bit entries, and print logging information including the
communication and the per-core throughput of each run.
The logging results are interpreted the same way as in
(E1).

(E3): Throughput with batching [1.5h compute-hours]:
This experiment benchmarks SimplePIR’s and Dou-
blePIR’s effective, per-core throughput, when run on
batches of queries of increasing size, on a 1 GB database
consisting of 233 1-bit entries.
How to: Run the command
go test -bench PirBatchLarge -timeout 0

-run=^$↪→

from the simplepir/pir directory. The command will
run both SimplePIR and DoublePIR 5 times on a
database consisting of 233 1-bit entries, with batch sizes
ranging from 1 to 1024, and print logging information
including the communication and the per-core through-
put of each run. The logging results are interpreted the
same way as in (E1).
Results: This command produces the output files
simple-batch.log and double-batch.log in the
simplepir/pir directory. From the simplepir/eval
directory, run the command
python3 plot.py -p batch_tput -f

../pir/simple-batch.log

../pir/double-batch.log -n SimplePIR
DoublePIR

↪→

↪→

↪→

This command plots SimplePIR and Dou-
blePIR’s effective, per-core throughput for vari-
ous batch sizes, and writes this plot to the file
throughput_with_batching.pdf. This command
was used to generate Figure 9.

(E4): Application evaluation [40 compute-minutes]: This
experiment benchmarks (1) the communication and (2)
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the per-core throughput of DoublePIR, when running on
an 8 GB database consisting of 236 1-bit entries.
How to: Run the command
LOG_N=36 D=1 go test -bench DoublePirSingle

-timeout 0 -run=^$↪→

from the simplepir/pir directory. The command will
run DoublePIR 5 times on a database consisting of 236

1-bit entries, and print logging information including the
communication and the per-core throughput of each run.
The logging results are interpreted the same way as in
(E1).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

This artifact contains DUORAM’s source code and the nec-
essary scripts to run the experiments and reproduce the ma-
jor claims of our paper, DUORAM: A Bandwidth-Efficient
Distributed ORAM for 2- and 3-Party Computation. Our ma-
jor claims are reflected in Figures 7, 8, 9, and 10 in Section
6.2 of our paper. Along with the source code of DUORAM
and the DUORAM replication scripts, the artifact also pro-
vides the scripts to replicate the experiments for Doerner
and shelat’s FLORAM and Jarackei and Wei’s 3-party Cir-
cuit ORAM, the two implementations the paper compares
DUORAM to. The experiments are run in Docker containers
under different simulated network conditions. We simulate
these conditions by using tc qdisc add dev eth0 root
netem delay Xms rate Ymbit, to set the latency to Xms,
and restrict the bandwidth capacity to YMbit/s. In our experi-
ments, standard network conditions refer to a latency of 30 ms
and a bandwidth capacity of 100 Mbit/second. Similarly, colo-
cated network conditions refer to 30 µs of Internet latency and
100 Gbit/s of bandwidth capacity.

A.2 Description & Requirements

A.2.1 How to access

The artifact can be accessed at https://git-crysp.
uwaterloo.ca/avadapal/duoram/src/usenixsec23_
artifact.

To download the artifact:
• git clone
https://git-crysp.uwaterloo.ca/avadapal/duoram

• cd duoram
• git checkout usenixsec23_artifact

A.2.2 Hardware dependencies

The hardware dependencies to run our artifact are as follows:

• A system with an x86 processor that supports AVX2 in-
structions. This instruction set was released in 2013, so
most recent processors should be fine. We have tested
it on both Intel and AMD processors. On Linux, grep
avx2 /proc/cpuinfo to see if your CPU can be used
(if the output shows you CPU flags, then it can be; if the
output is empty, it cannot).

• At least 16 GB of available RAM. To run the optional
“large” tests, you will require at least 660 GB of available
RAM (an atypical machine, to be sure, which is why the
large tests are optional and not essential to our major
claims).

A.2.3 Software dependencies

The Software dependencies to run our artifact are a ba-
sic Linux installation, with git and docker installed. We
have tested it on Ubuntu 20.04 and Ubuntu 22.04, with apt
install git docker.io.

A.3 Setup
Detailed setup instructions are outlined in the README.md file
in the artifact. We briefly summarize it here.

A.3.1 Installation

The following will download and build the dockers for the
DUORAM, FLORAM, and Circuit ORAM systems (approxi-
mate compute time: 15 minutes).
cd repro && ./build-all-dockers

A.3.2 Basic test

A simple “kick the tires” test can be run using
./repro-all-dockers test from the repro directory (ap-
proximate compute time: 1 minute). The expected output
looks as follows:
2PDuoramOnln readwrite 16 1us 100gbit 2
0.86099545 s
2PDuoramOnln readwrite 16 1us 100gbit 2

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium    229

https://git-crysp.uwaterloo.ca/avadapal/duoram/src/usenixsec23_artifact
https://git-crysp.uwaterloo.ca/avadapal/duoram/src/usenixsec23_artifact
https://git-crysp.uwaterloo.ca/avadapal/duoram/src/usenixsec23_artifact


22.046875 KiB
2PDuoramTotl readwrite 16 1us 100gbit 2
1.48480395 s
2PDuoramTotl readwrite 16 1us 100gbit 2
177.7138671875 KiB
3PDuoramOnln readwrite 16 1us 100gbit 2
0.012897 s
3PDuoramOnln readwrite 16 1us 100gbit 2
0.104166666666667 KiB
3PDuoramTotl readwrite 16 1us 100gbit 2
0.225875 s
3PDuoramTotl readwrite 16 1us 100gbit 2
12.7916666666667 KiB

Floram read 16 1us 100gbit 2 0.879635 s
Floram read 16 1us 100gbit 2 3837.724609375 KiB

CircuitORAMOnln read 16 1us 100gbit 2 0.313 s
CircuitORAMOnln read 16 1us 100gbit 2 710.625
KiB
CircuitORAMTotl read 16 1us 100gbit 2 0.753 s
CircuitORAMTotl read 16 1us 100gbit 2 4957 KiB

What you see here are the four systems (2-party DUORAM,
3-party DUORAM, 2-party FLORAM, 3-party Circuit ORAM),
with all except FLORAM showing both the online phase and
the total of the preprocessing and the online phase. (FLORAM
does not have a separate preprocessing phase.) Each of those
seven system/phase combinations shows the time taken for
the test run, as well as the average bandwidth used per party.

The output fields are:
• system and phase
• mode (reads, writes, or interleaved reads and writes)
• log2 of the number of 64-bit words in the ORAM
• one-way latency between the parties (specifying "1us"

really means not to add artificial latency, so you end up
with the natural latency between dockers, which turns
out to be 30 µs)

• bandwidth between the parties
• number of operations (number of reads or number of

writes; interleaved reads and writes do this many reads
interleaved with the same number of writes)

• the time in seconds or the bandwidth used in KiB, as
indicated

You should see the same set of 14 lines as shown above,
though the exact times of course will vary according to your
hardware. The bandwidths you see should match the above,
however.

If you run the test more than once, you will see means and
stddevs of all of your runs.

A.4 Evaluation workflow
A.4.1 Major Claims

Our primary claim is this:

(C1): Under realistic Internet networking conditions, DUO-
RAM outperforms FLORAM (which itself outperforms
Circuit ORAM) over a range of ORAM sizes, because
it is primarily CPU-bound, while the other schemes are
primarily network-bound. Our observation is that it is
easier to deploy machines with more local computational
power and memory than it is to increase bandwidth or
reduce latency between the multiple independent parties
running the protocol.

We support this primary claim with the following major
claims:
(C2): DUORAM’s wall-clock performance changes much less

as network conditions change than does FLORAM’s.
(C3): DUORAM uses much less bandwidth than FLORAM or

Circuit ORAM, and 3P-DUORAM’s online bandwidth
usage is in fact independent of the ORAM size.

(C4): Even in the less realistic setting where the independent
parties running the protocols are colocated, DUORAM’s
wall-clock performance is better than FLORAM’s and
Circuit ORAM’s, but for a smaller range of ORAM sizes.

(C5): 2P-DUORAM’s online performance improves notice-
ably with increased CPU core availability, unlike FLO-
RAM. (Under our standard network conditions, 3P-
DUORAM’s online wall-clock time is much smaller than
that of FLORAM, regardless of the number of cores.)

A.4.2 Experiments

We provide three sets of experiments: the “small”, the “large”,
and the “scaling” experiments.
The “small” experiments. These experiments support most
of our major claims.
(E1): Compare the wall-clock time of 2P-DUORAM, 3P-

DUORAM, and FLORAM to do 128 interleaved opera-
tions under standard network conditions while varying
the ORAM size from 216 to 226 (64-bit items); the re-
sults of this experiment appear in Figure 7(a). Supports
claim (C1).

(E2): Compare the wall-clock time of 2P-DUORAM, 3P-
DUORAM, and FLORAM to do 128 interleaved opera-
tions for a 220-sized ORAM and 30 ms latency, while
varying the bandwidth from 10 to 110 Mbit/s; the results
of this experiment appear in Figure 7(b). Supports claim
(C2).

(E3): Compare the wall-clock time of 2P-DUORAM, 3P-
DUORAM, and FLORAM to do 128 interleaved opera-
tions for a 220-sized ORAM and 100 Mbit/s bandwidth,
while varying the latency from 10 to 70 ms; the results
of this experiment appear in Figure 7(c). Supports claim
(C2).

(E4): Compare the bandwidth used by 2P-DUORAM, 3P-
DUORAM, and FLORAM to do 128 operations (read,
write, or interleaved reads and writes) under standard
network conditions while varying the ORAM size from
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216 to 226; the results of this experiment appear in Fig-
ures 8(a), 8(b), and 8(c). Supports claim (C3).

(E5): Compare the wall-clock time of 3P-DUORAM, FLO-
RAM, and Circuit ORAM to do 128 read operations under
standard network conditions while varying the ORAM
size from 216 to 226; the results of this experiment appear
in Figure 9(a). Supports claim (C1).

(E6): Compare the wall-clock time of 3P-DUORAM, FLO-
RAM, and Circuit ORAM to do 128 read operations under
colocated network conditions while varying the ORAM
size from 216 to 226; the results of this experiment appear
in Figure 9(b). Supports claim (C4).

(E7): Compare the bandwidth used by 3P-DUORAM, FLO-
RAM, and Circuit ORAM to do 128 read operations while
varying the ORAM size from 216 to 226; the results of
this experiment appear in Figure 9(c). Supports claim
(C3).

To run all seven small experiments:
Preparation: cd repro

Execution: ./repro-all-dockers small numops
Here, numops is the number of read, write, or interleaved
operations to run in each experiment; the default of 128 is
what we used in the paper. Using 128 will require about 10
hours of compute time.

Results: The above command will output the data (up
to ORAM sizes of 226) for Figures 7(a), 7(b), 7(c), 8(a),
8(b), 8(c), 9(a), 9(b), and 9(c), clearly labeled and sepa-
rated into the data for each line in each subfigure. Running
repro-all-dockers multiple times will accumulate data,
and means and standard deviations will be output for all data
points when more than one run has been completed. From this
data, one should be able to verify our major claims (though
depending on your hardware, the exact numbers will surely
vary).
The optional “large” experiments. These experiments do
not directly support our major claims, but may optionally be
run in case you are curious to see what happens at larger
ORAM sizes. These experiments require at least 660 GB of
available RAM, which is why they are optional.
(E8): Compare the wall-clock time of 3P-DUORAM, FLO-

RAM, and Circuit ORAM to do 128 read operations under
standard network conditions while varying the ORAM
size from 228 to 232; the results of this experiment appear
in the rightmost three data points of Figure 9(a).

(E9): Compare the wall-clock time of 3P-DUORAM, FLO-
RAM, and Circuit ORAM to do 128 read operations under
colocated network conditions while varying the ORAM
size from 228 to 232; the results of this experiment appear
in the rightmost three data points of Figure 9(b).

(E10): Compare the bandwidth used by 3P-DUORAM, FLO-
RAM, and Circuit ORAM to do 128 read operations while
varying the ORAM size from 228 to 232; the results of
this experiment appear in the rightmost three data points
of Figure 9(c).

To run all three large experiments:
Preparation: cd repro
Execution: ./repro-all-dockers large numops

Again, numops is the number of read operations to run in
each experiment; the default of 128 is what we used in the
paper. Using 128 will require about 40 hours of compute
time. Lowering numops will reduce the time, but not the
requirement for 660 GB of available RAM.

Results: The above command will output the data (for
ORAM sizes from 228 to 232) for Figures 9(a), 9(b), and 9(c),
similar to the small experiments above.
The “scaling” experiment. This experiment varies the num-
ber of cores:
(E11): Compare the online wall-clock time of 2P-DUORAM,

3P-DUORAM, and FLORAM to do 128 read operations
under standard network conditions while varying the
number of available cores for each party from 4 to 32.
The results of this experiment for ORAM sizes of 216,
220, and 226 appear in Figures 10(a), 10(b), and 10(c)
respectively. Supports claim (C5).

To run the scaling experiment:
Preparation: Reproducing Figure 10 (the effect of scaling

the number of cores) is slightly more work because it depends
more on your hardware configuration. First, cd repro. The
top of the script repro-scaling in that directory has instruc-
tions. Set the variables (in the script, not environment vari-
ables) BASE_DUORAM_NUMA_P0 and BASE_DUORAM_NUMA_P1
to numactl commands (examples are given in the comments)
to divide your system into two partitions as separate as pos-
sible: separate NUMA nodes if you have them, otherwise
separate CPUs if you have them, otherwise separate cores. If
each of your two partitions has n cores, ensure that the ele-
ments of CORESLIST do not exceed n (of course, you cannot
replicate those data points in that case, but the trend should
still be apparent). The paper uses values of n up to 32 cores
in each partition, so 64 cores in total (P2 can reuse the cores
of P0 since P2’s primary work is done after P0 and P1’s main
work has finished).

Execution: ./repro-scaling numops, where
numops as before defaults to 128. Using 128 will
require about 4 to 5 hours of compute time.

Results: The output will be similar to that described above
with clearly labelled data for Figures 10(a), 10(b), and 10(c)
(with an additional column for core count).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this Artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
The artifact is the source code of 3DSacn. A tool to detect
model clones. In particular, it can extract 3D models from
Android games, and compute a hash value for a 3D model
which can be used to identify the clone ones.

A.2 Description & Requirements
Here we list the requirements to run it on Ubuntu 22.04.

• Wine

• Wine-mono

• python3

• SciPy

A.2.1 Security, privacy, and ethical concerns

It would extract the raw data for the 3D models in Android
games. Those models are owned by the developer and please
don’t distribute them.

A.2.2 How to access

We are actively maintaining the code. We will make sure the
latest version on the master branch is stable.

https://github.com/OSUSecLab/3DScan/releases/tag/ae

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

• Wine

• Wine-mono

• python3

• SciPy

A.2.5 Benchmarks

None.

A.3 Set-up
Use the standard way to install python3 and SciPy on Ubuntu
22.04.

A.3.1 Installation

Clone the repo.

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

These artifacts are meant to compliment the paper ENIGMAP:
External-Memory Oblivious Map for Secure Enclaves. Our
goal with the artifacts is to provide the motivation on why
external memory algorithms are relevant for enclaves, our
opensource implementation of ENIGMAP, experiments that
allow to easily replicate the results in our paper, and details
explanation on how the security goals are achieved by our
implementation code. We additionally provide the signal and
signal-ht code we used to benchmark signal original code. We
provide all our experiment code as single line commands to
make results simpler to reproduce, and the commands should
be simple to modify to try new sets of experimental param-
eters. We also provide a section explaining at a high level
how our implementation works. Our main goal with the ex-
periments is not to reproduce the exact same numbers as we
have in our graphs, as it will vary greatly with hardware used,
but to show that the speedup against signal, as well as the
assymptotic behavior is on the order of magnitude shown in
our paper.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Tag usenix-artifacts in this repo: https://github.com/
odslib/EnigMap/tree/usenix-artifacts

Listing 1: download artifacts

g i t c l o n e \
h t t p s : / / g i t h u b . com / o d s l i b / EnigMap . g i t \
ARTIFACTS60
cd ARTIFACTS60 /
g i t c h e c k o u t usen ix − a r t i f a c t s

A.2.3 Hardware dependencies

In terms of infrastructure we require 3 types of machines to
reproduce our code. Machine A is used mostly for benchmark-
ing SGX, machine B is used to generate a single graph in our
experiments, machine C is where most of our experiments
were run.
(Machine A) - CPU with SGXv1, configured with at least

128MB of EPC and at least 16GB of RAM. In our exper-
iments we used an intel E2200 processor.

(Machine B) - CPU with SGXv2, configured with 4GB EPC,
at least 8GB RAM and an SSD available for storage. This
is used mostly for benchmarking ocalls.

(Machine C) - CPU with SGXv2, configured with 192GB
EPC, at least 256GB RAM and and SSD available for
storage. This is used for most of the experiments. We
have a server available with 512GB max EPC and 1TB
RAM that can be used to reproduce the experiments for
artifact evaluation. Please contact us if access is needed
(send us a(n annonymized) public key and we will gen-
erate a user in our server)

A.2.4 Software dependencies

Our artifacts are meant to be run under docker, we provide
the image use to build and run them under tools/docker/build-
DockerImage.sh . Alternatively, we also provide a script to
setup a vanila ubuntu 22.04 install (tools/docker/setup_sgx.sh)
to run the artifacts.

A.2.5 Benchmarks

We ran baseline benchmarks on private contact discovery
using signal and signal-ht (signal-icelake) code. We included
them in our repo.

A.3 Set-up
A.3.1 Installation

First, build the docker image:

Listing 2: build docker images

# ! / b i n / bash
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cd ARTIFACTS60 /
cd t o o l s / do c ke r /
sh bu i ldDocke r Image . sh

Second, for every test, run docker at the top level of the
repo, mounting the ssd for storage and with access to SGX
(running with priviledged works for this):

Listing 3: start test environment
# ! / b i n / bash
cd ARTIFACTS60 /
d oc ke r run − i t −−rm −m512G \
−v $PWD : / b u i l d e r −v / mnt / s sd0 : / mnt / s sd0 \
−− p r i v i l e g e d xtrm0 / c p p b u i l d e r
source / s t a r t s g x e n v . sh

We expect every experiment to be run inside this docker envi-
roment, additionally some experiments modify configuration
files, we assume for every experiment that the configuration
files start as they are in the artifact code. We note that some
modifications to the config might require deleting the build
directory and running cmake again.

A.3.2 Basic Test

We include 3 tests here.
(T1) Make sure the code compiles:

Listing 4: compile the code
cmake −B b u i l d −G N i n j a
n i n j a −C b u i l d

(T2) Make sure the tests run:

Listing 5: run unit tests on the code
n i n j a −C b u i l d t e s t

(T3) Make sure the test enclave compiles and runs in both
debug and release mode:

Listing 6: compile and run a test enclave
cd a p p l i c a t i o n s / benchmark_sgx
make c l e a n
make
. / benchmark_sgx . e l f
make c l e a n
SGX_MODE=HW SGX_PRERELEASE=1 make
. / benchmark_sgx . e l f

A.4 Evaluation workflow
[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] This section should include
all the operational steps and experiments which must be per-
formed to evaluate if your your artifact is functional and to
validate your paper’s key results and claims. For that pur-
pose, we ask you to use the two following subsections and
cross-reference the items therein as explained next.

A.4.1 Major Claims

[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] Enumerate here the major
claims (Cx) made in your paper. Follows an example:

(C1): EnigMap achieves assymptotically speedup on point
and batched search over signal’s implementation, having
speedups at any batch size at a realistic database size of
256 million entries. Our main claim is that switching
to EnigMap always provides speedup over signal’s orig-
inal implementation. Additionally, we also claim that
for external memory, EnigMap’s implementation is as-
symptotically as described in table 1 in our paper, and
concretely efficient.
Experiment (E2) shows the speedup for the database
in-RAM case, experiment (E3) shows this claim for the
disk eviction case, whose results are ilustrated for SGX1
and SGX2 respectively in figures 3 and 4 in our paper.
These two experiments prove the C1 claim.
Further more, we show a detailed view of the costs of
external memory and how our optimizations affect them
in experiment (E4), reflected in figures 5 and 6 in our
paper.
We also show the cost of insertion in experiment, re-
flected in figure 8 in our paper.

(C2): There is an inherent cost to using EWB that can be re-
duced with the OCALL approach described. EnigMap’s
ORAM tree and the OCALL eviction approach provide
a way to implicitly store the nonces of evicted pages
without any computational overhead compared to EWB,
thus saving the space of the evicted nonce table for more
EPC pages. We show the inherent costs of EWB and
OCALL in experiment (E1), reflected in figure 1 in our
paper. We also analyse the effect the of page size for
search in experiment (E7) and conclude that roughly 4k
is the optimal size for ORAM, reflected in figure 9 in
our paper.

(C3): Our faster initialization algorithm is inherently faster
than the naive approach of doing sequential insertions.
Experiment (E5), reflected in figure 9 in our paper shows
these results.

(C4): Our implementation of OBST::Get, OBST::Insert are
oblivious. We don’t have any experiment for this, but
we encorage to look at both the code and the generated
code for otree and concluding that all branches inside of
otree.hpp::OBST::Get and otree.hpp::OBST::Insert do
not depend on private data.

A.4.2 Experiments

[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] Link explicitly the description
of your experiments to the items you have provided in the
previous subsection about Major Claims. Please provide your
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estimates of human- and compute-time for each of the listed
experiments (using the suggested hardware/software configu-
ration above). Follows an example: Most of our experiments
are run accross exponentially increasing database sizes from a
few bytes to 1TB in size. We include both the time it takes to
run the experiments to reach the main conclusions above, as
well as the time to fully reproduce the graphs in our paper. We
also include the machines required to run each experiment.
(E1.1): [Benchmark SGX] [20 human minutes + 15 compute-

minutes] [Machine A or B or C] The main goal of this
experiment is to show the costs of ocall and and EWB
in our paper. We defer computing the cost of EWB to
experiment E1.2, altough we analyse it here for clarity.
How to: To run this experiment, compile and run ap-
plications/benchmark_sgx . These will show different
results based on the processor being used. For SGX1
please only use machine A, for SGX2 use machine B or
C. Our graphs in the paper used machine B.
Preparation: Pick a machine, clone the repo and go to
the folder applications/benchmark_sgx.
Execution: Compile and run the code:

Listing 7: compile and run a test enclave
cd a p p l i c a t i o n s / benchmark_sgx
make c l e a n
SGX_MODE=HW SGX_PRERELEASE=1 make
. / benchmark . e l f > o u t p u t . t x t

Copy paste the values from the benchmark at 4096
bytes to the definition of the data_v2 array at tools/-
plot_intrinsics_v2.py. The value for EWB should come
from (E1.2). Also update the iops based on the specifi-
cations of the SSD being used. Run the script, it should
generate a png file with figura 1a.
We generated figure 1b in excel by varying the number
of bytes in the encryption and ecall inside of application-
s/benchmark_sgx/bm.edl.
Results: For the first graph, we expect to see results
similar to figure 1a in our paper. For the excel graph,
similar to figure 1b.

(E1.2): [Benchmark SGX] [4 human minutes + 20 compute-
minutes] [Machine A or B] The goal of this experiment
is to measure EWB time in a generic SGX machine.
It envolves picking an EPC larger than the maximum
EPC but smaller than the total RAM, and doing sequen-
tial reads and writes to force continuos EWB evictions,
and measureing the time based on that (see the function
ecall_bm_ewb)
How to: To run this experiment, compile and run ap-
plications/benchmark_ewb . These will show different
results based on the processor being used. For SGX1
please only use machine A, for SGX2 use machine B.
Our graphs in the paper used machine B.
Preparation: Pick a machine, clone the repo and go to
the folder applications/benchmark_ewb. Adjust the size

of maximum EPC (HeapInitSize and HeapMaxSize) in
Enclave.config.xml to be larger than the maximum EPC
size on the machine, also adjust the variable ARR_SZ
in Enclave/TL/Libcxx.cpp to an appropriate value, so
that evictions will occur. The default parameters are all
already set for Machine B. We run experiments with
different sizes to make it explicit what the page size is.
Execution: Compile and run the code:

Listing 8: compile and run a test enclave

cd a p p l i c a t i o n s / benchmark_ewb
make c l e a n
SGX_MODE=HW SGX_PRERELEASE=1 make
. / benchmark . e l f > o u t p u t . t x t

The output should be the total execution time. Divide
it by ARR_SZ/4096 to get the cost per page to use in
(E1.1).
Results: For the first graph, we expect to see results
similar to figure 1a in our paper. For the excel graph,
similar to figure 1b.

(E2): [Point query search inram] [30 human-minutes +
30/120 compute-minutes] [Machine C]: This experi-
ment computes the cost of point query for a scenario
that doesn’t need to use disk but needs to do ocalls to in
RAM storage. We will explain in here thoroughly how
to configure parameters that are further used in other
experiments. ODS/common/defs.hpp contains most of
the configurable parameters. Take a look at it to see the
definitions used and their meanings, configuring experi-
ments is mostly changing this file, as well as changing
the Enclave.config.xml used by the experiment. This
experiment uses applications/signal.
How to: Go to applications/signal.
Preparation: To run this experiment, con-
figure Enclave.config.xml to match the
EPC size of the machine used, configure
ORAM_SERVER__DIRECTLY_CACHED_LEVELS
to the maximum value that fits within EPC. Addi-
tionally set ORAM_USE_INRAM_SERVER to true.
Additionally set TEST_SELECTOR to 0 (search).
Execution: compile and run the enclave:

Listing 9: compile and run a test enclave

cd a p p l i c a t i o n s / s i g n a l
make c l e a n
SGX_MODE=HW SGX_PRERELEASE=1 make
. / s i g n a l . e l f > o u t p u t . t x t

You can plot the results manually or use tools/scripts/-
plot_search.py
Results: This will plot graphs similar to figure 3 and 4
in the paper, but not the same, as those graphs use E3.

(E3): [Point query search with disk] [15 human-minutes +
30/120 compute-minutes] [Machine C]: This experiment
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computes the cost of point query for a scenario that needs
to use disk via ocalls.
How to: Go to applications/signal.
Preparation: To run this experiment, con-
figure Enclave.config.xml to match the
EPC size of the machine used, configure
ORAM_SERVER__DIRECTLY_CACHED_LEVELS
to the maximum value that fits within EPC. set
ORAM_USE_INRAM_SERVER to false. Set
TEST_SELECTOR to 0 (search).
Execution: compile and run the enclave:

Listing 10: compile and run a test enclave

cd a p p l i c a t i o n s / s i g n a l
make c l e a n
SGX_MODE=HW SGX_PRERELEASE=1 make
. / s i g n a l . e l f > o u t p u t . t x t

You can plot the results manually or use tools/scripts/-
plot_search.py
Results: This will plot graphs similar to figure 3 and 4
in the paper. Results should be similar if the same EPC
size and maximum RAM were used.

(E4): [Cost of insertion] [30 human-minutes + 30/120
compute-minutes] [Machine C]: This shows the cost
of insertion queries.
How to: Go to applications/signal.
Preparation: To run this experiment, con-
figure Enclave.config.xml to match the
EPC size of the machine used, configure
ORAM_SERVER__DIRECTLY_CACHED_LEVELS
to the maximum value that fits within EPC. Addi-
tionally set ORAM_USE_INRAM_SERVER to true.
Additionally set TEST_SELECTOR to 1 (insertion).
Execution: Compile and run the enclave:

Listing 11: compile and run a test enclave

cd a p p l i c a t i o n s / s i g n a l
make c l e a n
SGX_MODE=HW SGX_PRERELEASE=1 make
. / s i g n a l . e l f > o u t p u t . t x t

You can plot the results manually or use tools/scripts/-
plot_insertion.py
The results of this experiment are used to compute the
cost in E5 for the naive insertion.
Results: This will plot graphs similar to figure 8 in the
paper.

(E5): [Cost of initialization] [30 human-minutes + 120
compute-minutes/ 24 compute-hours] [Machine C]: This
shows the cost of initialization queries.
How to: Go to applications/signal.
Preparation: To run this experiment, con-
figure Enclave.config.xml to match the
EPC size of the machine used, configure

ORAM_SERVER__DIRECTLY_CACHED_LEVELS
to the maximum value that fits within EPC. Addi-
tionally set ORAM_USE_INRAM_SERVER to true.
Additionally set TEST_SELECTOR to 2 (initialization).
Execution: Compile and run the enclave:

Listing 12: compile and run a test enclave
cd a p p l i c a t i o n s / s i g n a l
make c l e a n
SGX_MODE=HW SGX_PRERELEASE=1 make
. / s i g n a l . e l f > o u t p u t . t x t

You can plot the results manually or use tools/scripts/-
plot_initialization.py
Use the results of E4 to get the costs for naive initial-
ization (cost of 1 insertion * number of elements in the
database)
Results: This will plot graphs similar to figure 7 in
the paper. We can see that the fast initialization has a
speedup over the naive initialization.

(E6): [Optimization breakdown] [45 human-minutes + 20
compute-minutes] [Machine B]: This experiment analy-
ses an execution trace of the code to generate figures 5
and 6.
How to: This uses ods outside of enclave to generate
flame graphs of the execution profile.
Preparation: Edit buildtype.cmake to change the build
type to debug.
Execution: Compile and run the proiling tests:

Listing 13: compile and run a test enclave
rm − r f b u i l d
cmake −B b u i l d −G N i n j a
n i n j a −C b u i l d
. / b u i l d / t e s t s / improv * _none

mv . / q * / f * / f l ame *−chrome . j s o n \
. / q * / f * / improv * _none . j s o n
. / b u i l d / t e s t s / improv * _ p a c k i n g

mv . / q * / f * / f l ame *−chrome . j s o n \
. / q * / f * / improv * _ p a c k i n g . j s o n

. / b u i l d / t e s t s / improv * _ f i l e c a c h e
mv . / q * / f * / f l ame *−chrome . j s o n \

. / q * / f * / improv * _ f i l e c a c h e . j s o n
. / b u i l d / t e s t s / improv * _ b u c k e t c a c h e

mv . / q * / f * / f l ame *−chrome . j s o n \
. / q * / f * / improv * _ b u c k e t c a c h e . j s o n

. / b u i l d / t e s t s / p r o f i l i n g _ t e s t

Open the flamegraphs in chrome and analyse
the total time in each phase. To plot the graphs,
one can use plot_relative_performance.py or
plot_relative_performance_large.py.
With the default config, we get the plot in figure 5. Run
the experiment again with a larger database size (edit
the respective .cpp files for the tests) to get the case for
figure 6.
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Results: This will plot graphs similar to figure 5 and 6
in the paper. We can see the effect of different optimiza-
tions.

(E7): [Optimal page size] [30 human-minutes + 30 compute-
minutes] [Machine B or C]: This experiment is meant to
analyse what is the optimal page size used for insertion.
We used machine B in our experiments to enforce disk
swap at smaller sizes, but this can also be ran on machine
C.
How to: Go to applications/signal.
Preparation: To run this experiment, con-
figure Enclave.config.xml to match the
EPC size of the machine used, configure
ORAM_SERVER__DIRECTLY_CACHED_LEVELS
to the maximum value that fits within EPC. Ad-
ditionally set ORAM_USE_INRAM_SERVER
to true. Additionally set TEST_SELECTOR
to 0 (search). For each experiment, configure
ORAM_SERVER__LEVELS_PER_PACK to dif-
ferent values (1 corresponds to 296B page, 2 to 824B, 3
to 1880B, 4 to 3993B and 5 to 8216 in our plot).
Execution: Compile and run the enclave:

Listing 14: compile and run a test enclave
cd a p p l i c a t i o n s / s i g n a l
make c l e a n
SGX_MODE=HW SGX_PRERELEASE=1 make
. / s i g n a l . e l f > o u t p u t . t x t

You can plot the results manually or use tools/scripts/-
plot_search_pagesize.py
Results: This will plot graphs similar to figure 9 in the
paper, we can see that the optimal page size is 4kb.

In all of the above blocks, please provide indications about
the expected outcome for each of the steps (given the sug-
gested hardware/software configuration above).

A.5 Notes on Reusability
We provide our code as an opensource Oblivious Data Struc-
ture Library project on https://github.com/odslib/
EnigMap. We are actively developing it, both in order to do
further reserach in oblivious algorithms as well as in order
to provide a way for developers to incorporate oblivious al-
gorithms into enclave code. We made our code to be easy
integrable into enclave applications. The example inside the
folder applications/signal is meant to be easily integrable as a
binary search tree or map into any SGX project.

We hope that our artifacts can be used by industry to pro-
vide fast private contact discovery in messaging applications
such as signal. We also hope that the code in EnigMap can be
further improved and serve as baseline for further research
in oblivious algorithms, all the oblivious primitives we devel-
oped in EnigMap can easily be integrated into other enclave
or oblivious algorithms projects.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
The artifact SGXRACER is a controlled data race detection
tool analyzing Intel SGX enclave binary code. It is imple-
mented atop angr binary code analysis tool. SGXRACER
performs static analysis, particularly data flow analysis, to
detect shared variables and lock variables in binary code, and
then use a lockset based algorithm to detect data races. To
evaluate SGXRACER, we have tested four well-known SGX
SDKs and eight widely-used SGX applications. We have
open-sourced SGXRACER on GitHub.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Any discovered 0-day vulnerability should be reported to its
software vendor and vulnerability databases such as NVD.

A.2.2 How to access

SGXRACER can be accessed via the following GitHub repos-
itory: https://github.com/OSUSecLab/SGXRacer.

A.2.3 Hardware dependencies

The suggested hardware configuration is an x86-64 PC with
eight Intel Core i7-7700 processors and 32GB memory or
better.

A.2.4 Software dependencies

SGXRACER was originally developed and tested on Ubuntu
20.04. SGXRACER requires Python 3 environment, including
command line tool python3 and pip3. SGXRACER also
requires Python 3 package angr.

A.2.5 Benchmarks

(B1:) SDK binaries: In our repository, we have provided our
pre-built binary code for four well-known SGX SDKs:
Intel SGX SDK, Microsoft Open Enclave SDK, Apache
Teaclave Rust-SGX SDK, and Fortanix Rust EDP SDK.

(B2:) Application binaries: In our repository, we have also
provided our pre-built binary code for eight widely used
SGX Applications: mbedtls-SGX, intel-sgx-ssl, TaLoS,
LibSEAL, SGX_SQLite, stealthdb, SGXDeep, and hot-
calls.

A.3 Set-up
A.3.1 Installation

(1) Set up an OS environment: Ubuntu 20.04. (2) Install pip3
for Python 3:
sudo apt install python3-pip

(3) Install binary code analysis framework angr:
sudo pip3 install angr

(4) Clone SGXRacer GitHub repository:
git clone https://github.com/OSUSecLab/SGXRacer.git

(5) Read the README.md file for SGXRacer tool description
and usage details.

A.3.2 Basic Test

Run the following command detects the controlled data races
in Intel SGX SDK and will test the basic functionality of all
software components:
python3 sgxrace.py -input \
./enclave_binaries/intel_sgx_sdk/enclave.signed.so \
-output intel_sgx_sdk_results.txt \
-output1 intel_sgx_sdk_results1.txt \
> intel_sgx_sdk_stdout

This command may take minutes to execute. Please ignore
warnings. The command should execute successfully without
any exception. It will output three files:
intel_sgx_sdk_results.txt
intel_sgx_sdk_results1.txt
intel_sgx_sdk_stdout

The content of these files should match our corresponding
same name result files in the folder results/sdk_results.
intel_sgx_sdk_results.txt is detailed detection results.
intel_sgx_sdk_results1.txt is concise version detection
results. intel_sgx_sdk_stdout is detection statistics.
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A.4 Evaluation workflow
A.4.1 Major Claims

(C1:) SGXRACER has been used in detecting controlled data
race vulnerabilities in four well-known SGX SDKs: In-
tel SGX SDK, Microsoft Open Enclave SDK, Apache
Teaclave Rust-SGX SDK, and Fortanix Rust EDP SDK.
This is proven by the experiment (E1) described in Sec-
tion 6 whose results are reported in Table 2 in our paper.

(C2:) SGXRACER has been used in detecting controlled
data race vulnerabilities in eight widely used SGX Appli-
cations: mbedtls-SGX, intel-sgx-ssl, TaLoS, LibSEAL,
SGX_SQLite, stealthdb, SGXDeep, and hot-calls. This
is proven by the experiment (E2) described in Section 6
whose results are reported in Table 3 in our paper.

A.4.2 Experiments

(E1): SGX SDK Data Race Detection [60 human-minutes +
20 compute-hour + 5GB disk]:
How to: Run the commands in README.md file eval-
uation part 1: To detect data races in SGX SDKs.
Results: Each command will generate three files similar
to the ones in basic test:

xxx_sdk_results.txt
xxx_sdk_results1.txt
xxx_sdk_stdout

The content of these files should match our cor-
responding same name result files in the folder
results/sdk_results. xxx_sdk_results.txt is de-
tailed detection results. xxx_sdk_results1.txt is con-
cise version detection results. xxx_sdk_stdout is de-
tection statistics.

Table 2 Variables Part: Please refer to the detection
statistics file xxx_sdk_stdout.
Example: In file intel_sgx_sdk_stdout:

sv_r_count: 317
sv_w_count: 119
sv_rw_count: 6
len(info.gv_reverse_map): 143

sv_r_count is # Shared Var. Access (R). sv_w_count
is # Shared Var. Access (W). sv_rw_count is # Shared
Var. Access (R&W). len(info.gv_reverse_map) is #
Uniq. Shared Var..
Example: In file intel_sgx_sdk_stdout:

mutex_count: 7
spin_count: 53
once_count: 0
unique_locks: 9

mutex_count is # Lock Var. Access (Mutex).
spin_count is # Lock Var. Access (Spinlock).
once_count is # Lock Var. Access (Others).
unique_locks is # Uniq. Lock Var..

Table 2 Lockset and Acquisition History Part:
Please refer to the data race detection statistics file
xxx_sdk_stdout.
Example: In file intel_sgx_sdk_stdout:
max_lockset_size: 2
min_lockset_size: 0
average_lockset_size: 0.46113479324725687
max_history_size: 8
min_history_size: 0
average_history_size: 3.3398070205136885

max_lockset_size is Ins. Lockset Size (Max.).
min_lockset_size is Ins. Lockset Size (Min.).
average_lockset_size is Ins. Lockset Size (Ave.).
max_history_size is Acquisition History Size (Max.).
min_history_size is Acquisition History Size (Min.).
average_history_size is Acquisition History Size
(Ave.).

Table 2 Var. and Func. Distribution (On table right):
The variable and function distribution are identified
by manually inspecting SDK source code, which
are in folder enclave_source. The result of
variable and function distribution can be find in
results/result_cal.xlsx file corresponding tab:
xxx_sdk_lib_distribution.

Table 2 Performance Part: Please refer to the con-
cise detection results file xxx_sdk_results1.txt and
statistics file xxx_sdk_stdout.
Example: In file intel_sgx_sdk_results1.txt:

ULx86_64_init_done*_ULx86_64_init*unw_init_local_common

Each line is a detected data race, which is separated by
* into three parts: The first part is the shared variable
name in the race, the second part is the function name in
the first thread, and the third part is the function name
in the second thread. By counting the number of lines in
this file and checking the unique shared varaible names,
we can get # Shared Variables and # Data Races.
The false positives are identified by manually inspecting
SDK source code, which is in folder enclave_source.
The result of our false positive analysis can be find
in results/result_cal.xlsx file corresponding tab:
xxx_sdk_fp (false positives highlighted).
Example: In file intel_sgx_sdk_stdout:

potential racing pairs: 1567
...
phase 1 time:
0.16607975959777832
phase 2 time:
19.74062967300415

potential racing pairs is Shared Variable Access
Pairs. phase 1 time is Variable Analysis Time (m).
phase 2 time is Data Race Detection Time (m). The
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sum of phase 1 time and phase 2 time is Total Time
(m). Note the phase 1 and phase 2 are using cached file
in our repository thus may not reflect the real analysis
time. Also note that time may vary due to different soft-
ware and hardware configuration and work load on the
machine.
Heap variables (reported in Section 6.1.2): The heap
variable allocations are identified by manually inspect-
ing SDK source code and find out unique heap al-
location sites, which are in folder enclave_source.
The result of heap variable allocations can be find
in results/result_cal.xlsx file corresponding tab:
xxx_sdk_heap.

(E2): SGX Application Data Race Detection [60 human-
minutes + 10 compute-hour + 5GB disk]:
How to: Run the commands in README.md file eval-
uation part 2: To detect data races in SGX applications.
Results: Each command will generate three files similar
to the ones in basic test:

xxx_results.txt
xxx_results1.txt
xxx_stdout

The content of these files should match our cor-
responding same name result files in the folder
results/app_results. xxx_results.txt is detailed
detection results. xxx_results1.txt is concise version
detection results. xxx_stdout is detection statistics.
Table 3 Detected Data Races Part: Please refer to the
concise detection results file xxx_results1.txt and
statistics file xxx_stdout.
Example:
In file 001_mbedtls-SGX_results1.txt:

add_count*ecp_add_mixed*ecp_add_mixed

Each line is similarly divided by * as in SDK cases. By
counting the number of lines in this file and checking
the unique shared varaible names, we can get the num-
ber of shared variables in the detected data races Var.
and the number of detected data races Races. The false
positives are identified by manually inspecting applica-
tion source code, which are in folder enclave_source.
The result of our false positive analysis can be find
in results/result_cal.xlsx file corresponding tab:
xxx_fp (false positives highlighted).
Example: In file 001_mbedtls-SGX_stdout:

potential racing pairs: 7817
potential racing interleavings: 15317

potential racing pairs is Acc. Pairs.
potential racing interleavings is # Total Inter..

Table 3 Variables Part: Please refer to the detection
statistics file xxx_stdout.
Example: In file 001_mbedtls-SGX_stdout:

sv_r_count: 234

sv_w_count: 138
sv_rw_count: 0
len(info.gv_reverse_map): 84

sv_r_count is count of shared variable accesses (R).
sv_w_count is count of shared variable accesses (W).
sv_rw_count is count of accesses (R&W).
The sum of these three numbers is # Shared Var. Access.
len(info.gv_reverse_map) is the number of unique
shared variables, i.e., # Var..
Example: In file intel_sgx_sdk_stdout:

mutex_count: 2
spin_count: 66
once_count: 0
unique_locks: 3

mutex_count is count of lock variable accesses (mutex).
spin_count is count of accesses (spinlock).
once_count is count of lock variable accesses (others).
The sum of these three numbers is # Lock Var. Access.
unique_locks is the number of unique lock variables,
i.e., # Lock Var..
Example: In file intel_sgx_sdk_stdout:
average_lockset_size: 0.1978053439017108
...
average_history_size: 9.270506565018288e-05

average_lockset_size is Ave. Lockset.
average_history_size is Ave. Acq. History.
Table 3 Performance Part: Please refer to statistics
file xxx_stdout.
Example: In file 001_mbedtls-SGX_stdout:

phase 1 time:
0.27547693252563477
phase 2 time:
307.8826234340668

phase 1 time is Variable Ana. (m). phase 2 time is
Race Det. (m). The sum of phase 1 time and phase 2
time is Total Time (m). Note the phase 1 and phase 2 is
using cached file in our repository thus may not reflect
the real analysis time. Also note that time may vary due
to different software and hardware configuration and
work load on the machine.
Heap variables (reported in Section 6.1.2): The heap
variable allocations are identified by manually inspect-
ing application source code and find out unique heap
allocation sites, which are in folder enclave_source.
The result of heap variable allocations can be find
in results/result_cal.xlsx file corresponding tab:
xxx_heap.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

This artifact appendix is meant to be a self-contained docu-
ment which describes a roadmap for the evaluation of Kalium.

A.1 Abstract
As an emerging application paradigm, serverless computing
attracts attention from more and more adversaries. Unfortu-
nately, security tools for conventional web applications cannot
be easily ported to serverless computing due to its distributed
nature, and existing serverless security solutions focus on
enforcing user specified information flow policies which are
unable to detect the manipulation of the order of functions
in application control flow paths. In this paper, we present
Kalium, an extensible security framework that leverages local
function state and global application state to enforce control-
flow integrity (CFI) in serverless applications. We evaluate
the performance overhead and security of Kalium using real-
istic open-source applications; our results show that Kalium
mitigates several classes of attacks with relatively low perfor-
mance overhead and outperforms the state-of-the-art server-
less information flow protection systems.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Kubernetes installation requires root privileges on all the
Kubernetes nodes and certain ports need to be exposed for the
OpenFaas installation. The Kalium controller node requires a
TLS issued by Let’s Encrypt. All the nodes need to be able to
communicate with each other through a DNS name (possibly
public to the Internet).

A.2.2 How to access

The artifact including its sub-repositories can be found here:
https://github.com/multifacet/kalium_artifact/

tree/83110fcfd091d9f8bd164007b1570742e0ad107c

A.2.3 Hardware dependencies

Our testbed uses machines with an Intel Xeon E5-2630
2.40GHz CPU and 64 GB RAM on CloudLab. Each ma-
chine is connected to a star topology LAN network with a
speed of 25 Gbps. The Kalium controller runs on a separate
identical node outside the LAN but on the same datacenter.

Any machines of comparable specifications, connected in a
LAN of uniform speed maybe used for the Kubernetes nodes.
The Kalium controller should run on the same datacenter to
minimize noise as opposed to running it elsewhere on the
internet.

All the machines need to be addressable from each other
with a hostname. The Kalium controller doubles up as an
image server that needs a certificate issued by Let’s Encrypt,
this mandates that the hostname of the Kalium controller
should be visible to the internet.

A.2.4 Software dependencies

All the Kubernetes nodes and the Kalium controller have been
testing using Ubuntu 18.04 LTS. We highly recommend using
Ubuntu 18.04 LTS for all machines.

The build machine needs docker installed for the build
process. Please install docker as per the build machine’s
distro’s instructions https://docs.docker.com/engine/
install/. Please do not install docker on any of the Kuber-
netes nodes or the Kalium controller.

A.2.5 Benchmarks

All the required benchmarks and data is packaged in the arti-
fact.
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A.3 Set-Up
[Mandatory] This section should include all the installation
and configuration steps required to prepare the environment
to be used for the evaluation of your artifact.

Provision 5 machines for running Kubernetes and 1 ma-
chine for the Kalium controller as specified in A.2.3 and A.2.4.
A possible configuration is:

• node0: Kubernetes Worker

• node1: Kubernetes Worker

• node2: Kubernetes Worker

• node3: Kubernetes Worker

• node4: Kubernetes Controller

• node5: Kalium Controller

Root access is assumed on all the Kubernetes node as well
as the Kalium controller node. Kubernetes requires port 6443
for the service API exposed on all the nodes while OpenFaas
needs port 31112 for the gateway. The Kalium Controller
listens at port 5000 and needs to be exposed to all the Kuber-
netes nodes. The Image Server listens at port 4443 and needs
to be exposed to all the Kubernetes nodes.

Provision a machine for building the artifact binaries.
This system should *not* be one of the Kubernetes
nodes or the Kalium controller. Clone the artifact
repository into the build machine using git clone
https://github.com/multifacet/kalium_artifact
&& cd kalium_artifact && git submodule
update -init -recursive && git checkout
83110fcfd091d9f8bd164007b1570742e0ad107c.

Please follow kalium-benchmarks/README.md to obtain
a TLS certificate issued by Let’s Encrypt for the Kalium
Controller node.

A.3.1 Installation

Please follow the steps in README.md except "Running
Benchmarks". By this time, the build machine should have a
build/bin folder that contains the various artifact binaries,
Kubernetes and OpenFaas should be setup in the cluster.

A.3.2 Basic Test

Please refer to README.md for detailed steps to do a basic
test.

A.4 Evaluation workflow
A.4.1 Major Claims

The main claims validated by this artifact are related to the
main claim of Kalium achieving comparable performance to

Valve and Trapeze and being a usable solution due to its low
system call overhead. As noted in Section 5.1.1, the semi-
automated policy generation from existing applications is not
a major contribution of the paper as a lot of the analysis was
done manually. Our paper mainly focuses on defining control
flow integrity for serverless applications, its challenges and
enforcing the same with low overhead.
(C1): Kalium achieves comparable performance as the state

of the art information flow systems Valve and Trapeze.
This is proven by the relative latency overhead experi-
ment described in Section 7.4 of the paper whose results
are illustrated in Figure 8.

(C2): Kalium achieves tolerable per system call overhead of
the order of a few milliseconds in the worst case. This is
proven by the per-syscall measurements in Section 7.4

A.4.2 Experiments

All the experiments have been described in detail in the
README.md file provided with the kalium-benchmarks sub
repository. We omit repeating all the steps here for brevity.
(E1): Valve Benchmarks: Run the Valve Benchmarks with

stock gVisor and Kalium to generate Figure 8 in the
paper. The figure shows the relative overheads of Kalium,
Valve and Trapeze with respect to stock gVisor baseline.
This validates claim C1
How to: Run steps 1-3 in kalium-
benchmarks/README.md
Preparation: Run steps 1-2 kalium-
benchmarks/README.md
Execution: Run step 3 in kalium-
benchmarks/README.md
Results: Run step 5 in kalium-
benchmarks/README.md to generate Figure 8.
The graph should show that Kalium has comparable
overhead as Valve and Trapeze.

(E2): Per Syscall Overhead: Run a microbenchmark function
to generate per system-call overheads in Kalium. This
validates claim C2
How to: Run steps 4 and 7 in kalium-
benchmarks/README.md
Preparation: Run steps 1-2 kalium-
benchmarks/README.md only if it has not been
run yet
Execution: Run step 4 in kalium-
benchmarks/README.md
Results: Run step 7 in kalium-
benchmarks/README.md to print out the per-syscall
(SendMsg and Write) overheads which include (i)
parsing TLS records (ii) TLS record cache lookup (iii)
Event construction time (iv) Guard Local Graph Lookup
(v) Controller Query Total Time and (vi) Total Syscall
Overheads. The overheads should be comparable to that
in Section 7.4 in the paper. The total syscall overhead
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should be of the order of a few milliseconds in the worst
case.
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A Artifact Appendix

A.1 Abstract
This artifact is applying for an Artifacts Available badge,
an Artifacts Functional badge, and an Results Reproduced
badge. It provides two main artifact sets for evaluators to re-
produce PET. The first artifact set, detailed in Github, enables
constructing PET from scratch, and the second artifact set in-
cludes kernel images and a root filesystem which allow the
evaluator to reproduce our results in an isolated environment
without any destructive steps.

Both artifact sets include Proof of Concept (PoC) programs
and exploits of vulnerabilities used as test cases and eBPF
programs that enable PET protection. After installing the eBPF
program, the evaluator can execute the PoC programs and
exploits to access the effectiveness of PET, by observing that
the error triggering is prevented.

Besides we include user guidance in the first artifact set to
help readers understand the design of PET, and develop their
own eBPF programs for more error types that have not been
covered in PET so far.

In this appendix, we will provide necessary instructions for
evaluators to reproduce PET as well as an example along with
screenshots for illustration.

A.2 Description & Requirements
In this section, we first describe whether reproducing our
artifacts will risk the evaluator’s machine security, followed
by approaches to accessing our artifacts. Then, we describe
hardware dependencies and software dependencies before
listing the benchmarks.

A.2.1 Security, privacy, and ethical concerns

PET aims to protect the OS kernel through the eBPF ecosys-
tem. To enable PET, the kernel needs additional eBPF helper
functions before being compiled and installed, which is de-
structive to some extent. Therefore, to make evaluators feel
safe, we prepared a kernel image and a root filesystem for

*The work was done while visiting the University of Colorado Boulder.

evaluators. As such, evaluators can download the image and
reproduce our results in an isolated environment, ensuring the
safety and privacy of the host machine. The access for the
image can be found in § A.2.2.

Furthermore, it is important to note that all vulnerabilities
and proof-of-concept programs included in the artifact are
publicly available and have been addressed in the mainstream
kernel. Therefore, there are no security, privacy, or ethical
concerns regarding the open-source community. The artifact
builds upon resolved issues, and its purpose is to contribute
to the knowledge and advancement of the field.

A.2.2 How to access

The complete artifacts are available in a public Github
Repo https://github.com/purplewall1206/PET, which
includes three main components: eBPF programs and corre-
sponding scripts for evaluation, source code developed in PET,
manuals and examples for evaluators to quickly understand
the key idea of PET. Due to the space limit, we cannot list
all details from building kernel to compiling eBPF programs
to enable PET protections. Therefore, the repo also includes
elaborate instructions for evaluators to follow.

The artifacts provided in the Github Repo are sufficient
for evaluators to reproduce. However, as we mentioned in
§ A.2.1, the reproducing procedure includes destructive steps.
To this end, we additionally provide a root filesystem and a
compiled kernel image, which are in https://tinyurl.com
/2428uac5.

A.2.3 Hardware dependencies

To completely reproduce PET, we recommend the following
minimum hardware configurations: ❶ an Intel CPU with VT-
X virtualization feature, ❷ 8GB or larger memory, and ❸ at
least 100GB disk space.

A.2.4 Software dependencies

It is preferable to perform the evaluation on the Ubuntu Linux
distro, especially the 20.04 desktop which is the same OS for
PET development. The OS is supposed to include essential
packages such as debootstrap, qemu-system-x86_64, open-ssh,
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and wget. These packages are necessary for setting up the
evaluation environment and conducting runtime evaluations.

Besides, it is advised not to utilize Docker for the evalua-
tion process because the artifact necessitates the use of two
separate terminals - one for executing the Proof of Concept
programs and another for displaying the output of the eBPF
programs.

A.2.5 Benchmarks

The Proof of Concept programs for vulnerabilities used as test
cases have been collected and provided in the Github Repo.
We used Phoronix-benchmark for performance measurement
which is publicly available online.

A.3 Set-up
In this section, we focus on the installation and testing of
PET using the kernel image and a root filesystem we provided
for the sake of ethics (§ A.2.2). The evaluator can boot up
the kernel using QEMU. Due to the space limit, we move the
detailed instruction for reproducing PET from scratch in the
Github Repo.

A.3.1 Functional

For the functional evaluations, we have implemented a
evaluate.sh script to set up the environments. including: ❶
use apt to install required software mentioned in A.2.4, ❷
pop up 2 terminals, terminal 1 start the virtual machine, and
terminal 2 connect to the virtual machine with ssh, and ❸
copy the test scripts into virtual machine.

A.3.2 Reproduce

For the reproducible evaluations, we first present a
phoro-run.sh script to reproduce all performance results. We
also present an instruction for generating new BPF preven-
tion programs from scratch and evaluate it in the also in the
functional testing environment.

A.3.3 Installation

None.

A.3.4 Basic Test

After evaluators pull the github repository and run evaluate.sh,
there will be 2 terminals pop up. In figure 1, the left terminal
1 boots up the virtual machine, and waits to be logged in,
and the right terminal 2 has already logged in through ssh.
Evaluators can login the virtual machine with the user name
root and no password is needed. After that, evaluators can
run ls command on either terminal, and there will be three
directories, including bpf, PoCs, scripts.

The bpf directory contains all compiled BPF prevention
programs. The POCs directory contains all compiled proof-of-
concepts programs that can trigger the vulnerabilities. The
scripts directory contains evaluation scripts that need evalua-
tor to execute in the virtual machine.

A.4 Evaluation workflow

As described in Section 5 (Error-dependent Prevention Poli-
cies) of our paper, the PET framework provides support for
preventing five distinct types of errors from being triggered.
To evaluate the functional of each type of kernel error preven-
tion, the artifact includes five BPF prevention programs.

During the evaluation process, the virtual machine will
initiate the execution of these five BPF protection programs
immediately after boot-up. Subsequently, the evaluator can
proceed to run the proof-of-concept tests for the correspond-
ing five vulnerabilities. The BPF prevention programs are de-
signed to intercept and bypass the error-prone sections within
the kernel. As a result, the system will continue to function
smoothly, ensuring the stability and integrity of its operations.

After the functional evaluation, evaluators can also repro-
duce the performance overhead, and try to add new BPF pro-
grams to prevent the other vulnerabilities from being trig-
gered.

A.4.1 Major Claims

C1: The 5 types of kernel errors (integer overflow, out-of-
bound, use-after-free, uninitialization, data race) will be pre-
vented. C2: The system will keep functioning after the errors
are prevented from being triggered.

A.4.2 Experiments

Functional: First of all, evaluators need to change di-
rectories to /root/scripts in both terminals, then execute
start-bpf-progs.sh to start all 5 BPF programs in the ter-
minal 2. After that, output of the 5 BPF programs will be
printed in the terminal 2. We have also prepared a video
to demonstrate the evaluation workflow on Youtube https:
//www.youtube.com/watch?v=0BVsULXT0xI.
(E1): Test if the BPF program can prevent an integer overflow

vulnerability CVE-2017-7184 from being triggered.
Execution: execute test-CVE-2017-7184.sh in terminal 1
Results: There will be killed signal in terminal 1, and
there will be a report ====CVE-2017-7184 is happened====

in terminal 2.
(E2): Test if the BPF program can prevent an out-of-bound

vulnerability CVE-2016-6187 from being triggered.
Execution: execute test-CVE-2016-6187.sh in terminal 1
Results: There will be killed signal in terminal 1, and
there will be a report ====CVE-2016-6187 is happened====

in terminal 2.
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Figure 1: Gnome terminals, terminal 1 boot up the virtual machine, terminal 2 connect to the virtual machine through ssh.

Figure 2: Outputs of the BPF prevention programs in terminal 2.

(E3): Test if the BPF program can prevent an use-after-free
vulnerability CVE-2021-4154 from being triggered.
Execution: execute test-CVE-2021-4154.sh in terminal 1
Results: Because of the quarantine & sweep policy, the
dangling pointer of a use-after-free vulnerability will
be quarantined, the vulnerability will not be triggered.
Proof-of-concept in terminal 1 cannot trigger the vulner-
ability, and terminal 2 will report dangling pointers are
quarantined.

(E4): Test if the BPF program can prevent an uninitializa-
tion vulnerability kmsan-4b28366af7d9 from being trig-
gered.
Execution: execute test-kmsan_4b28366af7d9.sh in ter-
minal 1
Results: The vulnerability is triggered in terminal
1 under an conservative check policy, it means that
the BPF program will catch the uninitialization mem-
ory but not kill the process. There will be reports
====kmsan-4b28366af7d9 is happened==== in terminal 2.

(E5): Test if the BPF program can prevent a data race vulner-
ability kcsan-dcf8e5633e2e from being triggered.
Execution: KCSAN does not provide proof-of-concept,
so no proof-of-concept is executed in terminal 1.
Results: The BPF program detector_kcsan_dcf8e5633e2e

will be keep checking if the vulnerability kcsan-
dcf8e5633e2e is being triggered.

The evaluation results, as depicted in Figure 2, demonstrate
the successful prevention of various vulnerabilities. Start-
ing from the top, the artifact effectively prevent uninitialized
variables, integer overflows, and out-of-bound vulnerabilities.

Additionally, the artifact identifies and quarantines the poten-
tial dangling pointers of use-after-free vulnerabilities. It is
important to note that evaluators have the freedom to execute
additional commands on terminal 1 during the evaluation pro-
cess. Despite the execution of these commands, the system
remains functional and unaffected by the errors.

Reproducible The reproducible evaluation includes 2 part,
the performance test and add new BPF prevention programs.
(E1) : test performance overhead when BPF prevention pro-

grams protect the system.
Execution: (about 2 hour for each performance test, 14
hours in total) execute the phoro-run.sh scripts in the
terminal 1, and 7 seperate performance tests are queued
to be executed, including the vanilla, system protected
by 5 BPF program individually and simultaneously.
Results: execute phoronix-benchmark

↪→ start-result-viewer

(E2) : add new BPF program to prevent new
Execution: (about 10 minutes) We present an instruc-
tion including a demo(a use-after-free), executor can
follow the guidance to extract the sanitizer report and
generate a new program. Similar to the functional evalu-
ation, evaluators can also evaluate the effectiveness of
the new added BPF program.
Results: After execute proof-of-concept in terminal 1,
there will be report that dangling pointers are quaran-
tined in terminal 2.

The results show that artifact can reproduce the perfor-
mance overhead and easy to add new BPF programs for up-
coming kernel vulnerabilities.
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A Artifact Appendix

A.1 Abstract

This artifact is applying for an Artifacts Available badge,
an Artifacts Functional badge, and an Results Reproduced
badge.

The artifact primarily consists of two parts: the source code
of KLAUS, and the Docker runtime environment for KLAUS.
These components encompass the specific implementation of
the designs in our paper, and also offer a very user-friendly
and convenient mode of operation. KLAUS is a framework
for verifying the correctness of Linux kernel patches, mainly
composed of a static analysis part (identifying AWRPs as pro-
posed in our paper) and a dynamic fuzz testing part (Fuzzing).

Firstly, our open-source source code includes the source
code for static analysis, the source code for automatic in-
strumentation, and the source code for the fuzzer. These
source codes have good extensibility and will be beneficial for
other researchers to conduct more in-depth research improve-
ments or extensions. Subsequently, we encapsulate the entire
KLAUS framework in a Docker image, for the convenience
of all researchers and users. In this Appendix, we will provide
the necessary explanations and some screenshots to facilitate
the evaluation of our academic achievements.

A.2 Description & Requirements

Hardware, for evaluation purposes, it is recommended to use
a multi-core CPU environment that supports Kernel-based
Virtual Machine technology. Additionally, due to the fuzzing
process, it is recommended to have a minimum of 4 CPU

cores, at least 32GB of memory, and a minimum of 100GB
of hard disk space.

Software, the experiment requires a system with X86/64
architecture that supports running a Docker environment. It
is necessary to have a network environment that supports the
installation of dependencies and accessing information and
code from the syzkaller community and Google’s hosted Git
website.

A.2.1 Security, privacy, and ethical concerns

All experiments (static analysis/fuzzing) are conducted within
Docker containers, but it is necessary to map a shared folder
from the local machine to the Docker container to serve as
data storage. This might result in the generation of malicious
files in the shared folder; however, as long as they are not
executed on the local machine, they will not cause any harm.
Each instance of the Fuzzer runs inside QEMU within the
Docker container and will not pose any threat to the local
machine’s system.

A.2.2 How to access

All the artifacts are available in https://github.com/wup
co/KLAUS, the directory

• 1-Docker-env are the runtime evaluations.

• 2-Syzpatch are the major portion of the code used in our
research.

A.2.3 Hardware dependencies

• CPU: 4 CPU cores with virtualization technology.
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• Memory: 32GB or larger.

• Disk space: 100GB or larger.

A.2.4 Software dependencies

• Softwares: Docker.

A.2.5 Benchmarks

None.

A.3 Set-up
Please adhere to the instructions provided in the
README.md file of our GitHub repository.

A.3.1 Installation

None.

A.3.2 Basic Test

Figure 1: The files in the docker container.

After successfully building the Docker, execute it using
the command docker run -v $(pwd)/data:/data --rm -it

↪→ --privileged klaus. Upon executing this command, one
should be inside the Docker container where commands can
be executed freely. At this point, in the root directory of the
container, there should be the directories essential for the
experiment, namely data, klaus_fuzzer, llvm-project-10.0.1,
patch_analyzer, image, and gcc-bin. Within the subdirectory
fuzz_cfgs_dir of the data directory, one can execute the
build_env.py file, which requires two arguments: commitid,
representing the commit id of the buggy patch, and syzid, rep-
resenting the bug report id of the bug that the patch addresses.
For instance, to test the correctness of the patch located
at https://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=730c5fd42c1e,
the required commitid is 730c5fd42c1e, and the bug
report https://syzkaller.appspot.com/bug?id=
53b6555b27af2cae74e2fbdac6cadc73f9cb18aa id syzid

is 53b6555b27af2cae74e2fbdac6cadc73f9cb18aa that this patch
fixes. This information can be observed in the Figure 1.

A.4 Evaluation workflow
KLAUS is utilized for verifying the correctness of Linux ker-
nel patches. To achieve this objective, we employ a combina-
tion of static analysis and dynamic fuzzing techniques, which
are the two critical components of KLAUS. It is important to
note that our use of fuzzing technology is solely to validate
that the AWRPs identified through static analysis are effec-
tive in assessing the correctness of Linux kernel patches; it is
merely one implementation approach. Our primary contribu-
tion lies in the discovery and identification of AWRPs through
static analysis. By successfully executing KLAUS, we antici-
pate generating information about the identified AWRPs, and
also utilizing this information to automatically instrument the
code pre-fuzzing. Ultimately, this will enable the successful
launch of the fuzzer to evaluate the patch.

A.4.1 Major Claims

(C1): KLAUS will identify the AWRPs corresponding to
each case in the ground truth dataset with respect to the
patch.

(C2): The Fuzzer component of KLAUS can operate nor-
mally, and there is a high probability that it can trigger
bugs resulting from errors in the patch.

A.4.2 Experiments

First, please follow the guide in our GitHub repository
to properly set up the Docker environment. Subsequently,
launch Docker, enter the Docker container, and execute the
build_env.py file with the specified parameters. It is im-
perative to note that detailed information regarding our
ground truth data is located in Evaluation_Results.xlsx.
Upon the completion of static analysis and instrumen-
tation, navigate to /data/fuzz_cfgs_dir/[commitid] and exe-
cute fuzz_start.sh to initiate the fuzzer. Information on
AWRPs can be found in prop.txt and cond.txt within the
/data/kernels/[commitid] directory, while the working direc-
tory of the fuzzer is located at /data/fuzz_workdir. Addition-
ally, configuration information for running the fuzzer can be
found in /data/fuzz_cfgs_dir/[commitid]/config. If it is neces-
sary to empty and reset the environment under the data folder,
cleardata.sh can be executed on the local machine. It is im-
portant to note that occasionally, when there is an error in
applying clang.patch or classmap.patch, it can be ignored by
pressing Enter directly.
(E1): Test whether the ground truth cases can be analyzed

correctly.
Execution: execute build_env.py file with the specified
parameters.
Results: [commitid] has inst will be reported in stdout.
Information on AWRPs can be found in prop.txt and
cond.txt within the /data/kernels/[commitid] directory.

(E2): Test whether the fuzzer can be run normally.
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Execution: execute fuzz_start.sh file in
/data/fuzz_cfgs_dir/[commitid].
Results: The fuzzer will operate normally, and concur-
rently, the status of the fuzzer will be outputted to the
stdout.

Figure 2: The expected result of the static analysis part.

Figure 3: The fuzzer has been successfully executed.

For the results of the static analysis part, as shown in Fig-
ure 2, it successfully identified the AWRPs in the patch and
instrumented the kernel code. Subsequently, when the fuzzer
is executed, information and status during fuzzing will be
displayed, as in Figure 3.
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A Artifact Appendix

A.1 Abstract
The continuous growth and expansion of Internet of Things
(IoT) application domains, device diversity, and connectivity
is a well-established trend. IoT devices have been imple-
mented to manage and monitor various functions in smart
homes, buildings, cities, and factories. However, this surge in
adoption has made IoT devices an appealing target for cyber
attackers. ARGUS analysis the IoT devices’ behavior to de-
tect contextual attacks, e.g., opening a smart lock while the
smart home residents are absent. The artifact provides the 5
real-world datasets that were collected as part of the research.
Using the datasets provides a benchmark dataset for future
works and eases the comparison to future approaches.

A.2 Description & Requirements
The dataset contains the benign status updates of various IoT
devices deployed for several months in 5 different real homes.
The corresponding folder of a dataset contains for each day
one CSV file, each with the devices’ status updates of the
corresponding day. The CSV files contain three columns, the
time stamp, the unique identifier of the device/sensor, and the
new status. The column new_status contains the status that the
IoT device reported at the given time. Therefore, depending
on the device, the value can be boolean (on/off), nominal (e.g.,
for the weather sunny, cloudy, partlycloudy, etc.) or numerical.
The timestamps are given in UTC. However, it should be
noted that the local time zone was ECT. Table 1 shows the
number of events per dataset. In total, the artifact consists of
2 599 292 events.

Based on these events, attacks can be easily simulated, e.g.,
by injecting an event that sets the status of "camera.status" to
on, while the sensor "person.home" has the status "home.

To obtain the dataset, we gathered data from IoT devices
across various smart home environments. These environ-
ments, named Home 1- Home 5, were made up of multiple

Table 1: Number of events contained in each dataset

Dataset #Events
Home1 2 599 292
Home2 362 744
Home3 16 952
Home4 311 111
Home5 459 670

sensors (such as temperature, humidity, and motion sensors)
and actors (such as light bulbs and thermostats). To ensure the
dataset was diverse and that the individual setups differ from
each other, each home also included additional sensors and
actors. For instance, Home 1 had a CO2 sensor, while Home 4
and Home 5 had multiple smart thermostats. The devices were
installed in different homes, ranging from single-person apart-
ments to shared homes with four inhabitants. In total, ten male
and female participants from different age groups, including
teenagers, students, and adults up to around 49 years old, were
involved in the experiments. The data was collected using the
open-source smart-home control system, Home Assistant.

The smart-home setups include 3 homes with multiple
rooms and multiple inhabitants (Home 3, Home 4, Home 5),
a one-room apartment (Home 2), as well as, a single room in
a shared apartment (Home 1). The experiments included ten
different male and female participants (teenagers, students,
and adults up to approximately 49 years). We made use of the
deployed home automation platform (in our setup HomeAs-
sistant) to automatically trigger events, e.g., turning off the
camera when the user comes home, or to turn off the heating
when the window is opened.

Table 2 shows for each setup in the dataset, a detailed list of
the deployed IoT devices and measured values. The measured
values cover different categories of contextual features: i)
Sensors/devices that measure ambient or temporal features
(e.g., temperature, humidity, and luminosity), ii) user features
(e.g., user presence and sleep confidence), and event features
(e.g., states of the light bulbs, doors or windows).
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Table 2: Deployed devices in the collected real-world IoT
dataset. The deployment of a sensor/actor is indicated by •,
while the absence is indicated by ◦.

Device

H
om

e
1

H
om

e
2

H
om

e
3

H
om

e
4

H
om

e
5

Automation - All lights off ◦ ◦ ◦ ◦ •
Automation - All lights on ◦ ◦ ◦ ◦ •
Automation - Camera off when at home ◦ ◦ ◦ • ◦
Automation - Dinner lights ◦ ◦ ◦ • •
Automation - Dinner table light ◦ ◦ ◦ ◦ •
Automation - Gaming mode ◦ ◦ ◦ ◦ •
Automation - Heating boost off ◦ ◦ ◦ ◦ •
Automation - Light off when no motion ◦ ◦ ◦ • •
Automation - Lights off in the evening ◦ • ◦ ◦ ◦
Automation - Lights off when too bright ◦ • ◦ • ◦
Automation - Lights on in the morning ◦ • ◦ ◦ ◦
Automation - Lights on when motion detected ◦ • ◦ • ◦
Automation - Piano Light ◦ ◦ ◦ ◦ •
Automation - Sofa Lamp ◦ ◦ ◦ ◦ •
Automation - Studio Light off ◦ ◦ ◦ ◦ •
Automation - Studio Light on when motion ◦ ◦ ◦ ◦ •
Automation: Camera on when user leave ◦ ◦ ◦ • ◦
Camera Status Sensor ◦ • • ◦ ◦
Climate - Control access point 1 ◦ ◦ ◦ ◦ •
CO2 Sensor Status • ◦ ◦ ◦ ◦
CO2 Sensor • ◦ ◦ ◦ ◦
Control Access Room 1 Sensor ◦ ◦ ◦ • ◦
Door Sensor • • • • •
Floor lamp ◦ ◦ ◦ ◦ •
Heating - heater valve ◦ ◦ ◦ ◦ •
Heating Temperature Sensor • • ◦ • ◦
Homematic - Radiator Thermostat Temperature Sensor ◦ ◦ • ◦ ◦
Humidity Sensor • • ◦ • •
IKEA Tradfri Roller Blind Sensor • ◦ ◦ ◦ ◦
IP Camera - Light Level ◦ ◦ ◦ ◦ •
IP Camera - Motion ◦ ◦ ◦ ◦ •
IP Camera - Motion Active ◦ ◦ ◦ ◦ •
IP Camera - Pressure ◦ ◦ ◦ ◦ •
IP Camera - Sound ◦ ◦ ◦ ◦ •
Lamp consumption ◦ ◦ ◦ ◦ •
Lamp consumption (daily) ◦ ◦ ◦ ◦ •
Lamp consumption (total) ◦ ◦ ◦ ◦ •
Lamp current ◦ ◦ ◦ ◦ •
Lamp voltage ◦ ◦ ◦ ◦ •
Light - Ceiling • • • • •
Light - Desk Lamp • • • • •
Light - Living Room ◦ ◦ • ◦ ◦
Philips Hue - Light Level Sensor 1 ◦ • • • •
Philips Hue - Light Level Sensor 2 ◦ ◦ • ◦ ◦
Philips Hue - Motion Sensor 2 ◦ ◦ • ◦ ◦
Philips Hue - Temperature Sensor 1 ◦ • • • •
Philips Hue - Temperature Sensor 2 ◦ ◦ • ◦ ◦
Philips Hue - White Lamp 2 ◦ ◦ • ◦ ◦
Philips Hue - White Lamp 3 ◦ ◦ • ◦ ◦
Philips Hue - Motion Sensor 1 ◦ ◦ • • •
Piano lamp ◦ ◦ ◦ ◦ •
Radiator Thermostat Sensor ◦ ◦ ◦ • •
Smartphone - Battery Life ◦ • ◦ ◦ ◦
Smartphone - Charging ◦ ◦ ◦ ◦ •
Smartphone - Charging Sensor • ◦ ◦ ◦ ◦
Smartphone - Connected to WLAN ◦ • ◦ • ◦
Smartphone - Detected Activity • • ◦ ◦ •
Smartphone - Light Sensor ◦ • ◦ ◦ ◦
Smartphone - Locked ◦ ◦ ◦ ◦ •
Smartphone - Phone Status ◦ • ◦ ◦ ◦
Smartphone - Sleep Confidence • • ◦ • ◦
Smartphone - Sleep Segment ◦ ◦ ◦ • ◦
Smartphone - Tracker • • ◦ • ◦
Studio lamp ◦ ◦ ◦ ◦ •
Sun Sensor • • • • •
Temperature Sensor (ESP) • • ◦ • •
User Presence • • ◦ • ◦
Weather - Home Location • • • • •
Weather - Town • ◦ • • ◦
Window Sensor • • • • ◦

A.2.1 Security, privacy, and ethical concerns

The dataset collection raised ethical concerns, as the recorded
behavior of the users might contain sensitive data. We ad-
dressed these concerns by ensuring that all affected persons,
i.e., the users as well as all guests, were aware of the data
collection and gave their consent. Further, we limited the
approach to non-privacy-sensitive sensors and excluded the
other sensors like the geolocation or the SSID of the WiFi
network that the mobile phone is connected to. In addition,
all potentially sensitive data items were anonymized. Our
experimental set-up has been reviewed and approved by the
ethics board of our university.

As the artifact is an anonymized dataset, it does not raise
any security, privacy, or ethical concerns for people using this
dataset. The license allows the usage of any non-commercial
purpose (CC-BY-NC-SA).

A.2.2 How to access

The dataset was uploaded at GitHub and is accessible
at: https://github.com/TRUST-TUDa/argus-data/
tree/606d5a5ebe78f602e27b9f2c48ea103348463eeb.
The dataset that was used for the paper is tagged as
ArtifactAppendix.

A.2.3 Software dependencies

The git program to check out the dataset from GitHub.

A.3 Set-up

The artifact consists of the datasets that were collected for the
paper. The artifact includes contextual events from several
real-world smart homes and makes them publicly available
for future research. Therefore, the artifact does not include
any software/code but is intended as a benchmark for future
work on contextual intrusion detection.

A.3.1 Installation

Clone the dataset from GitHub and checkout the specified
state via:

$ git clone https://github.com/TRUST -TUDa/argus -data.git

$ cd argus -data

$ git checkout 606d5a5

A.3.2 Basic Test

Verify via git status that the repository is at 606d5a5 to
verify that all files were cloned correctly.
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A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
We present xNIDS, a novel framework that facilitates active
intrusion responses by explaining DL-NIDS. Our artifact in-
cludes the proposed explanation method dedicated to explain-
ing DL-NIDS.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

This artifact can be used by users anywhere, but it should
be utilized strictly for research purposes and in adherence to
good ethical practices.

A.2.2 How to access

This artifact is publicly available at https://github.com/
CactiLab/code-xNIDS/releases/tag/v2023.1.0.

A.2.3 Hardware dependencies

The demo code is hardware-independent and can be optimized
for execution on Google Colab.

A.2.4 Software dependencies

To run the code, the following software packages are required:
Python, TensorFlow, Keras, NumPy, pandas, scikit-learn, Mat-
plotlib, psutil, and asgl.

A.2.5 Benchmarks

The benchmark datasets utilized in this artifact are the NSL-
KDD and Kitsune datasets.

A.3 Set-up
A.3.1 Installation

To access the code, kindly download it from the following
link https://github.com/CactiLab/code-xNIDS/tree/

main.

A.3.2 Basic Test

The demo code is written in Jupyter Notebook and can be
executed on Google Colab.

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

We provide a Rust implementation of Curve Trees instantiated
with Bulletproofs. The repository includes an implementation
of the select and rerandomize primitive, which proofs that
a commitment is a rerandomization of a commitment in a
committed set. This primitive is then used to construct an
accumulator as well as a simple anonymous payment system.

A.2 Description & Requirements

Our results were produced using an AWS C6i.2xlarge in-
stance with 16GB of RAM and 8 vCPUs. This corresponds
to 4 physical cores on an Intel Xeon 8375C processor with
2.9 GHz clock speed. The benchmarks were compiled using
version 1.68.0 of the rust compiler. We found similar per-
formance on our laptops. The field arithmetic is optimized
for newer x86_64 chips, but the code will still work on other
architectures.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The code is available at https://
github.com/simonkamp/curve-trees/tree/
4467be81737732a5b2794b5ad70459681b3bd19c.

A.2.3 Hardware dependencies

Any system with access to the internet and a rust compiler
and standard library should be able to run the artifact.

A.2.4 Software dependencies

The only software dependency is the rust compiler, which can
be downloaded from https://rustup.rs/.

A.2.5 Benchmarks

None.

A.3 Set-up

Install the rust compiler (https://rustup.rs/). Install jq
command for formatting output (https://jqlang.github.
io/jq/).

A.3.1 Installation

Clone the repository.

A.3.2 Basic Test

Run cargo build.

A.4 Evaluation workflow

After the set-up above, verify the functionality of the artifact
by running the tests:

cargo test --release

A.4.1 Major Claims

(C1): The implementation of the select and rerandomize
primitive matches the performance reported in table 1 of
our paper. This is proven by the experiment (E1).

(C2): The implementation of the accumulator matches the
performance reported in table 2 of our paper. This is
proven by the experiment (E2).

(C3): The implementation of the VCash matches the perfor-
mance reported in table 3 of our paper. This is proven by
the experiment (E3).

A.4.2 Experiments

Each experiment will run benchmarks of the proving and
verification time for the set sizes and curves reported in the
relevant table of our paper.
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(Before experiments): [All tables] [1 human-minutes
+ 30 compute-minutes]: We recommend using the script
gen_fmt_estimates.sh to run all the benchmarks. The out-
put can be reprinted using fmt_estimates.sh.

(E1): [Table 1] [5 human-minutes + 0 compute-minutes]:
Demonstrates proof size, proving and verification times for
select-and-rerandomize of Curve Trees (batching and non-
batching case) in different curves and on different parameters
(Table 1). The results are found under “Table 1 (Accumulator)”
in the output of fmt_estimates.sh.

(E2): [Table 2] [5 human-minutes + 0 compute-minutes]:
Demonstrates proof size, proving and verification times for
accumulators from Curve Trees in different curves on sets
of size 230 (Table 2). The results are found under “Table 2
(SelectAndRerand)” in the output of fmt_estimates.sh.

(E3): [Table 3] [5 human-minutes + 0 compute-minutes]:
Demonstrates transaction size, proving and verification times
for VCash (Table 3). The results are found under “Table 3
(Pour)” in the output of fmt_estimates.sh.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
We provide the instructions to access and evaluate artifacts
for performance of VERIZEXE system. The artifacts con-
tain a veri-zexe code base written in Rust with benchmark
test suites, and a forked snarkVM code base1 as the state-of-
the-art to compare against. We further specify the hardware
specifications under which our VERIZEXE can successfully
generate transaction in a reasonable time frame thanks to
the massive improvements on prover time and memory us-
age. This demonstrates the practicality of our system even on
resource-limited devices like phones and laptops.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There should be no security risk or privacy leakage of any
kind for evaluators. Executions of the artifacts have no side-
effect outside of the testing folders, nor would the programs
require any privileged system permission to run.

A.2.2 How to access

Our artifacts (software only) are hosted as public reposito-
ries on GitHub. Our implementation of VERIZEXE system is
accessible via:

https://github.com/EspressoSystems/veri-zexe/tree/

42657f254c7f1353914b098dc78f5fb97408bfcd.
The primary prior work that we improve on and benchmark

against is accessible via:
https://github.com/alxiong/snarkVM/tree/

290c05273e3a30523335524fb682ef316cbbf414.
1Modified for fair comparison and faithful instantiation of the original

DPC scheme

A.2.3 Hardware dependencies

We do not require special hardware, and the evaluation can
be run on any Linux machine. To reproduce the same result,
we recommend using Amazon EC2 instances:

Instance Type vCPU Memory Arch Simulating

a1.xlarge 4 8 GB arm64 Phone
c5a.4xlarge 16 32 GB x86_64 Laptop
c5a.16xlarge 64 128 GB x86_64 Server

Table 1: AWS EC2 instance type and hardware spec

A.2.4 Software dependencies

Any Linux distribution will work, and we use Ubuntu 20.04
across all experiments. The only software prerequisite is:
Rust : https://www.rust-lang.org/tools/install.

A.2.5 Benchmarks

None. No external data-set or benchmark model required.

A.3 Set-up

A.3.1 Installation

1. Install software prerequisites listed in ??.

2. Git clone both repos, veri-zexe at https://github.com/
EspressoSystems/veri-zexe.git and snarkVM at https://
github.com/alxiong/snarkVM.

3. For both repos (same procedure), cd into the repo
folder, git checkout to paper-benchmark branch, run
cargo build .
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A.3.2 Basic Test

Ensure you can compile the source code and test/bench code
by running:

cargo check && cargo test --no-run

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): VERIZEXE improves the state-of-the-art (snarkVM) by
9x in transaction generation time and by 3.4x in memory
usage with small variability across different transaction
dimensions. This is proven by the Experiment (E1 + E2)
described in ?? whose results are reported in Table. 2.

(C2): VERIZEXE is the first DPC scheme to make trans-
action generation possible and practical in resource-
limited hardware environments, such as mobile phones
or consumer-grade laptops. Furthermore, we exhibit a
trade-off between prover time and peak memory usage.
This is proven by the Experiment (E3) desribed in ??
whose results are reported in Table. 4.

A.4.2 Experiments

[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] Link explicitly the descrip-
tion of your experiments to the items you have provided in
the previous subsection about Major Claims. Please provide
your estimates of human- and compute-time for each of the
listed experiments (using the suggested hardware/software
configuration above). Follows an example:
(E1): [2 human-minutes + 1.2 computer-minutes + c5a.16xlarge EC2]:

We run benchmarks on veri-zexe across different
transaction dimensions ( 2x2,3x3,4x4 ) and measure all
major metrics among which total transaction generation
time and peak memory usage are the main targets.
Preparation: Enter into your AWS c5a.16xlarge EC2
instance, or environments of the same hardware spec
(see Table. ??).
Execution and Result: Please follow detailed instruc-
tions in usenix-ae.md file in the veri-zexe project
root.

(E2): [5 human-minutes + 15 computer-minutes + c5a.16xlarge EC2] We
run benchmarks on snarkVM across different transaction
dimensions ( 2x2,3x3,4x4 ) in the same environment
and measuring the same metrics.
Preparation: Enter into your AWS c5a.16xlarge EC2
instance.
Execution and Result: Please follow detailed instruc-
tions in usenix-ae.md file in the snarkVM project root.

(E3): [5 human-minutes + 6 computer-minutes + a1.xlarge & c5a.4xlarge

EC2] We try to generate 2-input-2-output DPC transac-
tion across different hardware environments, especially

resource-limited environment simulating phones and lap-
tops. This used to be impossible for snarkVM due to
high memory usage and much slower prover.
Preparation: Enter into your AWS a1.xlarge and
c5a.4xlarge EC2 instance.
Execution and Result: Please follow detailed instruc-
tions in usenix-ae.md file in the veri-zexe project
root.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

We provide the source code of our benchmarking framework,
which is written in Python. This includes the code to create the
plots, written in Python and R. Additionally, we provide the
seed corpus used as the initial input for the tool. Furthermore,
we provide the artifacts from the evaluation stages, including
the final databases from which the plots in the paper are
generated.

Additionally, we provide notes and tooling for the two
manual analyses performed for the paper.

A.2 Description & Requirements

Recreating the experimental setup requires a Linux system
with docker installed. Additionally, the user needs to be in
the docker group. To manage the python version and de-
pendencies hatch is used. For details see the readme of the
framework.

The evaluation requires a initial minimal seed corpus,
which is provided by the zip file in the Zenodo link, it is
the ‘seeds/minimal’ directory. Usage of this seed corpus is
described in the readme of the framework.

Additionally, an environment setup script is provided by
the framework, again see the readme for details.

This should (hopefully) be all that is required to recreate the
experimental setup, while we have tested using the framework
on some systems we can obviously not guarantee that it will
work on all systems. If there are any issues please contact us.

The minimal hardware requirements are at least 16GB of
RAM and 50GB of disk space. The RAM requirements scale
with number of running instances, which are more likely lim-
ited by the number of cores available. The framework is de-
signed to scale to with the number of cores.

For reference, the evaluation for the paper used four servers
with Intel Xeon Gold 6230R CPUs, each with 52 cores and
188 GB RAM.

A.2.1 Security, privacy, and ethical concerns

The framework requires a user that is in the ‘docker’ group,
this should be seen as equivalent to root access, although this
way, we avoid running the whole framework as root. Fur-
thermore, the provided setup script will disable ASLR on the
system to stabilize the fuzzing results, but it also facilitates
exploitation of security vulnerabilities. If this is a concern,
comment out the respective line. The docker containers will
access ‘/dev/shm’ and ‘<project root>/tmp’ on the host sys-
tem, this is required for the shared memory and exchanging
files. Other than for building the Docker images, no internet
access is required.

A.2.2 How to access

The artifact consists of two parts: the main framework and
the other artifacts, both are required to reproduce the re-
sults. From the ‘Other Artifacts’, only the seed corpus in
the mua-fuzzer-bench-eval-data.7z archive under the di-
rectory ‘seeds/minimal’ is strictly needed to reproduce the
results. The remaining files can be referenced to support the
evaluation process as they contain our intermediate and final
results.

‘Framework - Source Code’: https://github.com/CISPA
-SysSec/mua_fuzzer_bench/tree/b3cc3815f9dce9371eb5
d461bb5beb888c032327

‘Other Artifacts’: https://zenodo.org/record/8060560

A.2.3 Hardware dependencies

The evaluation framework runs on commodity hardware, but
reproducing every result in the paper will consume a consider-
able amount of CPU ressources. For reference, the evaluation
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for the paper used four servers with Intel Xeon Gold 6230R
CPUs, each with 52 cores and 188 GB RAM. Thanks to the
modular design, it is also possible to run the evaluation on a
subset of fuzzers or programs.

A.2.4 Software dependencies

The evaluation framework depends on Linux with docker and
hatch installed. The user needs to be in the docker group. We
tested the framework on Ubuntu and Debian, but it should run
on any distribution.

A.2.5 Benchmarks

The evaluation requires a initial minimal seed corpus, which
is provided by the zip file in the Zenodo link, it is the ‘seed-
s/minimal’ directory. To reproduce the exact figures shown in
the paper, we provide the result databases.

A.3 Set-up

See the ‘Usage’ section of the readme in the framework repos-
itory.

A.3.1 Installation

See the ‘Installation’ section of the readme in the framework
repository.

A.3.2 Basic Test

See the ‘Usage’ section of the readme in the framework repos-
itory. For a basic test the –fuzz-time parameters of the com-
mands shown can be reduced to one minute, --instances
can also be reduced. Additionally, the command run under
‘Basic Evaluation’ can be manually aborted early via a key-
board interrupt (Ctrl+C) to reduce the number of evaluated
supermutants. The commands under ‘ASan’ and ‘24 Hours’
will only evaluate supermutants that have been tried for the
‘Basic Evaluation’.

Expected output for the coverage_fuzzing command is
the directory containing the coverage seed corpus (see the
–result-dir argument), for the eval command the expected
output are the databases placed at the path given by the
–result-path argument.

A.4 Evaluation workflow

A.4.1 Major Claims

[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] Enumerate here the major
claims (Cx) made in your paper. Follows an example:

(C1) : Computational effort is reduced by (on average) factor
3.8 by using supermutants. This is a side result from
experiment (E1) described in section 5.2 and reported in
Table 4.

(C2) : Different fuzzers show quite similar results. This is
also proven by experiment (E1) described in section 5.2;
the results are reported in Table 5 and illustrated in a
Venn diagram (Figure 3).

(C3) : Coverage accounts for most mutants detected (97.5%)
in our evaluation. This is the share of all mutants that
were killed by the ensemble of all fuzzers during cov-
erage fuzzing, as explained in Section 5.2 (paragraph
Results). This number can be calculated from the data in
Table 5, which is generated in experiment (E1).

(C4) : ASan moderately increases the number of killed mu-
tants. In Section 5.3, we calculate this number per evalu-
ated fuzzer. This is based on comparing the results from
experiment (E2) shown in Table 6 with the results from
experiment (E1) shown in Table 5.

(C5) : One hour of fuzzing after the seed coverage stage is
sufficient to evaluate a supermutant. In experiment (E3),
we re-run a random subsample for 24 hours and see that
almost no additional mutants are killed (Table 7). This
is described in Section 5.2.

(C6) : Most of the remaining mutants (84%) introduce a
semantic change (theoretically detectable with a perfect
oracle). This is based on manual analysis of non-killed
mutants (E4). The result is described in Section 5.2.1.

(C7) : Mutations induced by our mutation operators are cou-
pled to real faults, since 71% of the studied recent vul-
nerabilities in experiment (E5) can be re-introduced with
our mutation operators. We explain this result in Section
5.4.

A.4.2 Experiments

(E1): [Basic Experiment] [16.36 CPU core years] The initial
experiment as described in Section 5.2. Includes Phase I
and Phase II.
How to: All setup and preparation is explained in the
readme of the framework. Everything should be ex-
plained when following the instructions up to ‘Basic
Evaluation’.
Note that the --seed-dir should point to the extracted
content of the seeds/minimal directory of the eval data
archive.
Results: The resulting plots for experiments E1 to E3
can be are produced as described in the readme of the
framework in the section ‘Getting the Results’.

(E2): [ASan Experiment] [15.16 CPU core years] This ex-
periment depends on E1, keep following the process as
described in the readme of the framework to the section
‘ASan’.
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(E3): [24 Hours Experiment] [7.42 CPU core years] This
experiment depends on E2, keep following the process as
described in the readme of the framework to the section
‘24 Hours’.
Note that either the rerun json file can be adapted to
contain 100 mutations or a manual interruption can be
done once the 100 mutations are reached.
Now, finally, the results can be produced as described in
the readme of the framework in the section ‘Getting the
Results’.

(E4): [Manual Analysis of Mutations] [8 human hours]: This
is a manual analysis of mutations that are not killed to see
if the created mutations are useful to evaluate fuzzers.
How to: Examine covered mutations that are not
killed even after the 24 hour experiment, see Section
5.2.1. Just for reference, we provide our notes of the
manual analysis in the Zenodo repository, under the
not_killed_24.xlsx file.
Preparation: This experiment depends on the result of
the previous experiment (E3), the following SQL query
should be run on the database produced. Note that the
prepare_db command needs to be run on the database,
see ‘Getting the Results’ in the readme of the framework.
The list of mutants that are still not killed after 24 hours
is obtained with the following SQL query:

select completed_runs.prog, completed_runs.
mut_id, directory, file_path, line,
column, instr, funname, pattern_name,
description, procedure from
completed_runs

join mutations on mutations.prog =
completed_runs.prog and mutations.
mutation_id = completed_runs.mut_id

join mutation_types using (mut_type)
where num_confirmed == 0
order by random()
limit 120;

Note that some of the mutants can be in system libraries,
which we have skipped during our manual analysis, this
is also the reason why the limit is set to 120 instead of
100.
Note that the source code of the programs can be found
under the <project root>/tmp/programs directory.
Execution: This is a manual experiment, where for each
mutation the corresponding line and surrounding code
is examined to decide if the mutation does not cause a
semantic change, or if it does, whether it is detectable
when using ASan or a simple crash oracle.

(E5): [Manual Analysis of Vulnerability Coupling] [8 human
hours] This is a manual analysis to see if the mutations
that are created simulate real vulnerabilities. This is de-
scribed in Section 5.4.

How to: We regard a vulnerability to be reintroduced
if the mutation causes the patched program to reintro-
duce the vulnerability. We provide the list of CVEs we
analyzed in the Zenodo repository, under the CVEs.xlsx.
The list of CVEs that we analyzed was obtained using the
code in the file cve-script.7z, which uses the official
CVE list as source. The script is written in Rust, though
we would recommend to just re-examine the CVEs we
analyzed.
Preparation: Required is the list of CVEs to analyze
and a description of the mutation operators. Which can
be found in the framework repository under <project
root>/mutation_doc.json.
Execution: For each CVE, examine the patch if it would
be introduced by a mutation operator or a combination
of mutation operators. If so, the CVE is regarded as
reintroduced.

A.5 Notes on Reusability
The framework is modular and allows to run on specified sets
of fuzzers and programs for a chosen time. For details, consult
the readme and help for the evalutation script (accessible
with -h). The readme of the framework repository contains a
section ‘Extending the Tool’, describing how the tool can be
used to evaluate on other programs, fuzzers, and mutations.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
HECO is a compiler for Fully Homomorphic Encryption built
using the MLIR compiler framework. It translates imperative
programs (defined in a high-level intermediate representa-
tion) into the SIMD-like paradigm required for most FHE
schemes. It uses Microsoft SEAL as the underlying FHE
implementation, generating C++ code that is then compiled
and linked against the SEAL library. HECO uses xDSL (a
Python-based "sidekick" to the C++ based MLIR framework)
for its frontend, which features a simple embedded Domain
Specific Language (DSL) that allows developers to specify
FHE computations in a straight-forward manner.

The artifact also contains reference C++ implementations
written directly against SEAL. For each of the programs we
evaluate, we provide two implementations: one representing
a “naive” non-expert baseline, and one “optimal” implemen-
tation based on the batching approaches generated by the
synthesis-based Porcupine tool, which HECO is compared
against in the paper.

A.2 Description & Requirements
A.2.1 Security, Privacy, and Ethical Concerns

HECO requires evaluators to download, compile and run a
variety of open-source software on their system. Beyond this,
HECO should not impact the security or privacy of the sys-
tem. HECO is a purely local application that does not initiate
network connections. HECO itself does not interact with the
filesystem, using stdin/stdout for input and output; the eval-
uation utilities write to but do not read from the filesystem.

A.2.2 How to Access

HECO is available as open-source software at github.com/
MarbleHE/HECO. The evaluated artifact, specifically, is avail-
able at github.com/MarbleHE/HECO/tree/artifact.

A.2.3 Hardware Dependencies

HECO does not have specific hardware requirements. Note,
however, that the “naive” versions of some of the evaluation

workloads require at least 10 GB of free memory.

A.2.4 Software Dependencies

The HECO artifact has been tested on Ubuntu 20.04 LTS.
Evaluating HECO requires git, cmake and a C/C++ com-
piler and linker (e.g., clang and lld). In addition, the
LLVM/MLIR framework that HECO depends on requires the
ninja build system. The HECO README.MD provides instruc-
tions on how to satisfy these requirements on debian-like sys-
tems. On other distributions, equivalent packages should exist,
while on macOS, package managers such as brew should be
able to provide these requirements. Note that the Python fron-
tend (which is not part of this Artifact) additionally requires
Python 3.11 or newer, with the pip package manger. A plot-
ting script is included with the artifact for convenience, this
also requires Python and, additionally, LaTeX to be installed.

A.2.5 Benchmarks

The runtime and memory benchmarks require the SEAL li-
bray, which is included as a git submodule. The optional
plotting scripts also require Python and LaTeX to be installed.

A.3 Set-up
HECO should be cloned using git (git clone
https://github.com/MarbleHE/HECO.git). After
cloning, it is necessary to initialize the git submodules that
are used to provide HECO’s external dependencies, which
are the LLVM/MLIR framework and the Microsoft SEAL
library: git submodule update -init -recursive.

A.3.1 Installation

Before HECO can be built, the MLIR framework needs to
be built. For evaluation, it is recommended to build MLIR
in Release configuration. Note that compiling MLIR can
require significant time, ranging from around 20 min on a
powerful desktop or server, to up to two hours on weaker
laptops. Assuming the current working directory is the
HECO repository root, execute the following to build MLIR:
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mkdir dependencies/llvm-project/build
cd dependencies/llvm-project/build
cmake -G Ninja ../llvm \
-DLLVM_ENABLE_PROJECTS=mlir \
-DLLVM_BUILD_EXAMPLES=OFF \
-DLLVM_TARGETS_TO_BUILD=X86 \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_ASSERTIONS=ON \
-DCMAKE_C_COMPILER=clang \
-DCMAKE_CXX_COMPILER=clang++ \
-DLLVM_ENABLE_LLD=ON \
-DLLVM_INSTALL_UTILS=ON \
-DMLIR_INCLUDE_INTEGRATION_TESTS=OFF

In order to compile and run the generated C++ code, the
Microsoft SEAL library needs to be installed. This can be
done (from the HECO repository root) as follows:
cd ../../seal
cmake -S . -B build
cmake -build build
sudo cmake -install build
cd ../..

HECO, like its dependencies, uses the cmake build system.
The dependencies are not automatically included in the HECO
build structure (i.e., not added via add_subdirectory) and
cmake will search for the dependencies during configuration.
While SEAL’s installation will be automatically detected,
MLIR requires providing a MLIR_DIR path. Assuming SEAL
and MLIR have been built as indicate above, execute the
following (from the repository root) to build HECO:
mkdir build
cmake -S . -B build \
-DMLIR_DIR=dependencies/llvm-project\
/build/lib/cmake/mlir \

cmake -build build -target heco

A.3.2 Basic Test

After building HECO, you can call heco without any
parameters and feed in any *.mlir file as input, which
should round-trip and output the unmodified input program:
./build/bin/heco < test/example.mlir

You can also test the full compilation flow, by first compiling
the High-Level Intermediate Representation (HIR) into a
low-level C-friendly Intermediate Representation (emitC):
./build/bin/heco -full-pass\

< test/example.mlir > test/out.mlir
This can then be translated into C/C++ source code:
./build/bin/emitc-translate -mlir-to-cpp\

< test/out.mlir > test/out.cpp

A.4 Evaluation workflow
A.4.1 Major Claims

The paper makes the following major claims about the artifact

(C1): HECO produces code that achieves significant speedup
compared to naive/non-batched FHE implementations
(i.e., up to several orders of magnitude faster). This is
demonstrated by (E1) which compares the performance
of naive implementations with HECO-produced code
and is described in Section 6.1 of the paper, with results
highlighted in Figure 5.

(C2): HECO produces code that matches the performance of
“optimally’ batched code. This is shown by the second half
of (E1) which compares HECO to the synthesis-based
Porcupine tool and is described in Section 6.2 of the
paper, with results highlighted in Figure 6.

(C3): HECO’s solution scales to real-world problem sizes
(which synthesis-based tools fail to do). This is shown
by (E2), which shows HECO’s compile time for various
problem sizes and is described in Section 6.1, with results
shown in Table 1.

A.4.2 Experiments

In the following, we describe the experiments. Note that all
time estimates assume the set-up process (which includes the
potentially lengthy compilation of the LLVM/MLIR depen-
dency) has been completed. Detailed instructions can also be
found in evaluation/README.MD.
(E1): Speedup (evaluation/benchmark)

In order to reproduce the results of Figure 5, the inputs
need to be first compiled using HECO and then run using
the Microsoft SEAL library. In addition, the naive base-
line implementations need to be run using SEAL, too.
This requires the vast majority of the (compute-)time, as
the naive baseline implementations quickly become sig-
nificantly less efficient (i.e., over 15min for a single prob-
lem, compared to fractions of a second for the HECO
optimized version). Running this experiment should re-
quire around 15 human-minutes and no more than 2
compute-hours.
Preparation: In order to compile the programs from the
high-level intermediate representation (HIR) form given
here to *.cpp, you can use a helper script that does
this for all files in the heco_input folder (assuming
your current working directory is the repository root):
./evaluation/benchmark/heco_helper.sh
You can then compile and build the benchmark
target (assuming your current working directory is
the repository root): cmake -build build -target
benchmark
Execution: Execute the generated binary
(./build/bin/benchmark). This will
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create a set of *.csv files of the for-
mat <workload>_HECO_<size>.csv in
evaluation/plotting/data/benchmark.
Results: The *.csv files report one iteration
on each line, reporting key generation time,
encryption time, evaluation time, and decryp-
tion time (in this order) in microseconds. In
evaluation/plotting/plot_all.py a
rough plotting script is provided, including a pipfile that
defines the necessary dependencies. In addition, the
plotting requires LaTeX to be installed.

(E2): Comparison (evaluation/comparison)
In order to reproduce the results of Figure 6, the pro-
cedure is similar to that for Experiment 1. However, in
addition to the HECO versions and naive baseline im-
plementations, there are also Porcupine reference imple-
mentations. As in the previous experiment, the naive
baselines consume the vast majority of the compute
time. Running this experiment should require around
15 human-minutes and no more than 2 compute-hours.
Preparation: In order to compile the programs from the
high-level intermediate representation (HIR) form given
here to *.cpp, you can use a helper script that does
this for all files in the heco_input folder (assuming
your current working directory is the repository root):
./evaluation/comparison/heco_helper.sh
You can then compile and build the comparison
target (assuming your current working directory is
the repository root): cmake -build build -target
comparison
Execution: Execute the generated binary
(./build/bin/comparison). This will
create a set of *.csv files of the for-
mat <workload>_HECO_<size>.csv in
evaluation/plotting/data/comparison.
Results: The *.csv files report one iteration

on each line, reporting key generation time,
encryption time, evaluation time, and decryp-
tion time (in this order) in microseconds. In
evaluation/plotting/plot_all.py a
rough plotting script is provided, including a pipfile that
defines the necessary dependencies. In addition, the
plotting requires LaTeX to be installed.

(E3): Compile Time (evaluation/compile_time)
In order to reproduce the results of Table 1, the pro-
grams need to be compiled with the mlir-timing
option. Running this experiment should require around
30 human-minutes.
Preparation: No additional preparation is required.
Execution: Compile each of the provided HIR
inputs with the timing flags -mlir-timing
-mlir-timing-display=list added. You
can use a helper script that does this for all files
in the heco_input folder (assuming your cur-
rent working directory is the repository root):
./evaluation/compile_time/heco_helper.sh
Results: The execution time report includes the Total
Execution Time, which can be compared to the results in
the paper. Note that a significant fraction of the compile
time is usually spend in the Canonicalizer pass,
which is a built-in pass from MLIR. As a result, com-
pile times might vary significantly as MLIR updates and
changes the underlying framework. Please also note that
MLIR must be built in Release configuration in order to
achieve acceptable compile time performance.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

We propose a security protection principle for confidential
computing, Proof of Being Forgotten (PoBF). It has two re-
quirements: NOLEAKAGE and NORESIDUE. These proper-
ties are formalized and proven under an abstract model for
Trusted Execution Environment (TEE) in Coq. On the other
hand, we implement a prototype PoBF-Compliant Framework
(PoCF), which provides a framework to conduct Confidential
Computing as a Service (CCaaS). These prototypes come
with a verifier that can prove some properties specified in
PoBF are satisfied. Besides, PoCF can support various real-
world applications and the protections introduced in PoCF
incur minor runtime performance overhead.

A.2 Description & Requirements

Reproducing the exact experiment results needs special hard-
ware support: processors with Intel SGX and AMD SEV
instruction extension support.

A.2.1 Security, privacy, and ethical concerns

Our artifacts come with no security, privacy, or ethical con-
cerns. However, since building it requires plenty of dependen-
cies and runtimes, we suggest reproducing the experiments in
a non-production environment. We also provide access to an
experiment virtual and/or physical machine.

A.2.2 How to access

Our code is published on GitHub and can be accessed
via the link: https://github.com/ya0guang/PoBF/tree/
usenix-sec-ae.

A.2.3 Hardware dependencies

The SGX-related experiments require an Intel processor with
SGX instruction extension, and SEV-related experiments re-
quire an AMD processor with SEV instruction extension.
Running the multi-threading test requires at least 32GB RAM
(EPC Size) and we recommend using servers with at least
64GB RAM.

A.2.4 Software dependencies

PoCF requires dependencies from the system software and
many dependencies for different platforms, so we recommend
following the build instructions in our README.md in the
GitHub repository or just running the script located un-
der the root directory, named setup.sh. We only list the
general software dependencies here.
Common Dependencies.

• Linux OS, preferably Ubuntu 20/22.04 LTS

• Rust nightly-2022-11-01

• python3: ≥ v3.8, < v3.11

• jupyter notebook

• mirai abstract interpreter (version recorded in the script)

• prusti verifier (version recorded in the script)

• tvm v0.12.0

• llvm ≥ v10.0

• Coq proof assistant > v8.13

SEV Specific Dependencies.

• Azure’s SEV Guest attestation library. See
https://github.com/Azure/
confidential-computing-cvm-guest-attestation.
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SGX Dependencies.

• SGX Driver, not needed if kernel > 5.11

• SGX SDK v2.17.101

• Teaclave Rust SGX SDK and Intel SGX SDK for Linux

• Attestation dependencies, including aesm, dcap or epid

• (Optional) other TEE frameworks: enarx, gramine,
occlum

A.2.5 Benchmarks

Our benchmark data or the build scripts are included in the
repository. We develop several confidential computing tasks
that may require specific data and/or models. Workloads are
all in cctask/ folder, and the corresponding data (generators)
are data/.

• tvm task requires resnet152 and a picture input.

• db requires a ycsb client for generating, loading, and
querying the database. This client is a submodule in our
repository.

• fasta and fann requires generated sequence and an
input number (serialized as a little-endian byte array)
respectively.

• Other tasks require a dummy data payload.

A.3 Set-up
A.3.1 Installation

Please follow the README.md at https://github.com/
ya0guang/PoBF/tree/usenix-sec-ae to set up the soft-
ware environment. If you use the (virtual) machine provided
by us, you can ignore this step.

A.3.2 Basic Test

• To make sure SGX functions correctly, check sudo
service aesmd status and confirm it is successfully
serving. Also, you should see SGX-related devices when
using ls /dev | grep sgx.

• If TVM is installed and configured properly, one
should be able to compile the TVM library under
cctasks/evaluation_tvm/model_deploy. It can be
checked by simply executing make -j.

• Rust programs should work if compilation does not fail.

• Coq works if coqc command can be executed.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The Coq proof is machine-checked.
(C2): PoCF verifier works on the sample project.
(C3): The protections in the PoCF introduce minor runtime

performance overhead compared to NATIVE setting.
(C4): The tasks are indeed supported by PoCF.

A.4.2 Experiments

Note: For the comprehensive instruction, please check
scripts/README.md in our repository.

E1 and E2 are verification of PoCF, and we expect the
experiment to be passing the verification. E3 and E4 are per-
formance evaluations that can be performed on Intel SGX
platform and/or AMD SEV platform. We have scripts for
both single- and multi-threaded experiments. We expect that
the protection introduced by POCF is minor compared to
NATIVE.
(E1): [Coq Proof Checking] [3 minutes]: successfully com-

pilation implies successful proof verification.
How to: Just compile the Coq source code.
Execution: Run coqc *.v at pobf_proof/
Results: Successful compilation.

(E2): [PoCF Verification] [5 human-minutes + 30-60
compute-minutes]: Verify the implementation of PoCF.
The verifier invokes mirai and prusti to conduct
NOLEAKAGE and NORESIDUE checkings.
How to: Please follow the steps in Verification
towards PoCF in our README.md.
Preparation: Install mirai and prusti using the
scripts. This takes some time to compile from the source
code.
Results: There are two cases for a negative case and a
positive case: one contains threats and one does not. One
can try to remove the verified_log! in the source file
src/userfunc.rs to see the difference

(E3): [Overhead Analysis (microbenchmarks)] [15 human-
minutes + 1 compute-hour + 1GB disk]: Confirm the
overhead introduced by PoCF protections is minor.
How to: First, compile and run the microbenchmarks.
Then analyze the data and generate the figure. This eval-
uation is performed in single- and multi-threading sce-
narios.
Preparation: Compile the microbenchmark tasks.
Execution: Run the evaluation scripts that can be found
under scripts/evaluation.sh. Remember to set the
task variable to the task polybench. It will perform
10 repetitions (or more if you need). The cost breakup
results would be automatically printed to the console if
you are evaluating the PoBF task. For the stack page
number microbenchmark, please refer to README.md.
Results: First execute the code in the Python notebook
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under scripts/figure.ipynb. The script draws the
figures that show the performance of POCF and NATIVE
on different tasks. We expect the performance (execution
time) of POCF to be better. For other microbenhmarks,
please copy-and-paste the results to the Jupyter notebook
and visualize them.

(E4 ): [Real-world application (macrobenchmarks)] [30
human-minutes + 1 compute-hour + 5GB disk]: Confirm
the overhead introduced by PoCF protections is minor.
How to: First compile and run the confidential comput-
ing tasks. Then analyze the data and generate the figure.
This evaluation is also performed in single- and multi-
threading scenarios.
Preparation: Compile the macrobenchmark tasks.
Execution: For the KVDB task: Please execute the
YCSB client that is included as a submodule in the
repository. Follow the instruction in the README.md.
You may need to first load the data by the workload
workload/load.toml and then execute the correspond-
ing workload A and C. For other tasks: Please execute
the evaluation script scripts/evaluation.sh.
Results: Execute code in the Python notebook
scripts/db.ipynb, scripts/figure.ipynb The
script draws the figures that show the performance of
POCF and NATIVE on different tasks. We expect the
performance (execution time) of POCF to be better. For
the results collected from YCSB, please copy-and-paste
the results to the plotting script.

A.5 Notes on Reusability
• If you want to modify the state transitions, edit
pobf_state/src/task.rs.

• If you want to add/modify the CC Task, follow the ex-
amples in cctasks. You may also want to modify the
build script.

• You could also change the verification options by modi-
fying pobf_verifier/pobf-verify

Note that our artifact is an academic project. Any use of
the code should adhere to the license.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
We provide code and data of our paper in this artifact.
Our artifact is publicly available at https://github.com/
Yuanyuan-Yuan/GCert with detailed documents. Using our
tool, users can certify neural network robustness towards var-
ious semantic-level mutations.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None

A.2.2 How to access

An archived copy of the initial version is available at: https:
//zenodo.org/record/8062051.

Our artifact is actively maintained at: https://github.
com/Yuanyuan-Yuan/GCert.

A.2.3 Hardware dependencies

We do not have any particular requirements for the hardware.
Our artifact may need GPUs to speed up the certification; we
suggest evaluators having at least one GPU.

A.2.4 Software dependencies

Our tool is built based on Pytorch; evaluators need to first
install Pytorch. See detailed instructions in our documents.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Users only need to install Pytorch first. See details in our
documents.

A.3.2 Basic Test

To test the basic functionality, evaluators can first run cd
experiments to change the current directory. Then run
python augment_geometrical.py. This script will start
training a generative model with regulation proposed in our
paper.

Detailed instructions are provided in our documents.

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

We present HOLMES, a protocol for performing secure dis-
tribution testing efficiently. Our artifact includes:

1. the efficiency comparison of HOLMES against various
baselines;

2. the efficiency evaluation of HOLMES in real-world
datasets;

3. the accuracy evaluation for HOLMES’ statistical tests
against corruptions to simulated and real-world data.

This artifact reproduces the tables and figures in our paper.

A.2 Description & Requirements

HOLMES allows efficient distribution testing in a multiparty
setting without revealing the dataset of any of the parties.
A distribution test is a predicate over an individual or joint
(i.e., from multiple parties) dataset. Examples include well-
known statistical tests, such as mean equality z-test (when the
variance of the dataset is known) and t-test (when the variance
is unknown), variance equality F-test, and Pearson’s χ2-test.
These tests check a property between two populations, or
between a population and a public distribution.

We support major statistical tests including the t-test, z-test,
F-test, and the chi-squared test for single and multiple dimen-
sions. We also provide support for computing and checking
dataset properties essential in distribution testing; specifically,
we support computing mean, trimmed mean, variance, his-
togram, random linear combination, and range check.

HOLMES integrates zero-knowledge proofs and secure
multiparty computation with a lightweight consistency check.
Specifically, HOLMES uses QuickSilver as a framework for
zero-knowledge proofs and SCALE-MAMBA for the MPC
computation. The codebase also includes integration tests,
unit tests, and individual benchmarks.

A.2.1 Security, privacy, and ethical concerns

We assume that t parties want to participate in secure col-
laborative learning based on a t-party MPC protocol (e.g.,
SCALE-MAMBA). Before they engage in the learning proto-
col, the parties wish to check the quality of the dataset using
distribution tests. HOLMES offers privacy in the dishonest
and malicious majority setting, where at most t −1 out of t
parties can collude and arbitrary deviate from the protocol.

Note that any distribution testing leaks one-bit information,
i.e., whether the test passed or failed. Hence, it is important
that a party does not participate in distribution tests that may
leak sensitive information.

A.2.2 How to access

HOLMES is available (at a stable URL) here. The repository
includes instructions for compiling HOLMES and reproduc-
ing our results.

The artifacts for reproducing our experiments and graphs
are available (at a stable URL) here. We have also published
the AMIs as public, and prepared scripts to automatically
launch the clusters, so users can launch their own cluster on
their own AWS account at here.

A.2.3 Hardware dependencies

HOLMES does not require any specialized hardware. Our
experiments were performed on AWS c5.9xlarge instances,
each with 36 cores and 72 GB memory. Different hardware
configurations will affect the performance of HOLMES, but
will result in a similar performance gain over the baselines.

A.2.4 Software dependencies

We provide the software dependencies for the plots and
creating the AMI cluster in https://github.com/holmes-
inputcheck/holmes-artifacts/. To install HOLMES only on
a local machine, a user has to perform the following steps:

1. Install GMP https://gmplib.org/

2. Install MPFR https://www.mpfr.org/
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3. Install FLINT https://www.flintlib.org/

4. Install emp-tool https://github.com/emp-toolkit/emp-tool

5. Install emp-ot https://github.com/emp-toolkit/emp-ot

6. Install emp-zk https://github.com/holmes-inputcheck/emp-
zk

7. Clone and compile HOLMES https://github.com/holmes-
anonymous-submission/holmes-library

A.2.5 Benchmarks

We provide benchmarks for the following tasks.
• Efficiency comparison for the histogram, mean, variance,

and trimmed mean of HOLMES with the generic MPC
baseline;

• Overhead comparison of range checks and ZK-friendly
sketching with three baselines; these are the two most ex-
pensive gadgets supported in HOLMES;

• Overhead of running sample distribution tests on a
real-world dataset from bank marketing. This dataset is
provided in https://github.com/holmes-inputcheck/holmes-
library, and is pre-cleaned and provided as CSV
files in https://github.com/holmes-inputcheck/holmes-
library/blob/master/bench/dataset[1-3].csv;

• Computing the accuracy of HOLMES’ distribution tests
against specific types of corruptions on simulated and real-
world dataset.

A.3 Set-up

In this section, we provide information about setting up and
running the artifacts.

A.3.1 Installation

We provide instructions on how to install the de-
pendencies and necessary configuration steps in
https://github.com/holmes-inputcheck/holmes-artifacts/.

A.3.2 Basic Test

We provide instructions for running unit tests on all the statis-
tical tests of HOLMES in your AMI cluster located here, or on
your local machine, given that you have all of the prerequisites
installed, located here.

The instructions for running the integration tests, which
measure the overhead of the dataset testing workflows, for
your AMI cluster are provided in here, or on your local ma-
chine, given that you have all of the prerequisites installed,
located here.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): HOLMES achieves a speedup of up to 10x for classical
distribution tests over the generic MPC baseline with
t = 2 parties. This is proven by experiment (E1). This
result is described in Section 4.4 of the full version of
paper and is illustrated in Figures 7a-f.

(C2): HOLMES achieves a speedup up to 10000x for its
ZK-friendly sketching multidimensional tests over the
strawman one-hot encoding multidimensional tests with
t = 2 parties. This is proven by experiment (E2). This
result is described in Section 4.4.2 of the full version of
paper and is illustrated in Figures 7g-h.

(C3): The generic MPC baseline is 10–256x and 35–198x
slower than HOLMES (i.e., QuickSilver, which is the
underlying IZK protocol in HOLMES) for the range
check and the ZK-friendly sketching, respectively, with
t ∈ {2,6,10} parties. The pairwise 2PC baseline is 4–
32x slower for the range check and 13–36x slower for
the ZK-friendly sketching than HOLMES. SpartanNIZK
is 1–16× slower for the range check and 4–45x slower
for the ZK-friendly sketching than HOLMES. This is
proven by experiment (E3). This result is described in
Section 4.4.1 of the full version of paper and is illustrated
in Table 1.

(C4): HOLMES’ chi-squared test has approximately the
same accuracy as the naive normalized and unnormal-
ized chi-squared test. This is proven by experiment (E4).
This result is described in Section 4.3 of the full version
of paper and is illustrated in Figure 5.

(C5): HOLMES’s approach outperforms the generic MPC
baseline by 77–264x for a real-world testing workflow on
the bank marketing dataset for t ∈ {2,6,10} parties. This
is proven by experiment (E5). This result is described in
Section 4.4.3 of the full version of paper and is illustrated
in Figure 6 and Table 2.

A.4.2 Experiments

(E1): Classic distribution tests for two parties (20 human-
minutes + 2 compute-hours + 72GB disk): This experi-
ment measures the overhead of classic distribution tests,
i.e., the naive histogram check, the trimmed mean check,
the mean check, and the variance check, on a fake dataset
of all ones. We compare the overhead between the two
setups: HOLMES and SCALE-MAMBA.
Preparation: Perform the set up as described
in the following link https://github.com/holmes-
inputcheck/holmes-artifacts#setup.
Execution: Use the designated scripts described
in the following link https://github.com/holmes-
inputcheck/holmes-artifacts#misc-bench-scripts-
experiment-e1–e2 to run the benchmarks and retrieve
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the results.
Results: To interpret the results, run the designated
scripts described in https://github.com/holmes-
inputcheck/holmes-artifacts#classical-distribution-
tests-experiment-e1. These scripts produce six figures,
one for the cost in HOLMES and one for the cost in
SCALE-MAMBA, for the following tests: histogram,
trimmed mean, mean and variance. The cost of his-
togram check is plotted for 10 buckets with varying
range sizes and input sizes. The cost of trimmed mean
is plotted for datasets with 100k and 200k entries with
varying threshold θ. The cost of mean and variance is
summed and plotted for varying dataset sizes from 1
million entries to 5 million entries. This experiment
supports claim (C1).

(E2): HOLMES’ Multidimensional Test vs. Naive Mul-
tidimensional Test in HOLMES for two parties (20
human-minutes + 2 compute-hours + 72GB disk): This
experiment measures the overhead of multidimensional
tests on a fake dataset of all ones. We compare the over-
head between two approaches for the multidimensional
χ2-test for the canonical two-party case with HOLMES
(QuickSilver). We show that using our ZK-friendly
sketching approach to compute the χ2-test is much more
efficient than the standard strawman approach of naively
computing the one-hot encoding for each multidimen-
sional input.
Preparation: Perform the set up as described
in the following link https://github.com/holmes-
inputcheck/holmes-artifacts#setup.
Execution: Use the designated scripts described
in https://github.com/holmes-inputcheck/holmes-
artifacts#misc-bench-scripts-experiment-e1–e2 to run
the benchmarks and retrieve the results.
Results: To interpret the results, run the designated
scripts described in https://github.com/holmes-
inputcheck/holmes-artifacts#holmes-multidimensional-
test-vs-naive-multidimensional-test-experiment-e2.
These scripts produce two figures showing the compu-
tational cost with respect to the number of dimensions
and with respect to the number of individual labels in
each dimension. In the first figure, the baseline is the
naive multidimensional χ2-test, whereas HOLMES uses
the ZK-friendly sketching multidimensional χ2-test. We
plot the cost for datasets with 100k, 200k, 500k entries
and 10 individual labels per dimension with varying
number of dimensions. In the second figure, the cost of
the multidimensional χ2-test in SCALE-MAMBA and
in HOLMES is plotted for datasets with 100k, 200k,
500k entries and four dimensions with varying number
of labels. This experiment supports claim (C2).

(E3): Efficiency comparison of range checks and ZK-
friendly sketching against the baselines (30 human-
minutes + 20 compute-hours + 72GB disk): This exper-

iment measures the overhead of range check and ZK-
friendly sketching on a fake dataset of all ones. We
compare the overhead between the following setups:
HOLMES (i.e., QuickSilver), t-party SCALE-MAMBA,
pairwise 2-party SCALE-MAMBA, SpartanNIZK for
datasets with 100k, 200k, and 500k entries. For experi-
ments that take too long or require more memory than
available, e.g. 500k entries of ZK-friendly sketching
for SCALE-MAMBA and SpartanNIZK, we perform the
ZK-friendly sketching for a smaller number of entries
and extrapolate to larger entries using Euler’s method.
SpartanSNARK is only plotted for up to 100k entries.
Preparation: Perform the set up as described
in the following link https://github.com/holmes-
inputcheck/holmes-artifacts#setup.
Execution: Use the designated scripts described
in the following link https://github.com/holmes-
inputcheck/holmes-artifacts#range-checks-and-zk-
friendly-sketching-against-the-baselines-experiment-
e3 to run the benchmarks and retrieve the results.
Results: To interpret the results, run the designated
scripts described in https://github.com/holmes-
inputcheck/holmes-artifacts#range-checks-and-zk-
friendly-sketching-against-the-baselines-experiment-
e3. These scripts compute the cost for each setup. We
produce a csv file, which can be compared with Table 2
and Table 3 in the paper. For each setup, we compute
the cost for datasets with 100k, 200k, 500k entries for
t ∈ {2,6,10} parties. This experiment supports claim
(C3), and as expected, QuickSilver runs the fastest in all
setups.

(E4): Accuracy of distribution tests against corrupted
datasets (5 human-minutes + 3 compute-hours): This
experiment gradually corrupts up to 30% of the input
dataset, and plots the statistical p-value of various tests
as a function of the percentage of input corruptions.
Preparation: Perform the set up as described
in the following link https://github.com/holmes-
inputcheck/holmes-artifacts#setup.
Execution: Use the designated scripts described
in the following link https://github.com/holmes-
inputcheck/holmes-artifacts#statistical-corruption-
accuracy-graphs-experiment-e4 to run the benchmarks
and retrieve the results.
Results: To interpret the results, run the designated
scripts described in https://github.com/holmes-
inputcheck/holmes-artifacts#statistical-p-value-
accuracy-graphs-experiment-e4. These scripts produce
two plots: one for a simulated dataset and one for
the bank marketing dataset. The corruption model
is described in Section 4.3 of the full version of the
paper. Due to randomness in sampling the dataset
before corruption, the initial p-values might vary; in
expectation, the chi-squared tests hit the p-value of 0.05
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before all other tests, the z-test and t-test hit the p-value
of 0.05 next followed by the F-test. This experiment
supports claim (C4).

(E5): Marketing dataset overhead and cost breakdown
(5 human-minutes + 1 compute-hour): This experi-
ment measures the overhead of HOLMES and SCALE-
MAMBA on the bank marketing dataset for t ∈{2,6,10}
parties.
Preparation: Perform the set up as described
in the following link https://github.com/holmes-
inputcheck/holmes-artifacts#setup.
Execution: Use the designated scripts described
in the following link https://github.com/holmes-
inputcheck/holmes-artifacts#marketing-dataset-testing-
workflow-benchmarking-experiment-e5 to run the
benchmarks and retrieve the results.
Results: To interpret the results, run the designated
scripts described in https://github.com/holmes-
inputcheck/holmes-artifacts#marketing-dataset-graphs-
holmes-vs-mpc-baseline-experiment-e. These scripts
produce a figure for the computational overhead as a
function of the number of parties and a file with the
breakdown of the cost. This experiment supports claim
(C5).

A.5 Notes on Reusability
HOLMES’ assumes that the highest degree of security (mali-
cious security) is required and is best applied when all but one
of the parties are untrusted. The parties most practically repre-
sent a powerful entity with lots of data and computing power.
In example, competing bank conglomerates might want to
jointly train their data over a specific model but do not trust
each other, and are reasonably confident that other competing
banks will collude. In this setting, HOLMES can securely
perform distribution tests and securely compute aggregate
statistics and analytics in a much faster speed than previous
multiparty computation techniques.

HOLMES is flexible such that any future developer who
chooses to use their own dataset, add their own custom checks,
or add their own distribution tests can do so easily. An excit-
ing future direction of HOLMES is that parties who wish to
jointly train a model over their data can implement checks
that prevent data poisoning attacks, such as algorithms from
robust statistics. We encourage future users and developers to
implement their own checks through HOLMES and use the
existing checks to expedite the secure computation over their
own selection of data.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at

https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
TLS-Scanner is an open-source tool to assist pentesters and se-
curity researchers in evaluating TLS server implementations.
It automatically scans a TLS server and provides a report
of supported features like protocol versions, cipher suites,
extensions, and potential security issues.

In our work, we extended TLS-Scanner with support for
DTLS and implemented additional tests specifically designed
to evaluate DTLS-specific features. Subsequently, we evalu-
ated twelve open-source DTLS server implementations and
uncovered eleven security vulnerabilities. We then proceeded
to scan publicly available DTLS servers to gain detailed in-
sights into the publicly accessible DTLS server landscape.

Artifact users can reproduce the results of our lab evaluation
by running TLS-Scanner against the respective DTLS server
implementations.

A.2 Description & Requirements
Upon completion of the scan, TLS-Scanner provides a com-
prehensive report containing detailed information regarding
the server’s configuration and its security-relevant properties.
We provide the source code of the extended TLS-Scanner and
Docker files of OpenSSL and Mbed TLS as artifacts, enabling
the testing of TLS-Scanner.

A.2.1 Security, Privacy, and Ethical Concerns

We are not aware of any exploitable issues in TLS-Scanner.
TLS-Scanner only establishes multiple DTLS connections
to the server under test. However, depending on the number
of threads, it is possible to overwhelm the server. Therefore,
by default, the scan is performed with one thread. Note that
such a scan will inevitably reveal your IP address to the tested
server.

TLS-Scanner can also be used to scan servers owned by
other people. Depending on your local jurisdiction, it may be

illegal for you to do so. Additionally, conducting scans on
public servers should follow the best practices for Internet-
wide scanning setup by Durumeric et al. [1].

A.2.2 How To Access

Our artifact can be found on GitHub
at https://github.com/tls-attacker/
Exploring-the-Unknown-DTLS-Universe/tree/
563b9ca12920eed26b00f518fe7465b2b833024e. The
repository includes the source code of the extended TLS-
Scanner and example Docker files which build open-source
DTLS server implementations (OpenSSL and Mbed TLS).

A.2.3 Hardware Dependencies

None.

A.2.4 Software Dependencies

TLS-Scanner is written in Java. This requires Maven and
Java 11 to be installed. To run the example servers in the
docker containers, Docker is required. We tested this artifact
on Kubuntu 22.04, but any Linux system should work. TLS-
Scanner should also run on Windows (but the docker examples
will not).

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Downloading the Artifact. Clone the GitHub repository
using git:

https://github.com/tls-attacker/\
Exploring-the-Unknown-DTLS-Universe/tree/\
563b9ca12920eed26b00f518fe7465b2b833024e
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Installing Java and Maven. Install Java 11 and Maven
using apt:

sudo apt install openjdk-11-jdk
sudo apt install maven

To verify if the dependencies are installed and set up correctly,
run the following commands:

java -version
mvn -version

If everything works correctly, both commands should dis-
play their respective versions. Additionally, it is important to
ensure that the correct version of Java is specified for Maven.

Installing Docker. Install Docker by following the instruc-
tions at https://docs.docker.com/engine/install/.

Setting up TLS-Scanner.

a) Using the provided Dockerfile:

1. Navigate to tls-scanner/

2. Run

docker build --tag tls-scanner --file \
dockerfile-tls-scanner .

3. Run docker images

If everything works correctly, the last command should
print the names of all available docker images on your
system. The output should contain tls-scanner.

b) Building TLS-Scanner yourself:

1. Navigate to tls-scanner/TLS-Attacker/

2. Execute mvn clean install

3. Navigate to tls-scanner/TLS-Scanner/

4. Execute mvn clean package

If everything compiles correctly, the apps\ folder should
now contain the TLS-Server-Scanner.jar file.

Building the Server Implementations.

1. Navigate to libraries/

2. Execute setup.sh

3. Run docker images

If everything works correctly, the last command should again
print the names of all available docker images on your system.
The output should contain the names of the server implemen-
tations (e.g., openssl-dtls-server or mbedtls-dtls-server).

A.3.2 Basic Test

Testing TLS-Scanner. To verify that the TLS-Scanner can
be executed correctly, run the following command:

docker run --rm --network="host" --name \
tls-scanner tls-scanner -help

If everything works correctly this should print the parameter
list of TLS-Scanner with usage instructions.

Testing the Server Implementations. To verify that the
docker images can be used, run the following command:

docker run --rm --network="host" --name \
mbedtls-dtls-server mbedtls-dtls-server \
server_port=4433 dtls=1

If everything works correctly this should start the example
server of Mbed TLS.

A.4 Evaluation workflow
Running TLS-Scanner on a DTLS server implementation is
straightforward. Typically, the DTLS server is started, then
TLS-Scanner is started. TLS-Scanner will then perform the
scan without interaction from the user. After completing the
scan, TLS-Scanner will output the results which the user can
analyze.

A.4.1 Major Claims

We claim to be able to evaluate various DTLS-specific
features of a given server, including potential DoS vulnera-
bilities. Specifically, we claim to evaluate the properties of
twelve open-source DTLS server implementations. In the
following, we exemplary describe our claims for OpenSSL
and Mbed TLS:

(C1): OpenSSL issues 20 byte long cookies and deviates
from the recommended cookie computation.

(C2): OpenSSL does not perform a cookie exchange upon
renegotiation.

(C3): OpenSSL allows users to implement no cookie
exchange, a stateful cookie exchange, or a stateless
cookie exchange. The example server uses the stateful
cookie exchange by default, but stateless mode can
be requested through command line parameters. To
mitigate DoS attacks, the stateless mode should be used
when deploying OpenSSL in production.

(C4): Mbed TLS issues 32 byte long cookies and deviates
from the recommended cookie computation.

(C5): Mbed TLS supports the fragmentation of messages
after the cookie exchange is successfully completed.
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The experiment (E1) will demonstrate (C1)-(C3) while (C4)-
(C5) are demonstrated by the experiment (E2). The results of
the two experiments are summarized in our paper in Table 1
with a detailed explanation in Section 5.

A.4.2 Experiments

Since TLS-Scanner is designed to scan only a single server,
we define one scan per experiment.

(E1 - OpenSSL) (5 human-minutes + 10 compute-minutes)
In this experiment, the OpenSSL example server is scanned
with TLS-Scanner. TLS-Scanner will then output a report.

1. Start the OpenSSL server

docker run --rm -v [absolute path to \
libraries/certs/]:/certs/ \
--network="host" --name \
openssl-dtls-server openssl-dtls-server \
-key /certs/private_key.pem -cert \
/certs/certificate.pem -accept 4433 -dtls

2. Start the evaluation with TLS-Scanner

docker run --rm --network="host" --name \
tls-scanner tls-scanner -connect \
localhost:4433 -dtls -timeout 100

TLS-Scanner will now perform a series of DTLS handshakes.
After that, the report should be visible.

Results.
(C1): The report should contain a section DTLS Hello
Verify Request. It summarizes the behavior the server
showed against the implemented cookie exchange tests. There
you can see which client parameters influence the cookie com-
putation. For OpenSSL, it should contain:

DTLS Hello Verify Request

HVR Retransmissions : false
Cookie length : 20
Checks cookie : true
Cookie is influenced by
-ip : not tested yet
-port : true
-version : false
-random : false
-session id : false
-cipher suites : false
-compressions : false

To confirm (C1), the Cookie length field should have the
value 20. In addition, the -version, -random, -session
id, -cipher suites, and -compressions fields should
have false. Please note that evaluating if the IP influences
the cookie computation requires a proxy running on a host

with a different IP.

(C2): The report should contain a section Renegotioation.
It summarizes whether the server supports renegotiation and
whether cookie exchange is performed there. For OpenSSL,
it should contain:

Renegotioation

Secure (Extension) : true
Secure (CipherSuite) : true
Insecure : false
DTLS cookie exchange in renegotiation : false

To confirm (C2), the DTLS cookie exchange in
renegotiation field should have false.

(C3): The report should contain a section DTLS
Fragmentation. It summarizes the behavior the server
showed against the implemented fragmentation tests. For
OpenSSL, it should contain:

DTLS Fragmentation

Supports fragmentation : true
Supports fragmentation with individual transport packets :

↪→ true

To confirm (C3), both fields should have true.

(E2 - Mbed TLS) (5 human-minutes + 10 compute-
minutes) In this experiment, the Mbed TLS example server is
scanned with TLS-Scanner. TLS-Scanner will then output a
report.

1. Start the Mbed TLS server

docker run --rm --network="host" --name \
mbedtls-dtls-server mbedtls-dtls-server \
server_port=4433 dtls=1

2. Start the evaluation with TLS-Scanner

docker run --rm --network="host" --name \
tls-scanner tls-scanner -connect \
localhost:4433 -dtls -timeout 100

TLS-Scanner will now perform a series of DTLS handshakes.
After that, the report should be visible.

Results.
(C4): Similar to (C1). For Mbed TLS, the DTLS Hello
Verify Request section should contain:

DTLS Hello Verify Request

HVR Retransmissions : false
Cookie length : 32
Checks cookie : true
Cookie is influenced by
-ip : not tested yet
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-port : false
-version : cannot be tested
-random : false
-session id : false
-cipher suites : false
-compressions : false

To confirm (C4), the Cookie length field should have the
value 32. In addition, the -port, -random, -session id,
-cipher suites, and -compressions fields should have
false. Please note that evaluating if the version influences
the cookie cannot be executed for Mbed TLS because it
supports only one protocol version (DTLS 1.2).

(C5): Similar to (C3). For Mbed TLS, the DTLS
Fragmentation section should contain:

DTLS Fragmentation

Supports fragmentation : partially
-After cookie exchange
Supports fragmentation with individual transport packets :

↪→ partially
-After cookie exchange

To confirm (C5), both fields should have partially.

A.5 Notes on Reusability
Our extensions to TLS-Scanner have been merged in the
project and released with v5.2.5. It can be found on GitHub
at https://github.com/tls-attacker/TLS-Scanner/
releases/tag/v5.2.5. In addition, our extensions to
TLS-Attacker which is used by TLS-Scanner have been
merged in the project and are contained in the latest release
v5.2.1. It can be found on GitHub at https://github.com/
tls-attacker/TLS-Attacker/releases/tag/v5.2.1.

To perform large-scale scans with TLS-Scanner, TLS-
Crawler can be used. It utilizes multiple TLS-Scanner in-
stances to scan a large number of servers in parallel and write
the results to a database. The latest release v1.0.1 can be
found on GitHub at https://github.com/tls-attacker/
TLS-Crawler/releases/tag/v1.0.1.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

References

[1] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.
ZMap: Fast Internet-wide scanning and its security appli-
cations. In 22nd USENIX Security Symposium, 2013.
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A Artifact Appendix

A.1 Abstract
We performed a large-scale analysis of TLS session tickets. To
this end, we extended TLS-Scanner with further tests which
detected a variety of weak keys being used in the wild. To
support developers and server administrators when evaluating
their session ticket configurations, we publish our extension
for TLS-Scanner. This extension is able to detect the vulnera-
bilities discussed in our paper. Within this artifact evaluation,
we show that our extension is capable of detecting the vulner-
abilities from our paper.

A.2 Description & Requirements
TLS-Scanner is an established tool to scan TLS servers for
weaknesses. We implemented new probes to scan for weak-
nesses related to session tickets. These perform the tests out-
lined in our paper. Additionally, we provide a test server to
test the scanner against (not part of the artifact, but used to
evaluate it). For both tools we provide the source code, Dock-
erfiles, and Docker images. We recommend using the Docker
images, as they ensure a reproducible environment.

A.2.1 Security, privacy, and ethical concerns

We are not aware of any exploitable issues in the tool. It should
be secure to run on your machine. To evaluate a TLS server,
TLS-Scanner needs to connect with that server, effectively
revealing your IP address. The scanner also sends an HTTP
request to the server which includes TLS-Attacker as the user
agent.

The scan initiates multiple TLS connections to the server.
Depending on the number of threads (option -threads) you
could overwhelm the server. In our scans, we ensured this

does not happen by scanning multiple servers at once with
a shared limited threadpool (done by TLS-Crawler1). When
using the scanner, use a low number of threads. The test server
we provide is single threaded, so only a single (connection)
thread should be used there.

Any data our probes exfiltrate from the ticket is already
known to the scanner. However, if it is able to exfiltrate data
from a ticket, this indicates a severe issue (as outlined in our
paper) that you should report to the server administrator.

Test Server The test server uses an outdated version of
BoringSSL and adds further parameters to the included server.
The ticket decryption is implemented such that it is vulnerable
to padding oracle attacks if the authenticity of the ticket is not
ensured (e.g., no MAC). We recommend running it inside an
isolated environment.

A.2.2 How to access

We provide a repository summarizing our ar-
tifact at https://github.com/tls-attacker/
We-Really-Need-to-Talk-About-Session-Tickets/
tree/ad64fe34f41894f1aa5bbec65cf0446cdb0ad3f8.
This includes the TLS-Scanner source code2 and a testserver.
Further, this also contains the Dockerfiles to build Docker
images of both components yourself. Alternatively, you
can get the Docker image from Docker Hub.3 Within this
document, we describe how to run the scanner using maven
and the server using docker. Additional topics, such as using
the scanner with Docker or the server from source, are
covered in the artifact repo’s readme.

1https://github.com/tls-attacker/TLS-Crawler
2https://github.com/tls-attacker/TLS-Scanner/commit/

a0d4c1a910f0eb3e5ee3e28c9435818820c67919
3snhebrok/tls-scanner-ae and snhebrok/vulnerable-bssl
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A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

For TLS-Scanner a Java 11 development kit and maven are
required.4 To run the server using Docker, Docker needs to
be installed. You can also build the image yourself using the
Dockerfile contained in our repository or pull it from Docker
Hub.

A.2.5 Benchmarks

None.

A.3 Set-up

We provide multiple ways to set up the scanner and test server.
Within this document we cover building the scanner from
source using maven.

A.3.1 Installation

Using Source and Maven You need to clone the code and
then compile it using maven. This automatically fetches all
dependencies.

git clone --recurse-submodules
https://github.com/tls-attacker/
We-Really-Need-to-Talk-About-Session-Tickets

↪→

↪→

cd We-Really-Need-to-Talk-About-Session-Tickets
git checkout c71fb839bd4ad2dc00cbb1a578d7d4254f8aec17
mvn clean package

A.3.2 Basic Test

To verify that the scanner is initialized correctly run the scan-
ner without any arguments:

cd TLS-Scanner/apps
java -jar TLS-Server-Scanner.jar

If everything works correctly this should print an error stating
that the provided parameters could not be parsed (including
a stack trace). This error message should state that the op-
tion -connect is required and also include a stack trace. The
available options should be printed afterward.

If you pass the -connect flag followed by a host, the spec-
ified host should be scanned.

If an error occurs, ensure you are using Java 11 to build
and run the project. Other versions usually fail.

4More information about the TLS-Attacker projects and their re-
quirements can be found under https://github.com/tls-attacker/
TLS-Attacker-Description.

A.3.3 Test Server

The Docker image is available at Docker Hub
as snhebrok/vulnerable-bssl5 with the tag
sessionticket-ae. Running the image will automat-
ically pull it. You can still pull it explicitly with docker
pull snhebrok/vulnerable-bssl:sessionticket-ae.

A.4 Evaluation workflow
A.4.1 Major Claims

To evaluate the ecosystem in our paper, we used TLS-Scanner.
We claim to be able to detect different vulnerabilities related
to TLS session tickets:
(C1): We can detect a variety of default keys for encryption

and authentication. This is shown in experiment (E1).
(C2): We can detect padding oracle vulnerabilities. This is

shown in experiment (E2).
(C3): We can detect missing ticket authentication. This is

shown in experiment (E2).

A.4.2 Experiments

TLS-Scanner scans a single server at a time. For our experi-
ments we propose to scan our test server. You can also scan
other servers, but these might not be vulnerable to our pro-
posed vulnerabilities. All time estimates were created using
a laptop with an i7-1165G7 and 32G of RAM. Each scan
should take about five to ten minutes with the parameters we
recommend below.

Basic Test Execution For each experiment we describe
which parameters to pass to the test server for this experi-
ment. After the test server is started, you need to run TLS-
Scanner against the server. The scan might take some min-
utes and finishes by outputting the results. This also contains
results not related to session tickets. The results related to
session tickets are located in the section with the heading
SessionTicketEval. We describe what this section should
contain for each experiment. For all experiments, there are
some parameters that you should always set, which we outline
below.

Running the Scanner For all tests, you need to execute the
scanner against the testserver as follows:

java -jar TLS-Server-Scanner.jar -connect
[host] -scanDetail NORMAL↪→

[host] is the host to scan (including port). When us-
ing the docker test server as specified, this should be
172.17.0.1:8000.6 The detail affects how many test vectors

5https://hub.docker.com/r/snhebrok/vulnerable-bssl
6Check whether docker assigns this IP to one of your network interfaces.

You can also use any other IP assigned to your device.
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are tested against the server. For our paper we used DETAILED,
but all experiments work with NORMAL (the default value) as
well.

Running the Test Server For the test server we recommend
running it as follows:

docker run --rm -it -p8000:8000
snhebrok/vulnerable-bssl:sessionticket-ae
s_server -accept 8000 -loop -www

↪→

↪→

Depending on the experiment, further parameters need to be
added.

(E1) Detecting default keys:
[5 human-minutes + 5 compute-minutes]
Scan a server whether it uses one of our proposed weak
keys. The scanner outputs the detected key and format
of the ticket.
Test Server Preparation: The test server needs to use
a weak key. Example parameters are
-ticketEnc AES-128-CBC
-ticketEncKey 00
-ticketHMac SHA256
-ticketHMacKey 00
-ticketHMacKeyLen 32

Results: The summary should contain the following
lines:
Ticket use default STEK (enc) : true
Ticket use default STEK (MAC) : true

Further down is a section Default STEK which contains
details about the detected keys for encryption and HMAC
(if you set both groups of parameters). This includes the
detected format, algorithm, and key. For encryption, this
also contains which secret is included in the ticket.
No padding oracle or MAC check issues should be found
as an Encrypt-then-Mac scheme is used (albeit with a
weak key).
Within the repository’s readme we describe how to man-
ually verify this attack using OpenSSL.

(E2) Missing Authentication and Padding Oracles:
[5 human-minutes + 15 compute-minutes]
Scan a server whether it is not properly authenticating
its tickets and even has a padding oracle vulnerability.
Test Server Preparation: The test server must not use
authentication (HMAC) for the ticket. To detect a
padding oracle vulnerability, a CBC cipher must be used.
Example parameters are
-ticketEnc AES-256-CBC
-ticketHMac None

Results: The summary should contain the following
lines:
No (full) MAC check : true
Vulnerable to Padding Oracle : true

Further down is a section Manipulation. This sum-
marizes the behavior the server showed when induc-
ing bitflips into a ticket. Several behaviors are pre-
classified:

A The modified ticket was accepted. The authenticity
of the ticket was hence not verified (completely).

# The modified ticket was accepted, but key material
unknown to the scanner was used. That is, the server
recovered some corrupted key material from the
modified ticket.

_ The modified ticket was rejected, and a normal hand-
shake was performed. This should be the case if the
authenticity of the ticket is properly ensured.

• Other characters are explained in the results.
Further down is a subsection Padding Oracle which
contains details stating at which position the oracle was
found. This also includes the recovered plaintext, as well
as what value was XOR-ed at which position to recover
the plaintext. Further down is a summary of the observed
behavior difference per offset (when modifying the last
byte). Note that multiple offsets might show different
behavior, but not all are necessarily caused by a valid
padding oracle vulnerability. This is internally verified
by trying to recover the second byte. As the Overall
Result is TRUE, this second byte was found.

A.5 Notes on Reusability
We believe the source code can help other re-
searchers to more easily detect default keys in
encrypted blobs with a possibly unknown for-
mat (classes SessionTicketEncryptionFormat,
SessionTicketMacFormat, and DefaultKeys). This
approach could be applied to other protocols where one party
chooses key material to protect a payload.

The code is currently under internal review and will be
merged into the main versions of TLS-Scanner and TLS-
Anvil7 in the future. This allows researchers to more easily
scan for issues related to session tickets. In combination with
TLS-Crawler8, this also allows for performing larger scans.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

7Maehren et al. at Usenix 22
8We used https://github.com/tls-attacker/TLS-Crawler/

commit/d0c6e1e3d6a7168da2181ab74fa0d33b13b426f2 in our scans.
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A Artifact Appendix

This artifact appendix is a self-contained document which
describes a roadmap for the evaluation of DAFL.

A.1 Abstract

DAFL is a directed grey-box fuzzer that leverages data depen-
dency to guide the fuzzing process. DAFL’s artifact provides
a framework to run DAFL as well as the baseline fuzzers. The
framework comprises an environment provided as a Docker
image to run the fuzzers, the source code of DAFL, and the
scripts to run the fuzzers and evaluate the results. This docu-
ment describes how to set up the framework and replicate the
experiment conducted in our paper.

A.2 Description & Requirements

In this section, we describe how to obtain our artifact, along
with the hardware and software requirements to run our arti-
fact.

A.2.1 Security, privacy, and ethical concerns

None

A.2.2 How to access

Our artifact is composed of two components: the Docker im-
age and the framework to build and utilize it. The Docker
image provides the environment to run individual fuzzing
sessions by supporting all the necessary tools and dependen-
cies. The framework builds the Docker image, orchestrates
the fuzzing experiments, and evaluates the results.

The framework is accessible via a Zenodo link (https:
//zenodo.org/record/8219904). You can also down-
load the same framework from the GitHub repository
(https://github.com/prosyslab/DAFL-artifact). For
the Docker image, we provide a pre-built Docker image
via Docker Hub https://hub.docker.com/r/prosyslab/
dafl-artifact. Nonetheless, you can also build the Docker
image from scratch using the Dockerfile provided in the frame-
work.

A.2.3 Hardware dependencies

We ran the experiment on the machines equipped with In-
tel(R) Xeon(R) Gold 6226R CPU (2.90GHz) with 64 cores
and 192 GB of RAM. Each fuzzing session was run on a
Docker container assigned with a single CPU core and 4GB
of memory. As we repeated the experiment 40 times, each
fuzzing session was run in parallel, utilizing 40 CPU cores at
a time.

It is possible to run the experiment on a machine with fewer
CPU cores and smaller RAM, but be sure to assign enough
resources to each fuzzing session (e.g., 1 CPU core and 4GB
of RAM for each fuzzing session).

The disk space requirement will vary depending on the
volume of the experiment. However, we recommend at least
70 GB of disk space, since the provided Docker image alone
is 25 GB and our main experiment results in 45 GB of data.

A.2.4 Software dependencies

Ubuntu 20.04, Docker, and Python 3.8 are required to run the
artifact. The required Python dependencies can be installed
by running the following command in the DAFL-artifact
directory.

yes | pip3 install -r requirements.txt

A.2.5 Benchmarks

As described in our paper (Section 5.1), we used 41 vulnera-
bilities from the Beacon [1] paper.

A.3 Set-up
In this section, we describe how to set up the artifact for
DAFL.

A.3.1 Installation

The following is the steps to install the artifact for DAFL.

1) Download the file DAFL-artifact.tar.gz from the
provided Zenodo link. This file is the aforementioned
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framework where you can build the Docker image, or-
chestrate the fuzzing experiments, and evaluate the re-
sults.

2) Extract the file to a directory of your choice.

tar -zxvf DAFL-artifact.tar.gz

3) Obtain the Docker image by:

1) pulling from Docker Hub

docker pull prosyslab/dafl-artifact

2) or building from scratch

docker build -t prosyslab/dafl-artifact -f Dockerfile .

This Docker image is the environment to run individual
fuzzing sessions.

A.3.2 Basic Test

For a single fuzzing experiment, run the following command
in the DAFL-artifact directory:

python3 scripts/reproduce.py run [target] [time budget]
[iterations] "[list of fuzzers]"

where [target] is the name of the target, [time budget]
is the time budget in seconds, [iterations] is the number
of fuzzing iterations, and [list of fuzzers] is the list of
fuzzers to run.

To run a simple functionality test, we recommend using
the target lrzip-ed51e14-2018-11496 with 60 seconds
of time budget and 10 fuzzing iterations. For the list of
fuzzers, use "AFL AFLGo WindRanger Beacon DAFL".
The command will look like the following:

python3 scripts/reproduce.py run lrzip-ed51e14-2018-
11496 60 10 "AFL AFLGo WindRanger Beacon DAFL"

If set up was successful, a CSV file will be
generated in the output directory with the name
output/lrzip-ed51e14-2018-11496-60sec-10iters.
This CSV file contains the results of the experiment, which is
the median TTE of each fuzzer. In case of running 10 fuzzing
sessions in parallel, this small experiment will take about 10
minutes.

A.4 Evaluation workflow

This section describes the operational steps and experiments
which must be performed to evaluate DAFL’s artifact.

A.4.1 Major Claims

Our paper makes the following claims:

(C1): DAFL is more effective in reproducing target crashes
compared to the baseline fuzzers. This is proven by the
experiment (E1) described in Section 5.2 of our paper
whose results are illustrated in Table 2 and Figure 5.

(C2): Thin slicing shows better fuzzing performance com-
pared to the naive approach. This is proven by the exper-
iment (E2) described in Section 5.3 of our paper whose
results are illustrated in Figure 7.

(C3): Two major components of DAFL, selective coverage
instrumentation and semantic relevance scoring, both
contribute to the fuzzing performance. This is proven
by the experiment (E3) described in Section 5.4 of our
paper whose results are illustrated in Figure 8.

A.4.2 Experiments

We have used a vast amount of resources to conduct the exper-
iments for our paper. For example, we ran a 24-hour fuzzing
session with 6 fuzzers on 41 targets, each repeated 40 times
for the main experiment (E1) described in Section 5.2 of
our paper. If run on a single machine capable of running 40
fuzzing sessions in parallel, this experiment would take 246
days of fuzzing time. We believe that it is not an easy task to
replicate the experiments in our paper at a full scale.

Thus, apart from the instructions to exactly replicate our
paper’s experiments, we additionally provide instructions to
run a scaled down version for each of the experiments to
enable a feasible evaluation. The scaled down version of the
experiments comprises fewer fuzzers, fewer targets, fewer
iterations, and shorter time limit. For example, it excludes the
targets where all the fuzzers failed to produce a median TTE
within 24 hours. It also early terminates the fuzzing session
based on the previously observed median TTE of each target.
We also provide a minimal version of each experiment, which
runs a small subset of targets. For more details on the scaled
down version and the minimal version, please refer to the
README file.

We believe that the scaled down version of the experiments
is sufficient to validate the claims made in our paper. However,
please note that the results of the alternative versions of the
experiments are more prone to fluctuations due to the reduced
number of iterations.

The expected time for each of the experiments is calculated
under the assumption of running the experiment on a machine
where 40 fuzzing sessions can be run in parallel. Each experi-
ment results in a CSV file which contains the median TTE of
each fuzzer for each target and a bar plot in the same format
as in the paper.
(E1): [Effectiveness of DAFL] [246 compute-day + 70GB

disk]: This is the main experiment described in Section
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5.2 of our paper, which compares the effectiveness of
DAFL with the baseline fuzzers.
How to: In the DAFL-artifact directory, run the
following command:

python3 scripts/reproduce.py run tbl2 86400 40

Results: The result is in the form of a CSV file, which
is located in the output directory (refer to the README
file for the exact location of this file). This CSV file
contains the median TTE of each fuzzer for each target.
Additionally, a bar plot will be generated from the CSV
file.

(E1: scaled down): [8 compute-days + 30GB disk]: The
scaled down version of (E1).
How to: In the DAFL-artifact directory, run the
following command:

python3 scripts/reproduce.py run tbl2-scaled 86400 10

Results: Same as (E1), with fewer targets and fuzzers.

(E2): [Effectiveness of thin slicing] [93 compute-day +
60GB disk]: This is the experiment described in Sec-
tion 5.3 of our paper, which compares the effectiveness
of thin and naive slicing approaches.
How to: In the DAFL-artifact directory, run the
following command:

python3 scripts/reproduce.py run fig7 86400 40

Results: In same format as in (E1).

(E2: scaled down): [6 (or 2) compute-days + 30GB disk]:
The scaled down version of (E2).
How to: In the DAFL-artifact directory, run the
following command:

python3 scripts/reproduce.py run fig7-scaled 86400 10

If you have already run (E1: scaled down), the
results of AFL and DAFL will be automatically
reused as long as you have the results of (E1:
scaled down) under the expected output directory,
output/tbl2-scaled-86400sec-10iters. Thus, the
expected runtime will be reduced to 1 compute-day.
Results: Same as (E2), with fewer targets.

(E3): [Effectiveness of DAFL’s components] [124 compute-
day + 60GB disk]: This is the experiment described in
Section 5.4 of our paper, which evaluated the effective-
ness of DAFL’s components.
How to: In the DAFL-artifact directory, run the

following command:

python3 scripts/reproduce.py run fig8 86400 40

Results: In same format as in (E1).

(E3: scaled down): [8 (or 4) compute-days + 30GB disk]:
The scaled down version of (E3).
How to: In the DAFL-artifact directory, run the
following command:

python3 scripts/reproduce.py run fig8-scaled 86400 10

As so in (E2: scaled down), if you have already run (E1:
scaled down), the results of AFL and DAFL will be
automatically reused as long as you have the results of
(E1: scaled down) under the expected output directory,
output/tbl2-scaled-86400sec-10iters. Thus, the
expected runtime will be reduced to 2 compute-days.

Results: Same as (E3), with fewer targets.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

This artifact contains the source code of BoKASAN and the
necessary data for the experiments. For Artifact Functional,
two experiments are proposed, POC test and kernel fuzzing.
The recommended environment for the experiment is Ubuntu
20.04 running on the machine with a multi-core x86_64 CPU
and >=8GB of RAM. Using more CPU cores can reduce
compile time. We expect artifact evaluation to require three
human-hours and 12 compute-hours.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Access the Github repo at https://github.com/seclab-
yonsei/bokasan/tree/usenix-ae

A.2.3 Hardware dependencies

• Multi-core x86_64 CPU (e.g., Intel i5, i7)

• >=8GB RAM

• >=100GB HDD/SSD

A.2.4 Software dependencies

• Ubuntu 16.04, 18.04, or 20.04

• gcc-6 or 7

• qemu-system-x86

• Syzkaller

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

To install BoKASAN, download the target kernel and build
it with the ‘CONFIG_FUNCTION_TRACER’ flag set. Then,
compile the loadable BoKASAN module according to the
target kernel version. Finally, create a Linux image and in-
sert the compiled BoKASAN module. Detailed installation
instructions are described in README.md.

A.3.2 Basic Test

When the BoKASAN module is successfully compiled and
the .ko file is created, run the target kernel using QEMU and
load the module. If the installation is successful, we can find
that the BoKASAN module is loaded on the target kernel
using the lsmod command. We provide script/qemu.sh to run
the QEMU.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): BoKASAN detects out-of-bounds and use-after-free
bugs in kernels to which KASAN is not applied. This is
proven by the experiment (E1) described in Section 5.1
whose results are reported in Table 5.

(C2): BoKASAN detects out-of-bounds and use-after-free
bugs when fuzzing kernels to which KASAN is not ap-
plied. This is proven by the experiment (E2).

A.4.2 Experiments

(E1): [POC test] [30 human-minutes + 1 compute-hour]:
Reproduce Table 5 of the paper. Execute 15 POC codes
on the target kernel.
How to: Execute 15 POCs that trigger out-of-bounds
and use-after-free bugs on the target kernel running
on QEMU. The detailed process is described in
README.md.
Preparation: Download and compile Linux kernel
v4.19 without ‘CONFIG_KASAN’ flag. Make a Linux
image including the BoKASAN module. This is pre-
pared during the installation mentioned above. Then,
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execute compile.py and mount.sh in the poc/syz direc-
tory. As a result, a Linux image containing POC binaries
is created.
Execution: Run scripts/qemu.sh to boot the target ker-
nel. After the target kernel boots, executes the POC bina-
ries under the poc_syz directory. Each POC is located in
the “vuln type"_“vuln name" directory as the executable
binary named repro_setpid. Execute one of the POC,
wait for about 15 seconds, and then terminate QEMU
using the ctrl a+x command. Repeat the above steps to
test all of the POCs.
Results: When BoKASAN successfully detects a bug,
the message "BUG: KASAN: ..." is printed as dmesg.

(E2): [Fuzzing test] [30 human-minute + 6 compute-hour]:
Performing fuzzing on the kernel to which KASAN is not
applied using Syzkaller.
How to: Fuzzing the kernel to which KASAN is not ap-
plied using Syzkaller. The detailed process is described
in README.md.
Preparation: Download Syzkaller and patch it using
syzkaller/syz.diff. Then build Syzkaller following their
guidelines. Compile target kernel with KCOV and with-
out KASAN. Fuzzing Linux kernel 4.19 with the Linux
image including BoKASAN.
Execution: Run the scripts/run_fuzz.sh to perform
fuzzing.
Results: We can see the KASAN log in Syzkaller’s web
interface or in the results directory when BoKASAN
detects OOB and UAF bugs.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: FirmSolo: Enabling dynamic analysis of
binary Linux-based IoT kernel modules

Ioannis Angelakopoulos, Gianluca Stringhini, and Manuel Egele
Boston University

{jaggel, gian, megele}@bu.edu

A Artifact Appendix

A.1 Abstract

Our artifacts include the source code and instructions about
how to install the FirmSolo prototype and use it to analyze
the binary kernel modules of IoT firmware images. We pro-
vide two examples of firmware images that can be analyzed
with FirmSolo. We also packaged FirmSolo within a docker
image along with the two downstream analysis systems (i.e.,
Firmadyne and TriforceAFL) that we used to demonstrate
FirmSolo’s utility. The docker image can run on any system
that has docker installed.

In this appendix, we describe the steps to analyze a sam-
ple firmware image using FirmSolo. The analysis process
involves extracting metadata information from the kernel
modules within the firmware image, reverse engineering the
original firmware kernel and building a custom kernel capa-
ble of loading said modules. Finally, we demonstrate how
downstream analysis tools can take advantage of FirmSolo to
analyze the kernel modules within firmware images for bugs
and vulnerabilities.

A.2 Description & Requirements

A.2.1 How to access

You can access the artifacts at https://github.com/
BUseclab/FirmSolo/tree/v1.0.0

A.2.2 Hardware dependencies

None

A.2.3 Software dependencies

Python, Docker and Java (for Ghidra).

A.2.4 Benchmarks

For the artifact evaluation we use an example Netgear
firmware image as a benchmark (id = 1).

A.3 Set-up
A.3.1 Installation

Using the Docker:
Download the docker image from:
https://doi.org/10.5281/zenodo.7865451
Install the docker image:
docker load < firmsolo.tar.gz
git clone https://github.com/BUseclab/FirmSolo.git
cd FirmSolo
docker build -t firmsolo .
Spawn a docker container:
docker run -v $(pwd):/output --rm -it

--privileged firmsolo /bin/bash

Manual Installation:
To manually install and run FirmSolo you first need to

install these dependencies:
sudo apt-get install build-essential

zlib1g-dev pkg-config libglib2.0-dev
binutils-dev libboost-all-dev autoconf libtool
libssl-dev libpixman-1-dev libpython3-dev
python3-pip python3-capstone python-is-python3
virtualenv sudo gcc make g++ python3 python2
flex bison dwarves kmod universal-ctags fdisk
fakeroot git dmsetup kpartx netcat-openbsd
nmap python3-psycopg2 snmp uml-utilities
util-linux vlan busybox-static postgresql wget
cscope qemu qemu-system-arm qemu-system-mips
qemu-system-mipsel qemu-utils

Install these python packages:
pip3 install ply anytree sympy requests

pexpect scipy
Within the FirmSolo installation directory run:
git submodule init
git submodule update
Install Ghidra:
Follow instuctions in https://ghidra-sre.org/

InstallationGuide.html
Download TriforceAFL:
git clone https://github.com/BUseclab/TriforceAFL.git
cd TriforceAFL && make
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Download TriforceLinuxSyscallFuzzer:
git clone https://github.com/BUseclab/Triforce-

LinuxSyscallFuzzer.git

cd TriforceLinuxSyscallFuzzer &&
./compile_harnesses.sh

Note: The compile_harnesses.sh script will make use
of legacy (and unavailable) compiler toolchains that are cur-
rently only installed within the Docker image.

Download Firmadyne:
git clone --recursive

https://github.com/BUseclab/firmadyne.git

Download the buildroot filesystems:
https://drive.google.com/file/d/

11GiU8N1U4Nkhv-kurkoGgwmp38CM_Umg/view?usp=
share_link and download the buildroot_fs.tar.gz file within
FirmSolo’s installation directory.

Execute:
tar xvf builroot_fs.tar.gz

Finally, specify the toolchain to be used by FirmSolo.
Go into the installation directory of FirmSolo and edit
the custom_utils.py script. Within the get_toolchain
function edit the cross variable with the path(s) to your
toolchain(s).

A.3.2 Basic Test

Our basic test for FirmSolo includes statically analyzing the
kernel modules within a firmware image to extract metadata
about the original firmware kernel. Please proceed as follows:

Spawn a docker container according to Section A.3.1 and
run:

mkdir -p /output/images/

On your host download the images from
this link: https://drive.google.com/file/d/
1xzdTAz3PexQD8YWWAg7KYyQ8dQiVTGiR/view?usp=
share_link

Execute:
tar xvf examples.tar.gz

cp -r ./examples/* <work_dir>/images/

The work_dir is your work directory (e.g., ./)

Then inside your container execute:
cd /FirmSolo

python3 firmsolo.py -i 1 -s 1

ls /output/Image_Info/

After running the ls command you should see a file named
1.pkl within the /output/Image_Info/ directory.

A.4 Evaluation workflow

A.4.1 Major Claims

FirmSolo is a framework that exposes Linux-based binary
IoT kernel modules to downstream analysis. Below we list
and prove the claims related to the evaluation of our artifact.
(C1): FirmSolo reverse engineers the original kernel of a

firmware image and builds a new kernel supported by
QEMU that can load the kernel modules within the
firmware image. This claim is proven by experiment
(E1), described in Section 5.2, Table 2 and Figure 2 in
our paper.

(C2): Downstream analysis systems can use FirmSolo to
analyze binary firmware kernel modules for bugs and
vulnerabilities. This claim is proven in Experiments (E2)
and (E3), described in Section 5.4, Table 5 and Table 6
in our paper.

A.4.2 Experiments

We assume that you use the docker image to perform the
artifact evaluation.
(E1): [Reverse Engineering] [5 human-minutes + 10

compute-minutes + 5GB disk]: In this experiment Firm-
Solo extracts metadata from the binary kernel modules
of a firmware image, reverse engineers the original
firmware kernel and builds a new kernel capable of load-
ing the kernel modules within the firmware image.
Preparation: Copy the extracted file-system and kernel
of the target firmware image in the work directory.
Execution: After you install and connect to the docker
container as described in Section A.3.1, proceed to
analyze an example firmware image:

Within the docker execute:
mkdir -p /output/images/

On your host download the images from this
link (if you have not implemented the basic
test): https://drive.google.com/file/d/
1xzdTAz3PexQD8YWWAg7KYyQ8dQiVTGiR/view?
usp=share_link

Execute:
tar xvf examples.tar.gz
cp -r ./examples/* <work_dir>/images/
The work_dir is your work directory (e.g., ./)

To analyze image 1 with FirmSolo, inside your container
execute:
cd /FirmSolo
python3 firmsolo.py -i 1 -a

FirmSolo will analyze firmware image 1, reverse
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engineer the original firmware kernel and build a new
kernel that is capable of loading the kernel modules
within image 1. FirmSolo will also find which kernel
modules can actually load and also which kernel
modules crash during emulation (if any). If any kernel
modules crashed during emulation, FirmSolo will try to
address the error by running stage 2c.

Results: To get information about the analyzed image
1, such as the kernel modules within the firmware
image, the kernel modules that loaded successfully using
the FirmSolo kernel, the kernel modules that crashed
during emulation and the kernel module substitutions
implemented by FirmSolo, run this command:

python3 firmsolo.py -i 1 -d

In the output you should see:
Image: 1 Total Modules: 16 Loaded Modules:
5 Crashing Modules: 0 Substitutions: 0

along with specific information about which modules
were successfully loaded, crashed, and substituted.
Note: Depending on the metadata information ex-
tracted/processed in this step (e.g., kernel symbols) this
step can take longer. However, FirmSolo caches data
about each kernel version used by the firmware images
it analyzes, which renders future runs faster.

(E2): [TriforceAFL] [1 human-minute + 1.5 compute-hour]:
In this experiment you use the TriforceAFL kernel fuzzer
to analyze the kernel modules within the target firmware
image.
Preparation: None
Execution: Setup TriforceAFL with these commands:

echo core >/proc/sys/kernel/core_pattern
cd /sys/devices/system/cpu
echo performance | tee
cpu*/cpufreq/scaling_governor

These commands are needed by AFL for improving
performance. To fuzz the kernel modules within image 1
for 30 minutes each run:

python3 ./triforceafl/triforce_run.py -i 1
-t 30m

The triforce_run.py script will analyze the binary
kernel modules within image 1 which expose an IOCTL
interface. The script will find potential IOCTL command
numbers that can be used to access these IOCTL inter-
faces and will use the command numbers found as seeds
for TriforceAFL. Image 1 has two kernel modules that
can be fuzzed (acos_nat.ko and ipv6_spi.ko). The kernel

module acos_nat.ko exposes two IOCTL interfaces and
each will be fuzzed separately. Thus the total fuzzing
time for both kernel modules will be around 90 minutes.
Results: The fuzzing results will be available in the
/output/Fuzz_Results_Cur/1 directory. To be
able to quickly test for a crash found by the fuzzer run
this command:

python3 ./triforceafl/get_fuzzing_cmd.py 1

If the fuzzer triggered any crashes for any of the IOCTL
interfaces fuzzed, the get_fuzzing_cmd.py script will
output commands that can be copy/pasted into the termi-
nal and executed to quickly test a crash. The commands
will be available under the CRASHES: section (for each
IOCTL interface) else this section will be blank.

(E3): [Firmadyne] [1 human-minute + 30 compute-minutes]:
In this experiment you use the Firmadyne dynamic analy-
sis system to analyze the kernel modules within the target
firmware image.
Preparation: None
Execution: Run the Firmadyne analysis for image 1 as
follows:

cd /firmadyne && ./experiment.sh 1

The experiment.sh script will run a full analysis
with Firmadyne; creating a file-system, detecting a
network configuration and testing the firmware kernel
modules of image 1 against exploits from ExploitDB and
the bugs found by TriforceAFL as explained in our paper.

Results: The results will be available in the
/output/firmadyne_results/1 directory.

To check if any of the exploits from Ex-
ploitDB and the TriforceAFL bugs triggered
a crash, manually inspect the serial logs under
/output/firmadyne_results/1/[remote,local]/
and /output/firmadyne_results/1/afl/, respec-
tively.
The qemu.final.serial.log_2694_ipv6_spi_1 file
in /output/firmadyne_results/1/afl/ should con-
tain an “Oops” message. It might be the case though
that the crash message is not present because the kernel
hangs before printing it. In this case you may need to
re-run the analysis.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

In this artifact we provide the means to reproduce our main
results. Specifically, we show that our framework, UNCON-
TAINED, finds container confusion, both dynamically while
fuzzing and statically with dataflow tracking. We have eval-
uated our artifact on an Ubuntu 22.04.1 (stock Linux kernel
v.5.15) with 16 cores @2.3GHz (AMD EPYC 7643) using a
total of 16 QEMU-KVM virtual machines with 4GB RAM.
Our source code is available at: github.com/vusec/uncontained.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Since UNCONTAINED is only used for bug finding either stat-
ically or dynamically but running within VMs it does not
impose any machine security, data privacy or other ethical
concerns.

A.2.2 How to access

The files for the artifact evaluation are available at: https:

//github.com/vusec/uncontained/releases/tag/ae.

A.2.3 Hardware dependencies

UNCONTAINED does not impose any strict hardware re-
quirements but we assume a recent x86_64 machine with
enough RAM (minimum 64GB, or enough swap) to compile
LLVM/Linux and run virtual QEMU machines for fuzzing
with syzkaller.

A.2.4 Software dependencies

We expect certain packages from the Ubuntu package man-
ager to be installed, which are required to compile LLVM,
Linux, syzkaller, etc. We describe the necessary packages in
the Set-up section.

If you use a different distribution you need to make sure
to fulfil the necessary dependencies using your dedicated
package manager.

A.2.5 Benchmarks

None.

A.3 Set-up
In general, we recommend using a bare-metal desktop system
running Ubuntu 22.04. Make sure that you have KVM support
and your user is allowed to use KVM. The following packages
are required:

# go-task
sh -c "$(curl -ssL https://taskfile.dev/install.sh)" \

-- -d -b ~/.local/bin
# llvm-project
sudo apt install build-essential clang-12 lld-12 ninja-build \

ccache cmake
# linux
sudo apt install bison flex libelf-dev libssl-dev coccinelle
# syzkaller
sudo apt install debootstrap
# install golang 1.20.5
GO_VERSION=go1.20.5.linux-amd64
wget https://go.dev/dl/$GO_VERSION.tar.gz
sudo rm -rf /usr/local/go
sudo tar -C /usr/local -xzf $GO_VERSION.tar.gz
rm -f $GO_VERSION.tar.gz
# qemu
sudo apt install qemu-system-x86
# evaluation
pip3 install scipy pandas
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Then make sure that ~/.local/bin and /usr/local/go/bin are
in your PATH to find go and the task binaries:

export PATH=$HOME/.local/bin:/usr/local/go/bin:$PATH

A.3.1 Installation

1. Obtain the artifact source and necessary dependencies:

git clone --recurse-submodules \
https://github.com/vusec/uncontained.git

2. Create the kernel-tools/.env file with the following content
(replace /patch/to/uncontained with the actual absolute path):

REPOS=/path/to/uncontained
LLVMPREFIX=/path/to/uncontained/llvm-project/build
KERNEL=/path/to/uncontained/linux
ENABLE_KASAN=1
ENABLE_DEBUG=1
ENABLE_SYZKALLER=1
ENABLE_GDB_BUILD=1
ADDITIONAL_LLVM_VARIABLES=-DLLVM_ENABLE_EH=ON -DLLVM_ENABLE_RTTI=ON

3. Compile all the necessary dependencies (this will take a
while to compile llvm-project and Linux with fullLTO):

scripts/compile.sh

A.3.2 Basic Test

To test if the sanitizer and the static analyzers work as intended
you can use the tests by running the following:

LLVM_DIR=$PWD/llvm-project/build tests/test.sh
LLVM_DIR=$PWD/llvm-project/build tests/testDF.sh

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The UNCONTAINED sanitizer finds new types of con-
tainer confusions. This is proven by the experiment (E1).

(C2): The UNCONTAINED sanitizer comes with an accept-
able performance runtime overhead. This is proven by
the experiments (E2) and (E3).

(C3): The UNCONTAINED static analyzer has been used to
uncover new bugs in the Linux kernel. This is proven by
the experiments (E4).

A.4.2 Experiments

(E1): [fuzzing evaluation] [2 human-hours + 24 compute-
hours]: This is the fuzzing experiment using the sanitizer
while fuzzing with syzkaller. Expected results are a range
of bugs reported.
How to: kernel-tools is responsible for starting the
fuzzer with the kernel that has been instrumented with
the sanitizer.
Preparation: Make sure you setup everything from
the Installation step, including building syzkaller and
create the syzkaller image (should be done by the
./scripts/compile.sh script).

Execution: You can compile the kernel with in-
strumentation and start the fuzzer with executing
./scripts/compile.sh && ./scripts/run.sh. Then
let it run for at least 24 hours to get some results.
Results: The result will be the crashes in the
kernel-tools/out/syzkaller-workdir/crashes

directory. We need to manually filter out bugs that are
not triggered by UNCONTAINED (all that do not have
three lines of [UNCONTAINED] before the BUG: line).

(E2): [2 human-hours + 30 compute-hours]: This is the
fuzzing performance experiment using the sanitizer while
fuzzing with syzkaller. Expected results are the overhead
in terms of throughput of executed testcases.
How to: We need to run syzkaller 10 times for one hour
for the baseline (stock syzkaller), with KASAN and with
UNCONTAINED.
Preparation: Make sure you setup everything from
the Installation step, including building syzkaller and
create the syzkaller image (should be done by the
./scripts/compile.sh script).
Execution: You can compile the kernel with in-
strumentation and start the fuzzer with executing
./scripts/run-fuzzing-performance-evaluation.sh.
Then let it run for the 30 hours to get the results.
Results: The result will be the percentage of decreased
executed testcases when running syzkaller. You can now
look at the results with executing:

./scripts/evaluation/syzkaller-bench.py --prefix \
'evaluation/syzkaller/results/syzkaller-bench-'

(E3): [1 human-hour + 1 compute-hour]: This is the LM-
Bench experiment using the sanitizer while running the
benchmarking suite to verify performance overhead.
How to: We need to run LMBench 10 times for the differ-
ent configurations (baseline, UNCONTAINED, KASAN).
Preparation: Make sure you setup everything from
the Installation step, including building syzkaller and
create the syzkaller image (should be done by the
./scripts/compile.sh script).
Execution: You can compile the kernel with in-
strumentation and start LMBench with executing
./scripts/run-lmbench-performance-evaluation.sh.
Then let it run to get the results.
Results: The result will be the overhead numbers of the
different configurations on top of the baseline for the
LMBench testcases. You can now look at the results with
executing:

./scripts/evaluation/lmbench.py --prefix \
'evaluation/lmbench/results'

(E4): [1 human-hour + 3 compute-hours]: This is the static
analyzers experiment using the static analyzer to find the
necessary reports with static analysis.
How to: Compile the kernel with our static analyzers
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enabled to extract all the bug reports.
Preparation: Make sure you setup everything from
the Installation step, including building syzkaller and
create the syzkaller image (should be done by the
./scripts/compile.sh script).
Execution: You can generate all the reports with
./scripts/run-static-analyzer.sh. Then let it run
to get the results.
Results: The result will be the reports for the different
rules. The results from the LLVM passes are in YAML
and are not yet grouped by the source line (to remove
duplicates). The results from the coccinelle script are text
based and are already filtered based on uniqueness. You
can load the YAML reports into the vscode-extension

to look at them in a more convenient way and do the
grouping based on the source code line.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
In our paper we explore how educators balance the security
and privacy of their students with the requirements of remote
exams. We developed a survey and we had n=125 educator re-
sponses. In our archive we make available functional artifacts
that can be used to reproduce our qualitative and quantita-
tive study results. The artifact includes the survey, R-scripts,
Python, and shell scripts with detailed instructions on how
to run this software. A single PC, Mac, or Linux machine
should be sufficient hardware. Software requirements include
RStudio, Python, and a terminal to run a shell script. The
artifact can be evaluated by running the R-programming files,
and evaluating the qualitative coding results.

A.2 Description & Requirements
This archive contains the survey questionnaire, and the data
obtained from an online survey conducted during our study.
The archive includes qualitative open coding analysis of open-
ended survey results, as well as the R-scripts used to processes
the quantitative results. We have included all of the software
that we created to deploy the online survey. We have provided
instructions for running the analysis.

A.2.1 Security, privacy, and ethical concerns

All datasets have been sanitized of any personally identifi-
able information. ResponseId variables are randomized alpha-
numeric strings.

A.2.2 How to access

The artifact can be accessed at the following URL:
https://github.com/gwusec/

2023-USENIX-Educator-Perspectives-of-Exam-Proctoring/
tree/10b55097bd807eb0cf3e6a41b154fe4e4e235f43

Please read the provided README.md file
for full details: https://github.com/gwusec/

2023-USENIX-Educator-Perspectives-of-Exam-Proctoring/
tree/10b55097bd807eb0cf3e6a41b154fe4e4e235f43/
README.md

A.2.3 Hardware dependencies

A single PC, Mac, or Linux machine should be sufficient
hardware.

A.2.4 Software dependencies

Software requirements: RStudio, Python, shell.

A.2.5 Benchmarks

None.

A.3 Set-up

1. Install RStudio https://support--rstudio-com.
netlify.app/products/rstudio/download/ and
use the R command install.packages() to install the
following R packages which are required to run the R
scripts: ordinal, MASS, tidyverse, ggalluvial, ggrepel,
ggfittext, cowplot, scales, lubridate, broom, xtable,
rstatix, Hmisc

2. Install Python 3+ https://www.python.org/
downloads/

3. Clone or download the git reposi-
tory https://github.com/gwusec/
2023-USENIX-Educator-Perspectives-of-Exam-Proctoring/
tree/10b55097bd807eb0cf3e6a41b154fe4e4e235f43

4. Run the scripts/qualitative-analysis/runirr.sh shell script
to validate the inter-rater reliability scores

5. Load the scripts/quantitative-analysis/2021-
educator.Rmd into RStudio and run the script to
generate the figures and regression tables
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6. Create a free Qualitrics account https:
//www.qualtrics.com/free-account/

7. Load the survey questionnaire Qualitrics file survey-
instruments/Online_Proctoring_Educator_Survey.qsf
into Qualtrics. To do this on Qualtircs you should select
“Create a survey using a file.”

A.3.1 Installation

https://github.com/gwusec/
2023-USENIX-Educator-Perspectives-of-Exam-Proctoring/
blob/10b55097bd807eb0cf3e6a41b154fe4e4e235f43/
survey-instruments/Readme.md

A.3.2 Basic Test

Open the https://github.com/gwusec/
2023-USENIX-Educator-Perspectives-of-Exam-Proctoring/
blob/10b55097bd807eb0cf3e6a41b154fe4e4e235f43/
scripts/quantitative-analysis/2021-educator.Rmd
R-script in the RStudio program and run the script.

A.4 Evaluation workflow
We created and deployed an online survey. We collected data
from the survey and used qualitative open coding to analyse
the qualitative results, and R-programming to analyse the
quantitative results. Both the qualitative spreadsheets and R-
scripts are provided, along with the raw data from the surveys.

A.4.1 Major Claims

The key results of the paper are the online survey result data
and the detailed analysis of this data. The descriptive figures
and regression analysis as described in the paper is our next
key results, and those can be validated using the raw data
along with the provided R-scripts.

A.4.2 Experiments

The figures and regression tables can be rebuilt using the
provided R-scripts.

A.5 Notes on Reusability
The survey can be loaded in Qualtrics and new data obtained.
The R-Scripts can be resused with new data. The irr.py script
can be used to check new qualitative data.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: No more Reviewer #2: Subverting
Automatic Paper-Reviewer Assignment using Adversarial Learning

Thorsten Eisenhofer*†, Erwin Quiring∗†‡, Jonas Möller§, Doreen Riepel†,
Thorsten Holz¶, Konrad Rieck§

†Ruhr University Bochum
‡International Computer Science Institute (ICSI) Berkeley

§Technische Universität Berlin
¶CISPA Helmholtz Center for Information Security

A Artifact Appendix

A.1 Abstract

The number of papers submitted to academic conferences is
steadily rising in many scientific disciplines. To handle this
growth, systems for automatic paper-reviewer assignments
are increasingly used during the reviewing process. These
systems use statistical topic models to characterize the content
of submissions and automate the assignment to reviewers. In
this paper, we show that this automation can be manipulated
using adversarial learning. We propose an attack that adapts a
given paper so that it misleads the assignment and selects its
own reviewers. Our attack is based on a novel optimization
strategy that alternates between the feature space and problem
space to realize unobtrusive changes to the paper. To evaluate
the feasibility of our attack, we simulate the paper-reviewer
assignment of an actual security conference (IEEE S&P) with
165 reviewers on the program committee. Our results show
that we can successfully select and remove reviewers without
access to the assignment system. Moreover, we demonstrate
that the manipulated papers remain plausible and are often
indistinguishable from benign submissions.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

There are no expected risks or others ethical concerns when
executing the artifact.

A.2.2 How to access

The code for the artifact is available on GitHub
github.com/RUB-SysSec/adversarial-papers with commit
hash 01fc915612c7ca72481b50ab7700dde1e0fa6188.

*Shared first authorship

The main experiments require the following files

evaluation
|-- models
| |-- overlap_0.70
| |-- victim
|-- problemspace
| |-- bibsources
| |-- llms
| |-- synonyms
|-- submissions
| |-- oakland_22
|-- targets

|-- budget-vs-transformer.json
|-- featurespace-search.json
|-- surrogates

|-- surrogate_targets_4.json

Targets files and bib sources are included in the repository. Pre-
trained models and required target submissions are provided
at blinded. Due to licensing issues, we cannot make these
submissions publicly available. We do, however, publish all
of our crawling scripts, dummy examples, and pre-trained
models. Refer to the repository for more information.

A.2.3 Hardware dependencies

The evaluation does not require special hardware. All exper-
iments can be performed on a “regular” server using only
CPUs. We performed the experiments on a server with 256
GB RAM and two Intel Xeon Gold 5320 CPUs.

A.2.4 Software dependencies

We provide a docker container that setups the required envi-
ronment and which can be used to run the experiments.

A.2.5 Benchmarks

There are no benchmarks required to evaluate this artifact.
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A.3 Set-up
A.3.1 Installation

For ease of use, we include a Dockerfile with all necessary
tools to reproduce the results from the paper. It can be build
via

git clone
https://github.com/RUB-SysSec/adversarial-papers.git
adversarial-papers

↪→

↪→

cd adversarial-papers; ./docker.sh build

After building the container, it is possible to spawn a shell
with

./docker.sh shell

All containers get automatically deleted after the shell exits
(cf. the --rm flag from docker run). To make the evaluation
results both easily accessible and persistent, we map subdi-
rectories of the evaluation folder evaluation from the host
inside the container. To setup all paths correctly, it is therefore
necessary to invoke the docker.sh in the base directory of
the project.

A.3.2 Basic Test

After building the docker container, you can test your setup
by running the following command

./docker.sh run "python3
/root/adversarial-papers/src/attack.py --targets_file
/root/adversarial-papers/evaluation/targets/test.json
--format_level --workers 1 --trial_name basic-test"

↪→

↪→

↪→

This will start the attack for the target described in
evaluation/targets/test.json. If everything is work-
ing properly, the attack should run for one iteration
and immediately return successful. Results are stored in
evaluation/trials/basic-test.

The main entry point for the attack is in the src/attack.py
file. There are options provided to configure almost every
aspect of the attack grouped into general, feature-space and
problem-space specific configurations. See the documentation
in the repository for further details.

When setting the number of workers to 1, the attack produces
verbose output for debugging. For larger numbers, this output
is not send to stdout but stored only as a log file in the
respective result directory.

A.4 Evaluation workflow
The full evaluation consists of ten experiments, which requires
about 6.5 CPU years to fully execute. In the following, we
therefore describe only the subset of experiments we think are
necessary to reproduce the major claims in the paper. Refer to
the documentation in the repository for a complete description

of all ten experiments include the hyperparameter search, and
how to train your own models.

Each experiment is configured with a file describing all con-
sidered targets (--targets_file). These files are located at
evaluation/targets. The scripts to re-generate these files
are located at scripts/targets. Each target is optimized
to run on a single-core and the experiments are therefore
highly amneable for parallelization across CPU cores and
machines. Note, that depending on the experiments more or
less computer memory might be required (e.g., the black-box
experiments require more memory per instance to store the
surrogate models). Depending on the machine, this might
limit the number of parallel executions. To get a good esti-
mate, we will additionally report an approximated (!) maximal
memory per instance (e.g., with 100 workers the experiment
requires 100× the amount of this value).

Finally, for almost any experiment, it is possible to contin-
uously check the current results which might allow to stop
experiments early if the numbers have sufficiently converged
(see the expected results for each experiment). Sending the
interrupt signal (w/ CTRL+C) should usually stop all pro-
cesses, but sometimes the scripts need a bit more persuasion.
In this case, stopping the container proved to be an effec-
tive strategy (i.e., docker kill <container-id> with the
container id either being autocomplete with pressing TAB or
using docker ps).

A.4.1 Major Claims

In the paper, we investigate three major claims:

(C1): First, we show that the proposed attack is effective in
crafting adversarial papers in a white-box setting. This
is investigated with experiment (E1) described in the
feature-space search paragraph in Section 4.1. The re-
sults of the experiment are reported inline in the text as
well as Table 2.

(C2): Second, we demonstrate that the attack extends to dif-
ferent classes of transformations. This is described in
the all transformations paragraph in Section 4.1 and is
part of experiment (E2). The results of the experiment
are reported in Figure 4.

(C3): Finally, we analyze if the attack remains viable in a
black-box scenario as described in Section 4.2. We con-
sider this in experiment (E3) and simulate the attack with
varying numbers of surrogate models.

A.4.2 Experiments

(E1): Feature-space search [800 CPU hours + 31GB disk]:
We start our evaluation by examining the feature-space
search of our attack. For this experiment, we consider
format-level transformations that can realize arbitrary
changes. Other transformations are evaluated as part of
experiment (E2).
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The experiment can be executed with:
WORKERS=100
./docker.sh run "python3

/root/adversarial-papers/src/attack.py
--targets_file
/root/adversarial-papers/evaluation/

↪→

↪→

↪→

targets/featurespace-search.json --reviewer_window 6
--reviewer_offset 2 --no_successors 256
--beam_width 4 --step 64
--problem_space_block_features
--feature_problem_switch 8 --format_level
--workers ${WORKERS} --trial_name
featurespace-search"

↪→

↪→

↪→

↪→

↪→

↪→

Per worker, roughly 850MB of memory are
expected. Adjust the number of parallel exe-
cutions accordingly. Raw results are stored in
evaluation/trials/featurespace-search and can
be analyzed with
./docker.sh run "python3 /root/adversarial-papers/
evaluation/scripts/00_featurespace_search.py"

Expected output (cf. Table 2 and inline in text)
FEATURE-SPACE SEARCH
[+] Overall success rate

-> 99.67%

[+] Overall run-time
-> median: 7m 12s

[+] Overall L1
-> min : 9
-> max : 22621

[+] Ratio between modifications and original content
-> selection: 9.42%
-> rejection: 13.37%

[+] Modifications per objective
Selection Rejection Substitution

L1 704 1032 2059
Linf 17 43 62

(E2): All transformations [1200 CPU hours + 32GB disk]:
In experiment (E1), we have focused on format-level
transformations to realize manipulations. These trans-
formations exploit intrinsics of the submission format,
which effectively allows us to make arbitrary changes
to a PDF file. In experiment (E2) we consider different
classes of transformations as introduced in Section 3.2.

The experiment can be executed with:
WORKERS=100
./docker.sh run "python3

/root/adversarial-papers/src/attack.py
--targets_file
/root/adversarial-papers/evaluation/

↪→

↪→

↪→

targets/budget-vs-transformer.json
--problem_space_block_features --reviewer_window 6
--reviewer_offset 2 --no_successors 256
--beam_width 4 --step 64 --workers ${WORKERS}
--trial_name budget-vs-transformer-1"

↪→

↪→

↪→

↪→

Per worker, roughly 2300MB of memory are
expected. Adjust the number of parallel exe-

cutions accordingly. Raw results are stored in
evaluation/trials/budget-vs-transformer and
can be analyzed with
./docker.sh run "python3 /root/adversarial-papers/
evaluation/scripts/04_all_transformations.py"

Expected output (cf. left part of Figure 4)
[+] Switches

found no trials

[+] Budget
0.25 0.50 1.00 2.00 4.00

Text : 22.00 28.00 40.00 52.00 68.00
+ Encoding: 24.00 31.00 45.00 53.00 69.00
+ Format : 100.00 100.00 100.00 100.00 99.00

[+] Saved plot @
evaluation/plots/all-transformations.pdf↪→

Note that the full plot in Figure 4 aggregates eight of
such runs.

(E3): Surrogates [1000 CPU hours + 46GB disk]: In practice,
an attacker typically does not have unrestricted access to
the target system. We therefore also assume a black-box
scenario and consider an adversary with only limited
knowledge.

The experiment can be executed with:
WORKERS=50
./docker.sh run "python3

/root/adversarial-papers/src/attack.py
--targets_file
/root/adversarial-papers/evaluation/targets/

↪→

↪→

↪→

surrogates/surrogate_targets_4.json --reviewer_window
2 --delta -0.16 --reviewer_offset 1
--no_successors 128 --beam_width 4 --step 256
--problem_space_block_features
--feature_problem_switch 8 --format_level
--workers ${WORKERS} --trial_name surrogates-4"

↪→

↪→

↪→

↪→

↪→

Per worker, roughly 2000MB of memory are
expected. Adjust the number of parallel exe-
cutions accordingly. Raw results are stored in
evaluation/trials/surrogates-4 and can be
analyzed with
./docker.sh run "python3 /root/adversarial-papers/
evaluation/scripts/05_surrogates.py"

Expected output (cf. Figure 5 with ensemble size 4)
[+] Saved plot @ evaluation/plots/surrogates.pdf

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: WaterBear: Asynchronous BFT with
Information-Theoretic Security and Quantum Security

Haibin Zhang, Sisi Duan, Boxin Zhao, and Liehuang Zhu

A Artifact Appendix

A.1 Abstract

This document provides a tutorial on how to use the Water-
bear codebase. In particular, five protocols are evaluated in the
paper: BEAT-Cobalt; WaterBear-C; WaterBear-Q; WaterBear-
QS-C; WaterBear-QS-Q. The results are evaluated on Ama-
zon EC2 instances, reproducing the results of which requires
an account on AWS. As reproducing all of our results in the
paper is time-consuming (which takes us a few weeks), this
document only focuses on how to use the codebase. If one is
interested in reproducing the results in the paper, please refer
to README under the waterbear/ec2 folder of our codebase
for details.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

There is no security, privacy, or ethical concerns.

A.2.2 How to access

Our code can be obtained from https://github.com/
fififish/waterbear, and the stable version can be found at
https://github.com/fififish/waterbear/releases/
tag/usenixsec.

To prevent testers from being able to download
dependencies, we provide a complete code base in-
cluding all dependencies, which can be obtained from
https://github.com/fififish/waterbear/tree/
waterbear-with-dependencies. All dependencies are
included in "waterbear/src/".

A.2.3 Hardware dependencies

All experiments are deployed on EC2 of Amazon Web Ser-
vices. We use both t2.medium and m5.xlarge instances for
our evaluation. The t2.medium type has two virtual vC-
PUs (Intel Xeon expandable processor with maximum fre-
quency of 3.3GHz) and 4GB memory and the m5.xlarge
has four vCPUs (Intel Xeon Platinum processor with maxi-
mum frequency of 3.1GHz) and 16GB memory. Please refer

to https://aws.amazon.com/cn/ec2/instance-types/
for more information about the EC2 instance.

Most results we reported in the paper are conducted on
m5.xlarge instances. We recommend m5.xlarge for repro-
ducibility of our results.

A.2.4 Software dependencies

We ran our experiments using Ubuntu 20.04. More specif-
ically, we choose "ubuntu/images/hvm-ssd/ubuntu-focal-
20.04-amd64-server-20220610" on AWS.

To compile our code of protocols, we require go1.15.14
linux/amd64. We require the following libraries.

Additionally, several open source libraries are required.
One can download the libraries using the following com-
mands:

• go get -u google.golang.org/grpc

• go get -u golang.org/x/net

• go get -u golang.org/x/text

• go get -u golang.org/x/crypto/...

• go get -u golang.org/x/sys

• go get -u google.golang.org/genproto/

• go get -u github.com/klauspost/reedsolomon

• go get -u github.com/klauspost/cpuid

• go get -u github.com/cbergoon/merkletree

• go get -u github.com/golang/protobuf

Alternatively, one can also use the following command to
get the dependencies:

make go

make install

The dependencies have tested as of Aug 2023. In case
of failures of executing the commands above, one can alter-
natively download the dependencies and place them under
waterbear/src/.
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A.2.5 Benchmarks

We provide a script for reproducing our results. One can use
python 3.x to run the script, we used python 3.8.10 in the
experiment. The script can be found under the waterbear/ec2
folder. We provide a README on how to start the experi-
ments. Alternatively, one can directly ssh to the servers to
start the experiments manually.

For each experiment, we vary two major parameters: n and
b, where n is the number of servers and b is the batch size.
Given a fixed n, we vary b from 1 to a sufficiently large num-
ber (e.g., 30,000) to generate the results. For each experiment,
we obtain the results from all servers, exclude ones with out-
standing results (e.g., extremely large throughput), and obtain
the average result of the servers. We repeat each batch size
in experiment five times to obtain the results reported in the
paper.

A.3 Set-up

A.3.1 Installation

1. Pull the code from https://github.com/fififish/
waterbear or download the stable version from
https://github.com/fififish/waterbear/
releases/tag/usenixsec. Or pull the com-
plete code base including all dependencies from
https://github.com/fififish/waterbear/tree/
waterbear-with-dependencies, which can be com-
piled directly without downloading any dependencies.

2. Set the environment by:

export GOPATH = $PWD

export GOBIN = $PWD/bin

export GO111MODULE = o f f

3. Download the dependencies by running the following
commands:

make go

make install

4. Compile the code by running the following commands:

make build

The compiled file will be created in "$PWD/bin". We
recommend setting up $PWD as ./waterbear.

A.3.2 Basic Test

1. Modify the configuration file "etc/con f . json" to choose
which protocol to execute. Details about the protocols are
included in "etc/node.txt". The id of each server should
be unique. By default, we use monotonically increasing
ids, 0, 1, 2, · · · . If one tests the code locally, modify
IP addresses and port numbers of all servers manually.
The IP addresses and port numbers of all servers can be
modified by script when testing on AWS.

2. To run BEAT-Cobalt, generate keys for threshold PRF
first by running the following command:

keygen [n] [k]

Here, n is the number of servers, and k is the threshold
to generate the common coin. We set up n = 3 f +1 and
k to f +1 for most of our experiments.

If the keys are successfully generated, they are located
under waterbear/etc. Make sure that the generated keys
are placed under the repository of all servers.

3. For all the servers, run the command below to start the
servers:

server [id]

Here, [id] is configured in conf.json and is different at
each server.

4. Start a client to send transaction to start the protocol by
running the following command:

client [id] 1 [b] [msg]

Here, [id] is the identifier of the client. We do not require
the client to be registered. One can use any id that is
unique, e.g., 1000. [b] is the batch size. [msg] can be any
message. One can ignore the [msg] field and a default
message is included in the codebase.

5. All servers will print text like " *****epoch ends". This
means the success of the epoch. One can repeat the
operation of client after the epoch ends to start a new
epoch.

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

314    Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://github.com/fififish/waterbear
https://github.com/fififish/waterbear
https://github.com/fififish/waterbear/releases/tag/usenixsec
https://github.com/fififish/waterbear/releases/tag/usenixsec
https://github.com/fififish/waterbear/tree/waterbear-with-dependencies
https://github.com/fififish/waterbear/tree/waterbear-with-dependencies
https://secartifacts.github.io/usenixsec2023/


USENIX’23 Artifact Appendix: Practical Asynchronous High-threshold Distributed
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A Artifact Appendix

A.1 Abstract
Our artifact is built using docker, and can be run on a single
machine with multi-threaded or multi-processes emulation,
and in a geo-distributed setting with multiple amazon-web
service virtual machines.

There are four important parameter choices of our artifact:
(i) num: number of nodes in the ADKG protocol, (ii) ths:
maximum number of faulty nodes, (iii) deg: the degree of the
ADKG polynomial, and (iv) curve: the choice of the elliptic
curve, which is either bls12381 or ed25519.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

N/A

A.2.2 How to access

Our entire artifact is packaged as a single library and can be
downloaded from:

• https://github.com/sourav1547/htadkg

We recommend using the version specified by the commit:

• https://github.com/sourav1547/htadkg/commit/
0d221e8965c5cf6b18823d894ef48c0fabc34b6e

A.2.3 Hardware dependencies

The basic tests require a stable internet connection. The main
experiments require num amazon web services instances.

A.2.4 Software dependencies

• Docker https://www.docker.com/
• Docker compose https://docs.docker.com/compose/
• Python 3.7.x or higher https://www.python.org/

A.2.5 Benchmarks

None.

A.3 Set-up

Our artifact requires docker and docker compose. To install
docker, see https://docs.docker.com/get-docker/. To
install docker-compose, see https://docs.docker.com/
compose/install/. Check that docker and docker com-
pose are installed correctly by running the $docker and
$docker-compose commands in the terminal. Upon success-
ful installation, both of these commands will display the avail-
able options.

Start the docker daemon. In case of docker desktop start the
docker daemon by starting the docker desktop application or
by running the $open -a Docker command in the terminal.

A.3.1 Installation

Our entire artifact is packaged as a single library and can be
downloaded from:

• https://github.com/sourav1547/htadkg

Once the docker and docker compose are installed, and
docker daemon is running, is installed build the code using
the following instructions. Note that building the adkg docker
image will take approximately 10 minutes, possibly longer
depending upon the internet connection.

1. cd to htadkg folder
2. Build using $docker-compose build adkg.
3. Run a docker image of adkg $docker-compose run

--rm adkg bash

Upon successful installation, the last command will open a
terminal with root@fb0991941061:/usr/src/adkg#.
Remark. If the docker daemon is not running, expect the fol-
lowing error message while building the adkg docker image.
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docker.errors.DockerException: Error while
fetching server API version: 500 Server
Error for http+docker://localhost/version:
Internal Server Error ("b’dial unix
docker.raw.sock: connect: connection
refused’")

[71057] Failed to execute script
docker-compose

A.3.2 Basic Test

There are two modes to perform basic tests, and both of these
tests can be run locally. We elaborate on each of these tests
below.

• Emulating num threads inside a docker image.
• Emulating num processes inside a docker image

Emulating multiple threads. After completing the steps men-
tioned in §A.3.1, run this test using the following command
inside the adkg docker.
$pytest tests/test_adkg.py -o log_cli=true

--num 4 --ths 1 --deg 2 --curve ed25519
The command runs an ADKG protocol with four nodes

where at most one node is corrupt, and we want to secret share
the ADKG secret key using a polynomial of degree two. Note
that num>3*ths and ths-1<deg<num-ths. It is possible to
change these values arbitrarily as long as they satisfy these
constraints. We recommend running this basic test with less
than 10 nodes for quicker results.

Emulating multiple processes. This approach creates mul-
tiple processes within a single docker image. Each process
corresponds to one ADKG node and these processes commu-
nicate using an Inter-process communication (ipc) channel.
To start the experiment, run the following command after
following the instructions in §A.3.1.
$sh scripts/launch-tmuxlocal.sh

scripts/adkg-tutorial.py [NUM_NODES]
For this basic test, our artifact supports 16, 32, and 64 nodes.

To evaluate with arbitrary num,ths and deg, first, generate the
corresponding configuration files using gen_config.py. We
recommend testing with 16 and 32 nodes for quicker results.
Remark 1. Although this process runs NUM_NODES number
of ADKG nodes, our artifact only displays the log of the first
four nodes. All remaining logs are available at dump.log.
Remark 2. Since each node in this basic test communicates
using ipc, the bandwidth usage of this basic test approximates
the bandwidth usage we report in Table 3 of the paper.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1) The ADKG protocol improves the average runtime and
bandwidth usage per node compared to the state-of-the-

art, as summarized in Table 3 of the paper.

A.4.2 Experiments

(E1) [Setup AWS machines] [30 human-minutes]. Here are
the steps to set up the AWS machines:

1. Create an AWS account and sign in to the AWS Manage-
ment Console.

2. Open the EC2 console and then choose Launch Instance.
3. Choose an Amazon Machine Image (AMI), which is a

pre-configured virtual machine image that contains the
operating system, docker and docker compose.

4. Select the region where you want to launch your instances,
and then choose an instance type, which specifies the hard-
ware of the host computer.

5. Configure the instance details, such as the number of in-
stances, network settings, and IAM roles.

6. Choose the storage and add any additional storage volumes,
if required.

7. Configure the security group, which acts as a virtual fire-
wall for your instance to control inbound and outbound
traffic.

8. Review and launch the instances.
9. Create a key pair to securely access the instances remotely

over SSH. Download and save the private key file (.pem
extension) on your local machine.

We automate steps 4, 5, and 8 using the AWS CLI and
the configuration file https://github.com/sourav1547/
htadkg/blob/main/aws/aws-config.json. Note that the
configuration file specifies the regions, security group IDs,
image IDs, key file path, key name, instance type, and other
parameters needed to launch and configure the instances.
Make sure to fill in these fields with the appropriate values.
We describe the configuration file in more detail in https:
//github.com/sourav1547/htadkg/tree/main/aws

(E2) [ADKG experiments][1 human hour + 3 compute
hours]: Follow the instructions on https://github.com/
sourav1547/htadkg/blob/main/aws/README.md.

1. cd /path/to/htadkg/aws
2. Update the config with appropriate parameters. Run

python3 -m aws.run-on-ec2 to start the AWS in-
stances and run the adkg command specified in the config.
This command creates a current.vms file which consists
of instance ids of the VMs created during this run. Subse-
quent runs of this command will reuse the same VMs.

3. Upon completion, the raw data from each ADKG node
will be available in the /path/to/htadkg/data/ folder
in your local machine.

4. After you are done testing you can delete the VMs using
python3 -m aws.delete_vms.
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A Artifact Appendix

A.1 Abstract

TVA is a multi-party computation (MPC) system for secure
analytics on secret-shared time series data. Our work intro-
duces new secure time series protocols that compute tumbling
and session window operators. We implement these operators
in the semi-honest setting using the 3PC replicated secret-
sharing protocol and in the malicious setting using the 4PC
Fantastic Four protocol. We run experiments to evaluate the
performance of the newly introduced protocols using queries
from real-world applications. The experiments require the
deployment of two MPI clusters on AWS: (i) using machines
in the same region (LAN setting) and (ii) using machines in
different regions (WAN setting).

A.2 Description & Requirements

TVA is a typical MPC system that consists of input par-
ties, computing parties, output parties. Our experiments are
designed to evaluate the computation performed by the ma-
chines that host the computing parties. Before starting any
experiment, the software needs to be deployed and initialized
on each machine hosting a computing party to form a MPC
cluster.

A.2.1 Security, privacy, and ethical concerns

There are no such concerns for our artifact deployment and
evaluation. We emphasize that TVA is an academic proof-of-
concept prototype and has not received careful code review.
This implementation is NOT ready for production use.

A.2.2 How to access

We host our artifact on Github.

*Work completed at Boston University.

A.2.3 Hardware dependencies

TVA does not require special hardware and can operate on
general-purpose CPU-based machines. For the experiments,
we use two types of machines which are available on AWS:
EC2 r5.8xlarge instances (32 vCPUS and 256GB RAM)
and EC2 r5n.16xlarge instances (64 vCPUs and 512GB
RAM). We use the r5.8xlarge machines when evaluat-
ing end-to-end latency for queries in the LAN and WAN
settings (experiments E1-E4 in Section A.4.2). We use the
r5n.16xlarge machines in the experiments that compare
TVA with Waldo (experiments E5, E6 in Section A.4.2).

We provide SSH access to our AWS clusters so that the
reviewers can reproduce the results using the same hardware
and settings we used.

A.2.4 Software dependencies

Our artifact is implemented in C++14. The artifact requires
two dependency packages: libsodium (1.0.18) and MPICH
(3.3.2). We used Linux Ubuntu (20.04.4), which also re-
quires installation of CMake (>=3.15.0) and pkg-config
(>=0.29.2). The installation may require other packages based
on the operating system version’s pre-installed packages.
For more details, check our dependency installation script
./scripts/setup.sh.

A.2.5 Benchmarks

Our main performance results are based on two set of exper-
iments. The first set evaluates the end-to-end latency of the
real-world queries described in Section 6.2 in the paper. The
results are shown in Figure 4. The second set of experiments
is used to compare TVA’s performance with the Waldo time
series database. We report the comparison results in Table 2
and Figure 3.

TVA’s workload consists of both local computation and
communication among the parties. Depending on the net-
work bandwidth and latency characteristics of the cluster, we
categorize the experimental setting as follows:
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• Same Machine: In this scenario, computing parties are
deployed on the same machine. This is useful for test-
ing the framework setup and protocol correctness. The
experiments can be run with the following command.

cd b u i l d && cmake . . && make c l o u d
mpirun −np 3 . / c l o u d

• LAN: In this scenario, parties are deployed on different
machines but in the same data center. For these experi-
ments, we use the AWS us-east-2 region. Network la-
tency in this setting is less than 1ms. The experiments can
be run using the following command, where machine-i
represents the machine of the corresponding computing
party.

mpirun −np 3 − h o s t s \
machine −1 , machine −2 , machine −3 . / c l o u d

• WAN: In this scenario, we deploy computing par-
ties on machines across different regions. Specifi-
cally, we use the following four regions: us-east-2
(Ohio), us-east-1 (Virginia), us-west-1 (California),
and us-west-2 (Oregon). Network latency between ma-
chines in these experiments should be around 40ms.

• WAN-Simulated: For simulating the same conditions as
those Waldo has been evaluated in, we use a simulated
WAN network where latency between computing parties
is fixed at 20ms. To achieve this configuration, deploy
a LAN setting as described above and run the script
"./scripts/waldo_wan.sh" to simulate the WAN.

A.3 Set-up
A.3.1 Installation

There are two phases to correctly set up TVA. Since the
system consists of multiple computing parties (either 3 or 4
parties), we first need to install the framework on each party
independently and then set up the MPI cluster.

Computing Party setup: In this step, we install the TVA
source code and its dependencies. First, install the following
dependencies:

• building tools: cmake and pkgconfig.

• libsodium: We use it for random number generation.

• MPICH / OpenMPI: We use it for establishing commu-
nication among the computing parties.

For instructions on how to install these dependencies on a
linux distribution, see the script "./scripts/setup.sh".

After completing the above step, you should be able to
use the system in the "Same Machine" setting, i.e., where all
computing parties run in the same machine. At this point, you
can run the tests to make sure everything is correct.

cd . / s c r i p t s
. / r u n _ t e s t s . sh

Cluster setup: To use the framework in the LAN or WAN
settings, we need to replicate the previous steps for each ma-
chine in the cluster. Once we have TVA working on every
machine, we can start building the cluster as follows:

1. Make sure that machines have pair wise SSH access
to each other. This step depends on the cloud service
provider, as firewall settings and defaults are different.

2. Modify the /etc/hosts file on each machine to in-
clude other computing parties with names in the format
machine-i for LAN, and machine-wan-i for WAN.

3. Build the code using either the semi-honest (semi) or
the malicious protocol (mal) on each machine with the
following script.

cd s c r i p t s
. / b u i l d _ e x p e r i m e n t s . sh semi # mal

4. Run one of the experiments under scripts such as
cloud.sh depending on which results you need to re-
produce.

cd s c r i p t s
. / c l o u d . sh semi l a n

A.3.2 Basic Test

After finishing setting up a machine, test the framework setup
using the following command:

cd s c r i p t s
. / r u n _ t e s t s . sh

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): TVA’s can successfully compute online queries with
rigid time constraints and evaluate complex analytics on
millions of input rows with modest use of resources. For
this part, we need to reproduce the results in Figure 4
and Table 3.

(C2): For multi-predicate queries, TVA provides lower la-
tency compared to Waldo both in the malicious setting
and in the semi-honest setting. For this, we need to re-
produce the results in Table 2.

(C3): For window queries, TVA is up to two orders of magni-
tude faster than Waldo, which becomes competitive only
when the ratio of the window length over the whole time
domain is relatively small. The results of this experiment
are shown in Figure 3 and exact numbers are reported in
Section 6.1.2.
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A.4.2 Experiments

The following steps are required if using a private cluster.
However, we can provide SSH access to our AWS machines
and, in this case, you can start from the execution step directly.

For experiments E1 and E2, use the LAN setting described
in Section A.2.5. For experiments E3 and E4, use the WAN
setting. For experiments E5 and E6, use the WAN-Simulated.
Use machines similar to machines 5.8xlarge for experi-
ments E1 through E4, and machines similar to machines
5n.16xlarge for experiments E5 and E6.
(E1): [Semi-honest LAN] [15 human-minutes + 1.5 compute-

hour]: In this experiment, we reproduce the results in
Figure 4-a, which represents the latency for the 3 appli-
cation queries in the semi-honest 3PC protocol when the
cluster is deployed in the LAN setting.
Preparation: Prepare a cluster with three machines
in the LAN setting as described in Sections A.2.5
and A.3.1.

Execution: Follow these steps:
1. On each machine, execute the following command

to build the experiments files:

cd s c r i p t s
. / b u i l d _ e x p e r i m e n t s . sh semi

2. Use the corresponding bash file on just one of the 3
machines to start the experiment execution.

# On main machine o f t h e c l u s t e r
cd s c r i p t s
. / en e r gy . sh semi l a n
. / c l o u d . sh semi l a n
. / m e d i c a l . sh semi l a n

Results: The results will be appended to the files in the
results directory and you can compare the new results
with the old ones at the beginning of the file.

(E2): [Malicious LAN] [15 human-minutes + 3 compute-
hour]: Follow the same steps as in E1, except deploy 4
machines and replace the argument semi with mal.

(E3): [Semi-honest WAN] [15 human-minutes + 5 compute-
hour]: Follow the same steps as in E1, except deploy
the cluster in the WAN setting and replace the argument
lan with wan. Make sure to update the hosts file using
machine-wan-i as the host name.

(E4): [Malicious WAN] [15 human-minutes + 10 compute-
hour]: Follow the same steps as in E2, except deploy
the cluster in the WAN setting and replace the argument
lan with wan. Make sure to update the hosts file using
machine-wan-i as host the name.

(E5): [Semi-honest Waldo] [15 human-minutes + 1 compute-
hour]: In this experiment, we reproduce the results in
Figure 3 and Table 2.
Preparation: Prepare a cluster with 3 machines in the
LAN setting as described in Sections A.2.5 and A.3.1.

Use the script specified in WAN-Simulated to configure
the network latency.

Execution: Follow these steps:
1. On each machine, execute the following command

to build the experiments files:

cd s c r i p t s
. / waldo_wan . sh S
. / b u i l d _ e x p e r i m e n t s . sh semi

2. Use the corresponding bash file on just one of the 3
machines to start the experiment execution.

# On main machine o f t h e c l u s t e r
cd s c r i p t s
. / wa ldo_ene rgy_ que ry . sh semi wan
. / w a l d o _ t a b l e _ e q u a l i t y . sh semi wan
. / w a l d o _ t a b l e _ g r e a t e r . sh semi wan

Results: The results will be appended to the files in the
results directory and you can compare the new results
with the old ones at the beginning of the file.

(E6): [Malicious Waldo] [15 human-minutes + 2 compute-
hour]: Follow the same steps as in E5 except use 4
machines and replace the argument semi with mal.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

In the submitted paper we present an energy measurement
setup for Android smartphones and use it to perform mea-
surements of both individual operations (micro studies) and
entire protocols runs (macro studies). In this appendix and our
repository we provide instructions for building the required
custom hardware, software to perform and analyze measure-
ments, and sample traces. The latter can be used to verify
the functionality of the analysis tools without the custom
hardware.

Due to the length of the experiments, reproducing all results
is not feasible within the scope of the artifact evaluation pro-
cess. Therefore, we have not applied for the “Results Repro-
duced” badge. Instead, we chose representative experiments
that demonstrate the functionality of all involved components.

Due to the particularities of the hardware prototype the
artifact evaluation was performed via an interactive online
meeting. In this online meeting we executed all experiments
E0, E1, and E2 while sharing our computer screen and cap-
turing the hardware setup with a camera.

A.2 Description & Requirements

We have developed and tested all software on a system run-
ning Ubuntu 20.04. The individual programs are written using
Rust (serial port logger), Python (data analysis, web service),
Android Studio (various apps), and Java (interactive live plot
GUI). For all components we provide instructions in the repos-
itory for building them from source and give the precise ver-
sion numbers of the build tools we use. Where possible and
helpful, we include Docker files.

Building the hardware requires basic skills in both 3D print-
ing and soldering. Please make sure to follow all necessary
safety measures that arise from working with the mentioned
equipment and smartphone batteries. If you are interested in
testing the software components independently, you can use
the provided sample traces in the repository.

A.2.1 Security, privacy, and ethical concerns

HEALTH & SAFETY: While accidents are rare, working
with tools and smartphone batteries carries significant risk.
Before starting you must familiarize yourself with all applica-
ble safety and compliance requirements. This includes, but is
not limited to, departmental, local, federal, and international
policies, laws, and regulations. We strongly recommend that
you talk to a designated person in your institution that can
provide you with the required training and information.

A.2.2 How to access

The repository containing all documentation, software,
and other files is available here: https://github.com/
lambdapioneer/powering-privacy/tree/aec-final.
The link points to the tag aec-final which references the
version used in the artifact evaluation process. We suggest
you follow the included walkthrough.md file which covers
all components and experiments mentioned in this appendix.

A.2.3 Hardware dependencies

The evaluation of the software requires a modern Linux com-
puter with at least 16 GiB RAM, at least 200 GiB of free disk
space, a free USB-2.0 port, and a local WiFi network.

For sharing log data from the smartphone with the local
computer, the setup requires to run a web service with a IPv4
address that is reachable both from the smartphone and the
local computer. The web service can be run on the local
computer if its reachable by the smartphone over WiFi.

For building the hardware, you will need a Motorola Moto
E6 Plus, a 3D printer, soldering equipment, and more elec-
tronic parts as per bill of material. The total costs of all parts
including the smartphones are not more than 500 USD.

A.2.4 Software dependencies

The local computer should run a modern Linux distribution
with support for the latest versions of Rust, Python, Java,
Android Studio, and Docker. Language support might be in-
stalled via the package manager or directly using the install
scripts from the respective websites. Detailed instructions
are included in the repository. We used Ubuntu 20.04 for
developing and testing our software.
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Figure 1: Overview of all components relevant to this artifact appendix. The green boxes are Android app, the blue boxes are
Linux executable, the yellow boxes are files, and the purple box is the final result. The arrows indicate the flow of data. The
EnergyRunner app both downloads scenario files and uploads its log data.

A.2.5 Benchmarks

Our artifact requires no external data sets. However, we pro-
vide sample traces in case the hardware setup is not available
to the reviewers.

A.3 Overview of components
In Figure 1 we show all involved components relevant to the
experiments described in this document.

A.4 Set-up
We recommend to read all documentation including the walk-
through documentation included in the repository before start-
ing.

A.4.1 Installation

Ensure that you are running a compatible Linux distribution,
such as Ubuntu 20.04, on your local computer. Clone the
repository, checkout tag aec-final, and follow the walk-
through documentation and the linked README.md files to
install and build all artifacts. You can skip some of these steps
where you already have the required dependencies installed.

A.4.2 Hardware

You can skip this section if you have been provided with a
hardware set or plan to only use the sample traces. If you
build the hardware yourself, we recommend that you order all
required material as early as possible to avoid disappointment

due to slow shipping. Building the hardware can be done
independently of setting up the software.

A.4.3 Basic Test

The experiment E0 as described in the walk-through docu-
ment within the repository. It allows to verify that all com-
ponents, and in particular the hardware setup, are working
correctly.

A.5 Evaluation workflow
Our claims cover the functionality of the documentation, hard-
ware setup, and software for both micro and macro studies.
While the claims and experiments do not cover all results
from our paper, they representatively demonstrate the func-
tionality of the involved components. This is because running
all experiments would be unreasonably time consuming for
the artifact evaluation.

As described in the paper, many steps cannot be easily
automated in order, and require manual operation of the de-
vice. For instance, we cannot run a persistent service on the
Android device to automate start and stopping the apps, as
it would prevent it from reaching its low-power states. We
arranged our claims and experiments such that claim there is
a one-to-one relationship between C0 and E0, C1 and E1, and
so on.

A.5.1 Major Claims

(C0): The documentation and software is complete and al-
lows skilled researchers to perform their own measure-
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ments. Users can observe live plots and use data for
further analysis. This includes the aforementioned based
test in Section A.4.3.

(C1): Using the hardware setup one can perform a micro
study that shows that the energy costs for EC opera-
tions is lower than for RSA. This reproduces Table 2 on
page 8.

(C2): Using the hardware setup one can perform a macro
study that shows for access to .com using Tor requires
more power than doing so directly, but is still feasible in
terms of energy costs. This reproduces parts of Figure 9
on page 11.

A.5.2 Experiments

All experiments require the aforementioned hardware and
software requirements. If the hardware is not available, the
provided sample traces can be used. The given experiment-
hours provides the blocks of time that experiment runs on the
smartphone device and which cannot be interrupted. They
are in additional to the human-hours that cover software
setup and analysis. If the provided sample traces are used,
the experiment-time does not apply and the overall required
time is reduced drastically. The walkthrough.md file in our
repository guides you through all experiments step by step.
(E0): [2-20 human-hours + 1×1 experiment-hour]: Build

and test the hardware setup. Building is optional if a
hardware kit is provided or the sample traces are used.
Preparation: Acquire all hardware listed in the docu-
mentation. Compile all software as described in docu-
mentation. Build and connect the hardware as described.
Execution: Start the serial logger. Start the live logger
interface. Turn the screen on and off. Navigate the live
plot using keyboard and mouse actions. Stop the exper-
iment. Alternatively, use the sample-traces/e0/...
files.
Results: The users sees live data changing with the op-
erations on the smartphone. In particular, turning the
screen on and off are very visible events.

(E1): [5 human-hours + 1×2 experiment-hours]: Use the
hardware kit to measure individual cryptographic oper-
ations.
Preparation: Start the log collecting web service run-
ning on IP ip. Update the source code of the An-
droid apps and the analysis scripts with ip as per doc-
umentation. Upload the scenarios using the Python
script. Connect the hardware as described. Install the
EnergyRunner app and use it to download the scenario.
Execution: Select the scenario file Connect the USB-
dongle for clock synchronization. Start the serial logger
with the scenario file name. When instructed, turn off
the screen and disconnect the USB-dongle. Wait until all
operations finished. Stop the serial logger. Stop the app.
Alternatively, use the sample-traces/e1/... files. Ex-

ecute the respective analysis Notebook file.
Results: The analysis notebook outputs results that are
comparable to those in Table 2.

(E2): [5 human-hours + 2× 1 experiment-hour]: Use the
hardware kit to measure longer protocol runs.
Preparation: Install the Orbot app and enable Full
Connection-Padding as per documentation. Install the
EnergyMetronom app and enable “Display over other
app” as per documentation. Connect the hardware as
described.
Execution: Force-stop Orbot. In the EnergyMetronom
app select a regular execution of a .com website visit and
set the interval to every 60 seconds. Start and observe
at least one successful website load. Immediately after-
wards turn off the screen and start the serial logger. If you
like, observe the ongoing experiment using the live log-
ger tool. After 10 minutes stop the serial logger and stop
the app. Repeat above steps with Orbot enabled in VPN
mode. Alternatively, use the sample-traces/e2/...
files. Execute the respective analysis Notebook file.
Results: The analysis notebook outputs results that are
comparable to the corresponding bars in Figure 9.

A.6 Notes on Reusability
We hope that our hardware and setup will be used by many re-
searchers and fosters new activity in designing, implementing,
and evaluating anonymity networks on smartphones. For this
we include detailed information on how to measure individual
operations as well as longer protocol executions in the linked
repository. We are happy to assist others in building copies of
our hardware setup and planning experiments. For this please
reach-out to us via email.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

Our artifact submission contains our used tool chain to inter-
cept network traffic of smartphones and analyze any present
privacy dialog. This entails a set of three Scala programs and
their dependencies. We are applying for the artifacts available
badge.

A.1 Description & Requirements

While we only apply for the artifacts available badge we do
list anticipated concerns when running our software before
describing the access and depdenencies.

A.1.1 Security, privacy, and ethical concerns

Simply checking out the availability of the artificats does not
entail any concerns. However, using our artificats has minor
privacy and security concerns.

Ethical Concerns: There are no ethical concerns as our
programs runs on self owned devices and evaluates software
in a non-intrusive fashion.

Privacy Concerns: There are minor privacy concerns as
using the software to evaluate the privacy violations of apps
implies running the apps and observing transmitted traffic.
We have seen traffic containing location data as well as lim-
ited network information (local IP addresses). However, our
analysis of the observed traffic is not complete and unevalu-
ated parts of the traffic may contain more sensitive data. We
strongly advice using test accounts as well as test devices
for both Android and iOS if the reviewer wants to test our
software to limit the impact of possible data leaks.

Security Concerns: App measurement studies entail the
execution of large amount of apps on real device within the
network. Depending on the sourcing of the apps there is al-
ways the possibility of maleware being installed and executed.
Using the official App Stores as a source mitigates that risk
but neither Google nor Apple have perfect security checks.

We strongly advise using a separate network as well as using
research devices that are not intended for any personal use.

A.1.2 How to access

Our artifact has three major components with sub depen-
dencies that need to be installed. Each linked repository
contains a README.md that goes into details concerning
installation and usage. Furthermore, we grouped our arti-
facts using a GitHub org that also references the paper
and has a intruductory README.md at https://github.com/
the-ok-is-not-enough1.

app-downloader: A tool to download the current rank-
ings as well as APKs/IPAs from the Goolge and
Android App Store available at https://github.com/
the-ok-is-not-enough/app-downloader2.

However, two tools are required for the down-
loader to work properly which we forked and made
available as a stable artifact: https://github.com/
the-ok-is-not-enough/googleplay3 and https:
//github.com/the-ok-is-not-enough/ipatool-py4.

scala-appanalyzer: A tool to run apps on either an
Android Smartphone or iPhone collect traffic as well ava-
iable at: https://github.com/the-ok-is-not-enough/
scala-appanalyzer5.

scala-plotalyzer: A tool to analyze, aggregate, and sum-
marize data collected by the scala-appanalyzer avail-
able at: https://github.com/the-ok-is-not-enough/
scala-plotalyzer6.

1commit:32b904b4e21c45b345bc1b9cbfd84f6661177b6b
url:https://github.com/the-ok-is-not-enough/.github/tree/
32b904b4e21c45b345bc1b9cbfd84f6661177b6b/profile

2commit:0d41a37e4e1c5c2f4e6be19837f758f8eae98fc6
3commit:4c178c10bc3cc5ab2e6895016e7161296777dca0
4commit:a8b2d37bba40ed427420f6a2a8fa9a89c4844256
5commit:b618948c0d24b917b3a46a88f5c1cf6ff84571cd
6commit:d89a76985b20d140f949b0a86438c38de09388bd
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A.1.3 Hardware dependencies

Depending on the targeted smartphone eco system different
hardware is required. While it might be possible to replace
some requirements (e.g., the measurement machine, or An-
droid Smartphone to the Android Emulator) we cannot guar-
antee functionality or anticipate the impact on the results. In
case no OpenWRT router is available it is also possible to
directly use the test machine as a proxy by changing the cor-
responding Smartphone OS configuration, however, it is not
guaranteed that apps will always adhere to this configuration
and some traffic might be missed.

Always:

• WLAN Router able to run OpenWRT

• Network/Internet connection

iOS

• MacMini connected to the Internet via Cable and also to
the WLAN

• rooted iPhone 8s

• Lightning Cable

Android

• rooted Samsung Galaxy A13

• Micro USB/USB Cable

• any recent computer able to run Arch Linux connected
to the Internet via Cable and also to the WLAN

A.1.4 Software dependencies

Depending on the targeted smartphone eco system different
software is required. While it might be possible to replace
some requirements (e.g., the OS of the measurement machine)
we cannot guarantee functionality or anticipate the impact on
the results.

We only list the general requirements here as each of our
tools contains a README.md with more detailed instructions
that would exceed the available space limit.

Always:

• OpenWRT (on the router)

• Scala 2.13

• Go

• Python 3

• Objection

• Frida

• Postgres

• MitMproxy

• Appium

iOS

• MacOS (on the measurement machine)

• xCode

• rooted iOS 14.X (on the iPhone)

• cydia/checkRa1n (to root the iPhone)

Android

• rooted Android (on the Galaxy A13)

• ArchLinux (on the measurement machine)

• Android Studio

A.1.5 Benchmarks

None.

A.2 Set-up
We are only applying for the artifacts available badge. How-
ever, each repository contains a README.md with instructions
on installation and usage.

A.3 Notes on Reusability
While the provided URLs reference the Artifacts as used in
our published paper we are continuing the development of
our measurement framework and made some major changes
significantly improving adaptability and usability. We are
excited by the posibility that our tools might be of use for
other researchers and strongly advise checking out develop-
ment branches available at https://github.com/simkoc/
scala-appanalyzer and https://github.com/simkoc/
scala-plotalyzer as those represent the current state of
the art as used by us. For example the new versions provide
a plugin system making it easier to extend the functionality
without having to do major changes on the main program. We
also added emulator support for Android.

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
This artifact implements static code analysis for detecting
prototype pollution vulnerabilities and gadgets in server-side
JavaScript libraries and applications, including the Node.js
source code. The analysis builds on GitHub’s CodeQL frame-
work to identify prototype pollution sinks and gadgets. We
evaluate precision and recall metrics for prototype pollution
detection in comparison with existing CodeQL analysis as
well as the tool ODGen. Further, we evaluate the capabil-
ities of our tool, in combination with dynamic analysis, to
detect gadgets in a range of popular applications, including
the Node.js source code. Finally, we evaluate the prevalence
of detected gadgets on a dataset of popular libraries. All of
the artifact evaluation results refer to Section 6 of the paper
and the Appendix. The artifact evaluation aims for the three
badges: available, functional, and reproducible.

A.2 Description & Requirements
Here we describe hardware and software requirements to run
the artifact, as well as an overview of the benchmarks.

A.2.1 Security, privacy, and ethical concerns

There are no risks for the reviewers relating to security and
privacy of their machines. The artifact has been used to detect
8 remote code execution vulnerabilities in production-ready
applications and these vulnerabilities have been responsibly
disclosed to the vendors. We do not provide any details on
exploits that are yet to be fixed by the developers. Moreover,
exploit generation is a manual process, hence it is not part of
this artifact evaluation.

A.2.2 How to access

The artifact is accessible on GitHub at address
https://github.com/yuske/silent-spring/tree/2c7cfab. The

reproducibility of the results is supported by two modes: (1)
a prepackaged docker container and (2) detailed instructions
on how to set up the environment on own machine.

A.2.3 Hardware dependencies

We perform the experiments on an Intel Core i7-8850H CPU
2.60GHz, 16 GB RAM, and 50 GB of disk space. No specific
hardware features are required for the artifact evaluation.

A.2.4 Software dependencies

We originally run our experiments (except for the experiment
E2 of ODGen evaluation) on Windows OS and presented
these results in the paper. However, CodeQL and our evalua-
tion scripts support Linux and provide similar results.

A.2.5 Benchmarks

We provide five benchmarks for our experiments. The root
directory of the artifact repository contains folders with
benchmark names from the list below. Clone the repository
with its Git submodules and follow the instructions of Ap-
pendix A.3 to download all code of benchmark-silent-spring
and benchmark-npm-packages.
(benchmark-silent-spring): We compile an open-source

dataset of 100 vulnerable Node.js packages to evalu-
ate the recall and precision metrics of our static analysis.
We refer to Section 6.1 and Table 3 of the paper for de-
tails of the benchmark and our experiments against this
set of packages.

(benchmark-odgen): We consider the dataset of 19 pack-
ages provided by the tool ODGen to compare our static
analysis approach with the state-of-the-art results of
ODGen. The paper presents the details of the dataset
and analysis results in Section 6.1 and Table 3 as well.

(benchmark-popular-apps): We evaluate our approach on
popular Node.js applications from GitHub. The bench-
mark contains exact versions of 15 analyzed applications.
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The evaluation results are presented in Section 6.3 and
Table 2.

(benchmark-nodejs): We run our gadget detection analysis
against Node.js version 16.13.1. The source code of the
analyzed Node.js is located in a folder of the benchmark.
Table 1 of the paper reports all the detected gadgets and
their summary.

(benchmark-npm-packages): We estimate the prevalence
of the gadgets in an experiment with the 10,000 most
dependent-upon NPM packages. This benchmark con-
tains these NPM packages. We describe the results of
the experiment in the last paragraph of Section 6.2.3.

A.3 Set-up

We provide two modes for testing the artifacts (1) a
docker image with the prepared environment and (2) de-
tailed instructions on how to set up the environment on
own machine. To use the docker image, pull the docker
image yu5k3/silent-spring-experiments:latest from
Docker Hub, launch a docker container, and run /bin/bash
into the container to get access to the pre-configured envi-
ronment. In this mode, the reviewers may skip the setup
and installation steps, and move directly to the folder
~/projs/silent-spring in the docker container and follow
the instructions from Appendix A.3.2.

The following steps describe how to set up a required envi-
ronment on own machine.
(S1): Clone the ODGen repository https://github.com/Song-

Li/ODGen.git and checkout commit 306f6f2. Follow
its README file to set up the tool.

(S2): Clone the Silent Spring repository with its submodules
https://github.com/yuske/silent-spring.git and checkout
commit 2c7cfab.

(S3): Move to the scripts by cd silent-spring/scripts/.
Further, it is important to run any setup and evaluation
scripts using the scripts as a working directory.

(S4): Run the script ./benchmark-silent-spring.insta
ll-dependencies.sh to install dependencies for
benchmark-silent-spring.

(S5): Install NPM dependencies for the scripts by npm i.

A.3.1 Installation

The experimental evaluation requires the following software:
(I1): Node.js v.16.13.1. Follow the instruction on the official

website to install Node.js.
(I2): Cloc. We use cloc application to count lines of ana-

lyzed code. Use in the official repository to download
and install the latest version.

(I3): CodeQL v.2.9.2. Download and unzip an asset for your
platform of the version 2.9.2 from the official repository.
Add the path of the codeql folder to PATH environment
variable.

A.3.2 Basic Test

We recommend a basic test for 1-2 NPM packages with
our CodeQL queries to check that all required compo-
nents function correctly. The execution of command
node ./benchmark-silent-spring.codeql.js -l 1
from directory scripts performs the anal-
ysis of only one NPM package from
benchmark-silent-spring and stores the results at
../raw-data/benchmark-silent-spring.codeql.limit
.md. The analysis should be completed in about 3 min-
utes. We provide a reference file for comparison with
the basic test results. The easiest way to compare
the evaluation results with the reference is to execute
git diff -- ../raw-data/benchmark-silent-spring
.codeql.limit.md. The count of detected cases in the table
should be the same.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Our static analysis tool, built on top of CodeQL,
achieves higher recall (up to 97%) for prototype pollu-
tion detection as compared to existing CodeQL analysis
and the state-of-the-art tool ODGen. At the same time, it
achieves moderate precision (on average 39%). This is
evaluated by the experiments (E1) and (E2) described in
Section 6.1 of the paper with results reported in Table 3.

(C2): Our tool has been used to uncover 8 new critical vul-
nerabilities in popular Node.js open-source applications.
This is evaluated by the experiment (E3) and described
in Section 6.3 and Table 2 of the paper.

(C3): We use static and dynamic analysis to detect 11 new
gadgets in Node.js code that may lead to Remote Code
Execution attacks. The gadget detection is evaluated by
the experiments (E4) and (E5) described in Section 6.2
and summarized in Table 1 of the paper.

(C4): We estimate the prevalence of the detected gadgets on
10,000 most dependent-upon NPM packages. The mea-
surement of the prevalence is shown by the experiment
(E6) and described in Section 6.2.3 of the paper.

A.4.2 Experiments

All experiments should be run in the scripts folder to match
the relative paths in the script files. All scripts collect the
results of experiments in the folder raw-data. This folder
already contains our results which can be used as reference
for comparison.
(E1): Prototype pollution detection with CodeQL [1 human-

hour + 3 compute-hours]: evaluate the existing Cod-
eQL analysis and our analysis framework on benchmark-
silent-spring and benchmark-odgen.
Execution: Run the following scripts:
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>node ./benchmark -silent -spring.codeql.js
>node ./benchmark -silent -spring.baseline.

codeql.js
>node ./benchmark -odgen.codeql.js

Results: The file names of the analysis results corre-
spond to the file names with .md extension. The files
consist of tables where columns contain the detected
cases for the executed CodeQL queries. The last row
calculates the total number of True Positives (TP)
and False Positives (FP), as well as the recall and
precision metrics. The result for benchmark-odgen
contains only detected sinks that should be matched
to code locations from .PoC*.expected files (includ-
ing .PoC.ext.expected), e.g., benchmark-odgen/
asciitable.js@1.0.2/asciitable.PoC.expected.
We summarized benchmark-silent-spring results in Ta-
ble 3 in the paper. The experiment should yield the recall
and precision metrics that correspond to the metrics of
Total row in Table 3. The results of benchmark-odgen
are discussed in the last paragraph of Section 6.1.

(E2): Prototype pollution detection by ODGen [1 human-
hour + 11 compute-hours]: evaluate ODGen analysis on
benchmark-silent-spring and benchmark-odgen.
Preparation: Set the absolute paths to ODGen (vari-
able odgenDir) and the silent-spring folder (vari-
able ppStuffDir) in benchmark-odgen.odgen.js
and benchmark-silent-spring.odgen.js files. This
is already done for the provided docker image.
Execution: Run the following scripts:

>node ./benchmark -silent -spring.odgen.js
>node ./benchmark -odgen.odgen.js

Results: The scripts create two reports for benchmark-
silent-spring and benchmark-odgen that are
structured as the results of (E1). The results in
benchmark-silent-spring.odgen.md have worse
metrics than we reported. This is because ODGen makes
random choices and, in our experiments, we ran the
ODGen tool several times and merged their best results
from all runs in Table 2 (in order to compare with their
best configuration).

(E3): Vulnerability detection in applications [1 human-hour]:
evaluate our analysis to detect prototype pollution in
Node.js applications.
Execution: Run the following script:
node ./benchmark-popular-apps.codeql.js
Results: File benchmark-popular-apps.codeql.md
contains the count of the detected prototype pollution
cases and links to the source code of the detected sinks.
The number of the detected cases corresponds to the col-
umn Total - Cases of Table 2 in the paper. The provided
script reports two extra cases for one parse-server and
one sails due to the usage of earlier version of CodeQL
in the original experiments.

(E4): Gadget detection (dynamic analysis phase) [1 human-

hour]: evaluate the dynamic analysis of three Node.js
APIs for prototype pollution gadgets.
Execution: Run the following scripts:

>node ./gadgets.infer -properties.js
>node ./gadgets.dynamic -analysis.js

Results: The scripts report undefined proper-
ties subject to prototype pollution in the file
gadgets.dynamic-analysis.csv. We detected
37 undefined property reads in child_process,
require, and vm APIs, and described this experiment
in Section 6.2.1. The property TERM can be reached
on Windows but not Linux. The list of the reported
properties contains universal properties of the identified
gadgets that we describe in Table 1 in the paper.

(E5): Gadget detection (static analysis phase) [1 human-
hour]: evaluate the data flow analysis for the detected
properties in (E4).
Execution: Run the following script:
node ./gadgets.static-analysis.js
Results: We implement a CodeQL-based analysis to
detect flows from polluted properties to sinks, and vali-
date the results manually, as described in Section 6.2.2.
The provided script summarizes the results and re-
ports sources that are the exported functions trigger-
ing a reading of polluted properties and sinks that are
the internal functions taking the read values. The re-
port gadgets.static-analysis.md counts sources
and sinks to show feasibility of the manual analysis.
The folder gadgets.static-analysis.tmp contains
the detected function names.

(E6): Gadgets prevalence estimation [1 human-hour]: ana-
lyze the most dependent-upon NPM packages to esti-
mate potential exploitability of detected gadgets.
Preparation: Script ./gadgets.download-packages.sh
downloads NPM packages for analysis (execution takes
40 mins). Skip this step if you use the docker image.
Execution: Run the script (takes about 15 minutes):
node ./gadgets.prevalence-analysis.js
Results: The last line of the script’s output contains
analysis results, reporting Packages with no main - 2041;
packages have relative ’require’ - 4393; packages have

’child_process’ methods - 350. We report the results of
our experiment in the last paragraph of Section 6.2.3 in
the paper. The slight discrepancy is due to the use of
different versions of the NPM packages for the analysis.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
This artifact is provided to support the evaluation of all the re-
sults presented in the paper. In particular, (i) the cross-browser
testing suite used to validate the results presented in Table 2,
(ii) the toolchain developed to automatically test server-side
cookie parsers (Section 4.2.2), (iii) the dataset and processing
code of our cookie measurement study (Section 4.4), (iv) re-
producible proof-of-concept attacks against vulnerable Web
frameworks (Section 6), as well as (v) the ProVerif models
and scripts (Section 7).

A.2 Description & Requirements
We provide in this section all the information necessary to
download the artifact and recreate the same experimental
setup used to run the analysis and experiments.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The artifact is available at https://doi.org/10.5281/
zenodo.8220368.

A.2.3 Hardware dependencies

The artifact does not require any specific hardware features.
Notice that the repository includes a copy of the dataset used
in the measurement study (Section 4.4), which is about 3GB
in size.

A.2.4 Software dependencies

Most software dependencies of the artifact are packaged as
Docker containers, hence we require a working Docker En-
gine installation before testing the artifact. When some com-
ponents are not packaged as Docker containers, we provide
instructions to execute them on the host machine. The readme

files of each subfolder describe the specific requirements for
each component. All the components of the artifact have been
tested on Linux.

A.2.5 Benchmarks

The source dataset for the measurement study (Section 4.4)
is the Archive dataset1 using the optimized tables from Web
Almanac.2 Since this dataset is in the public domain, we
include a copy of the processed dataset via Google BigQuery
in the artifact. The resulting dataset is about 3GB in size and
is provided in the measurement folder of the artifact. All
processing queries are also included in the artifact.

A.3 Set-up
We describe in the following the steps required for the in-
stallation and the basic functionality test of the artifact. We
split each of the following subsections in 5 paragraphs, each
detailing the specific steps required for each subfolder. We
advise reviewers to install and evaluate one component at a
time.

A.3.1 Installation

Browser Tests. The browser test suite can be installed via
Docker.

1 cd browser-tests
2 docker compose up --build

Ensure that ports 80 and 443 are available on the
local machine and that cookies.localtest.me and
sub.cookies.localtest.me resolve to 127.0.0.1. If this is
not the case, follow the instructions in the readme file.
Detailed information on how to install a specific version of
Firefox is also included in the readme file.

Reflectors. This component includes the toolchain devel-
oped to automatically test server-side cookie parsers. Re-
flectors are minimal programs implemented in one of the

1https://httparchive.org/
2https://almanac.httparchive.org/
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tested backends that parses HTTP requests containing a
Cookie header and returns a JSON dump of the cookie names
and values. All supported reflectors for PHP, ReactPHP, and
Werkzeug can be installed using Docker.

1 cd reflectors
2 docker compose up --build

Please ensure that ports 1700, 1701, and 1702 are free on the
local machine. The fuzzer runs on the host machine and has
been tested on Python 3.10.6. The only dependency is the
requests library, which can be installed via pip.

1 pip install --user requests

Measurement. The dataset for the cookie measurement
study is provided in the measurement folder. The script used
to analyze the dataset (analyze.py) is written in Python 3
and requires no third-party modules. The other Python script
(draw.py) is used to generate the plot in the paper and re-
quires the matplotlib and numpy library. The scripts have
been tested on Python 3.10.6.

1 pip install --user matplotlib numpy

Web Frameworks. Each vulnerable framework can be in-
stalled via Docker and requires the usage of some environment
variables (detailed in the readme file), for instance:

1 cd web-frameworks/express-pre-login
2 export VERSION="v0.5.3"; docker-compose --env-file

../testing.env up -d --build

Ensure that ports 80 and 443 are available on the local ma-
chine and that localtest.me and attack.localtest.me resolve to
127.0.0.1. The automatic testing script runs on the host ma-
chine and has been tested in Python 3.11.3. The dependencies
are the requests and bs4 libraries, which can be installed
via pip.

1 pip install --user requests bs4

ProVerif. We provide an exact copy of our testing environ-
ment in the docker image wert310/proverif:a2e281f.

1 docker pull wert310/proverif:a2e281f

A.3.2 Basic Test

Browser Tests. Point your browser to http://cookies.
localtest.me and https://cookies.localtest.me to
ensure that the test suite is running. Accept the self-signed
certificates for the HTTPS test. Both URLs should display
the “Cookie Integrity Evaluator” page.

Reflectors. Ensure that the reflectors are running by execut-
ing a simple request to each of them.

1 for port in 1700 1701 1702; do curl -H "Cookie: foo=bar"
"http://localhost:${port}"; echo; done

The output should be {"foo":"bar"} repeated 3 times. No-
tice that the presence of an additional whitespace character in
the last row is not an issue.

Measurement. The measurement study can be executed
by running the analyze.py script. Ensure that the script is
working by running it without arguments.

1 ./analyzer.py
2 Usage: python3 ./analyzer.py <csv_directory>

Similarly, the plot can be generated by running the draw.py
script.

1 ./draw.py

Web Frameworks. Point your browser to http://
localtest.me and login with credentials alice:alice.
Transfer 1 credit to bob and ensure your final balance is
999 credits. Access http://attack.localtest.me. The
attacker’s site is running if you obtain information in the
debug session after pressing Set-Pression.

ProVerif. The functionality of the test can be checked by
running ProVerif on one of the models without applying the
fix. Run a shell of the testing environment:

1 docker run --rm -ti -v$PWD:/mnt --workdir /mnt
wert310/proverif:a2e281f bash

Then execute the Flask model without fix:

1 stdbuf -o0 make -B run-flask

The output should include:

1 Query event(app_action_successful(cp_9,token_6)) ==>
event(app_action_begin(b_9,token_6)) cannot be proved.

showing that our invariant does not hold for Flask without
applying our proposed mitigation. We provide technical de-
tails on the formalization and instructions on how to verify
all frameworks in the README.md file in the proverif folder.

A.4 Evaluation workflow

Below we describe the steps to reproduce the evaluation of
the paper.
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A.4.1 Major Claims

(C1): We performed a thorough cross-browser evaluation
of known cookie integrity attacks and introduced new
attack vectors classified along 4 different categories: se-
rialization collisions due to nameless cookies (Section
4.2.1), server-side parsing vulnerabilities (Section 4.2.2),
cookie jar desynchronization issues (Section 4.2.3), and
broken composition of (compliant) parsers (Section
4.2.4). The artifact follows the methodology presented
in (Section 4.3). Browser-side experiments can be re-
produced using the provided test suite (E1.A), while
server-side experiments can be reproduced using the
fuzzer and reflectors (E1.B). The vulnerability affecting
the AWS Lambda Proxy integrations has been fixed by
Amazon and cannot be reproduced.

(C2): We also conducted a cookie measurement study aimed
at assessing the prevalence of cookie name prefixes, se-
cure cookies and nameless cookies in the top 100K web-
sites (Section 4.4). The results of the study can be repro-
duced using the provided dataset and scripts (E2).

(C3): We performed a systematic security analysis of the top
13 Web frameworks, exposing CORF token fixation and
session fixation vulnerabilities in 9 of them. Experiment
E3 reproduces these experiments as well as the results
of our disculosure process.

(C4): We formally verified of the correctness of our proposed
mitigation to the synchronizer token pattern using the
ProVerif protocol verifier (E4).

A.4.2 Experiments

(E1.A): Browser Test Suite [15 human-minutes + 2 compute-
minute + 100MB disk]. Execute the test suite on Firefox-
104 to match relevant findings presented in Table 2.
This experiment is functional to reproduce browser-side
cookie issues (C1). Due to space constraints, details on
how to install Firefox an understand the output of the test
suite are provided in the browser-tests/README.md.

(E1.B): Server-Side Reflectors [15 human-minutes + 5
compute-minutes]. This experiment is meant to repro-
duce server-side cookie issues (C1). A simple fuzzer gen-
erates variations of the Cookie header, sends the same re-
quest to all reflectors, and records any differences in the
JSON dumps. The provided reflectors/README.md
file explains in detail how to interpret the obtained CSV
file and match it to the 3 CVEs assigned to the discovered
vulnerabilities in PHP, ReactPHP, and Werkzeug.

(E2): Cookie Measurement [15 human-minutes + 3 compute-
minutes + 3GB disk]. Reproduce the results of the cookie
measurement study on the top-100K websites (C2), in-
cluding the output of Table 3, Figure 4, and Table 4. From
the measurement folder, execute the analyzer script on
the two provided datasets:

1 python3 ./analyzer.py data-2021-07-01
2 python3 ./analyzer.py data-2022-06-01

A detailed explanation of the output of the script is pro-
vided in the measurement/README.md. Notice that the
queries to obtain the datasets from Web Archive are also
available in the same folder.

(E3): Web Frameworks [10 human-minutes + 15 compute-
minutes]. Each framework is provided with an automatic
testing script that can be used to test the application.
1 cd express-pre-login
2 export VERSION="v0.5.3"; docker-compose --env-file

../testing.env up -d --build
3 echo "Should be vulnerable to pre-login"
4 python3 test-express-pre-login.py

For convenience, we also provide a script test_all.sh
that builds and tests all the applications in sequence.
Applications can also be manually tested. For the ex-
ample above, the following tests can be performed: (i)
Access http://attack.localtest.me/ in a browser
and press Set Pre-session. (ii) Open a new tab in
the browser and access http://localtest.me/. (iii)
Login as one of the users, alice, bob, or john_doe.
The password is equal to the name of the user. You
shoud start with 1000 credits. (iv) Return to the
tab http://attack.localtest.me/ and execute a
transfer of 1 credit to attacker. (v). Return to the
tab http://localtest.me/ and refresh. Your bal-
ance should now be 999 credits. Further details in
web-frameworks/README.md.

(E4): ProVerif Verification [30 human-minutes + 7 compute-
minutes]. Verification of the correctness of our pro-
posed fix, i.e., refreshing the token upon login, to the
synchronizer token pattern for all 7 frameworks vul-
nerable to the CORF token fixation (pre-login) attack.
To run the experiment, follow the instructions in the
proverif/README.md file by executing the for loop
listed under the “Verifying all frameworks” section. The
output of the above loop will contain, for each of the
7 frameworks, the checked properties and the ProVerif
results. The expected output of each framework should
contain 6 reachability queries with result cannot be
proved, showing that all events in the model are reach-
able. As the last line it should contain
1 RESULT event(app_action_successful(cp_18,token_6)) ==>

event(app_action_begin(b_9,token_6)) is true.

proving that our expected invariant is true after applying
the fix to the framework.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
Our artifact facilitates building and running Minimalist for ph-
pMyAdmin 4.0.0. We packaged the artifact in a set of Docker
containers. There is no restriction on the CPU architecture or
the operating system to build and run the Docker containers.

In this appendix, we describe the workflow of analyzing a
PHP application (e.g., phpMyAdmin) using Minimalist, iden-
tifying the set of unnecessary functions according to prior
user interaction, and debloating the PHP applications. Finally,
we demonstrate that debloating PHP applications leads to re-
ducing the size of the application as well as removing security
vulnerabilities.

A.2 Description & Requirements
A.2.1 How to access

Download the Artifacts from: https://github.com/
BUseclab/Minimalist/releases/tag/v1.0.1

A.2.2 Software dependencies

Docker and Docker compose

A.2.3 Benchmarks

In our artifact evaluation of Minimalist, we use phpMyAdmin
v4.0.0 as the benchmark for our artifact evaluation.

A.3 Set-up
A.3.1 Installation

Our instructions are based around Docker containers. Please
install Docker and Docker compose to run these containers:

• Docker https://docs.docker.com/get-docker/

• Docker-compose https://docs.docker.com/
compose/install/

A.3.2 Prepration

In order to run our artifact, you need to download the required
packages for Minimalist as well as Less is More artifact. To
do so, please run the following command to download the
required packages.

$ cat prepare.sh # Examine the script

$ ./prepare.sh # Run the prepare script

A.3.3 Basic Test

Our basic test involves building and running Minimalist on a
sample PHP web application inside a Docker container. In
order to run the basic test, please run the following command
in the main directory of the artifact.

$ cat init.sh # Examine the init script...

$ ./init.sh # Build and run the initial test
In case of a successful initial test, you should see the fol-

lowing message.
Basic Test was successful.

A.4 Evaluation workflow

A.4.1 Major Claims

Minimalist is a debloating mechanism for PHP web applica-
tions. According to our paper, we prove the following claims
regarding the evaluation of our artifact and its results:
(C1): Minimalist reduces the size of a given PHP web appli-

cation (e.g., phpMyAdmin) in terms of lines of code. This
claim is proven by the reduction in size of phpMyAdmin
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in experiment (E1), which is described in Section 4.4.1
as well as Figure 7 of our paper.

(C2): Minimalist removes the security vulnerabilities in PHP
applications by removing unnecessary features. This
claim is proven in experiment (E2), which is described
in Table 1 of our paper.

A.4.2 Experiments

(E1): [Debloat] [20 human-minutes + 1 compute-hour +
5GB disk]: In this experiment, Minimalist statically ana-
lyzes phpMyAdmin 4.0.0 and generates the call-graph.
Next, Minimalist debloats the web application using Less
is More interface.
Preparation: None
Execution: The first step is running the Minimalist
analysis on phpMyAdmin 4.0.0. To do so, run the
following commands to download phpMyAdmin, create
a Docker container, prepare the Docker environment,
and run the analysis.

$ cat step_1.sh # Examine step_1 script

$ ./step_1.sh # Run step_1 script

At the end of this step, Minimalist generates the
call-graph for phpMyAdmin 4.0.0. You can compare the
results regarding the number of different function calls
shown in the terminal with the numbers in the first three
columns of Table 1 for phpMyAdmin 4.0.0.
The next step includes debloating phpMyAdmin using
the Less is More (LIM) container. To do so, run the
following commands to run the LIM container.

$ cat step_2.sh # Examine step_2 script

$ ./step_2.sh # Run step_2 script

After running the LIM container, you can import
Minimalist results to LIM either manually or auto-
matically. You can follow our tutorial in our Github
repository to import the results manually. Run the
following command to import the results automatically.
Note that this process takes up to 20 minutes.

$ cat auto_import.sh #Examine import script

$ ./auto_import.sh #Run import script

Before debloating, run the following command
to measure the lines of code (LoC) for phpMyAdmin
4.0.0.

$ ./phploc.sh # Run the phploc Docker

Furthermore, run the following command to perform a
SQLi attack on phpMyAdmin 4.0.0. For a successful
attack, the server takes more than five seconds to
respond.

$ ./exploit.sh # Run exploit script

In the last step, visit the following link to start
the debloating process.
http://localhost:8086/admin/software_file/
description
In the following link, click on the add button in the top
right corner, fill out the form using the following inputs,
and click populate database.

Software: phpMyAdmin
Version: 4.0.0
Web App Directory: /var/www/html/4.0.0/
Description: Artifact

After finishing the above process, click on the
Debloat functions to start the debloating process.
This process takes up to five minutes to complete. For
more information, you can follow the visual tutorial in
our Github repository.
After finishing the debloating process for phpMyAdmin
4.0.0, you can run the phploc script again to calculate
the LoC for the debloated web application. As shown in
Figure 7 in our paper, you can observe the reduction in
LoC for phpMyAdmin 4.0.0 before and after debloating.

(E2): [Attack] [10 human-minutes + 10 compute-minutes]:
In this experiment, you perform a SQLi attack to examine
the removed vulnerability from Minimalist-debloated
phpMyAdmin.
Prepration: To perform this experiment, do not stop
the LIM container.
Execution: In order to perform the SQLi attack, run
the following command in a separate terminal.

$ cat exploit.sh # Examine exploit script

$ ./exploit.sh # Run exploit script
Results: In the case of a failed attack, the response from
phpMyAdmin is immediate. Otherwise, the server takes
more than five seconds to respond.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

We model the security of multiple-vantage-point domain con-
trol validation (more briefly, multiVA) by performing quanti-
tative Internet-level simulations of the full-graph DNS resolu-
tion of domain names included in Let’s Encrypt certificates.
At a high level, the submitted artifact consists of 3 parts:

1. the Internet topology simulator, which calculates the
effects of equally-specific prefix length BGP hijacks by
selected attacker ASes;

2. the DNS resolver, which performs full-graph DNS
lookups of domain names to record all IP addresses vul-
nerable to BGP hijacks (i.e., not DNSSEC-signed);

3. the resilience processor, which combines the output of
(1) and (2) to compute a resilience value in the range
of 0-1.0 to describe how likely a domain name may be
attacked by a random attacker AS using BGP hijacks
during the domain control validation process to gain a
fraudulent certificate.

This artifact aims to reproduce the results in sections 7 and 8
of our paper.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

We extract only the domain names listed in the subjects of
Let’s Encrypt-issued certificates, which are publicly avail-
able in certificate transparency logs. The DNS lookup tool
performs a default number of 10 lookups per domain name,
which is assumed to be a manageable request volume for the
domains’ nameservers. BGP simulations do not entail any
real hijacks or announcement of prefixes, and do not leak in-
formation about private routing policies. Running our code
does not require any admin/sudo privileges or elevated access.

A.2.2 How to access

The artifact can be accessed by downloading our tagged public
Github project Github project. All the requisite data, contain-
ers, and code are contained within the Git repository. Git clone
the artifact access URL provided in HotCRP submission.

A.2.3 Hardware dependencies

For Experiment E1, simulation load is CPU-intensive: to be
able to run the end-to-end experiments in a practicable amount
of time, access to a many-cored (e.g., 64+) computing system
with ample memory (approximately 2GB per core). Perform-
ing DNS lookups will require Internet access and correspond-
ing firewall rules to allow inbound/outbound traffic.

A.2.4 Software dependencies

The main software dependency needed to run the artifact is
Docker (available for install at https://www.docker.com/).
Other required dependencies (Python 3.8, libraries, etc.) are
packaged within the containerized environment.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Git clone the artifact access URL: https://github.
com/inspire-group/routing-aware-dns/commit/
23194fc824633122cbfb79206a62ac662389f63c.
cd into the cloned repository directory. From here, build the
Docker container:

docker build --tag full-graph-dns-resolver .

After image build successfully completes, begin running con-
tainer in the background:

docker run --name dns-resolver -d
full-graph-dns-resolver
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From here, enter the container with interactive shell to exe-
cute the subsequent commands for the artifact:

docker exec -it dns-resolver bash

More detailed instructions for setup are included in the
README of the artifact repository.

A.3.2 Basic Test

Validate that the DNS full-graph resolver tool properly ex-
ecutes (can send/receive DNS queries, local Unbound stub
resolver is live):

python3 log_processor_artifact.py -d
data/domains_random_samp_small.txt

This runs lookups for a sample of 1397 domains (0.1% of
our dataset) for validation purposes.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Resilience of domain names takes a noticeable hit
when including the DNS nameserver in the BGP hijack
attack surface. Considering the current level of RPKI de-
ployment in the Internet counterbalances some of this re-
silience hit. This is illustrated by experiment (E3), which
reproduces results described in Section 7 of the paper.

(C1): multiVA deployments with only one or two additional
vantage points in diverse public cloud providers can
strengthen resilience values to above 90%. This is repro-
duced by experiments (E3,4) (corresponding to Section
8 of the paper).

A.4.2 Experiments

(E1): [Full Internet-scale topology simulations]
How to: Please see the README of the
pki-topology-simulator submodule for instructions.
Approximate runtime: 192 CPU hours.

(E2): [DNS full-graph resolution of Let’s Encrypt domain
names]
How to: Please see the README of the
routing-aware-dns repo for instructions and
commands.
Approximate runtime: 1.5 hours

(E3): [Calculation of domain name-level resilience]
How to: See instructions for resilience.py in
princeton-letsencrypt/resilience-computation.
lease see documentation for the resilience.py script
in the pki-resilience-processing submodule.
Approximate runtime: 2 hours

(E4): [Results analysis]
How to: Please see documentation for
the interpret_results.py script in the
pki-resilience-processing submodule.

Figure 1: Integration of the artifact submodules.

Approximate runtime: <5 minutes.
A diagram showing the interconnection between the above

listed experiments/submodules is given in Figure A.4.2.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
In this artifact, we present the instructions for conducting
two novel attacks (i.e., called LocalNet Attacks and ServerIP
Attacks) that are described in our paper, causing VPN clients
to leak traffic outside the protected VPN tunnel. In our pa-
per, we claim that the traffic to the local network and to the
VPN server itself can be manipulated by abusing routing ta-
bles such that it will be sent in plaintext outside the VPN
tunnel. Through extensive experimentation with various VPN
clients, we have identified that these attacks pose a general
vulnerability across multiple OSs.

A.2 Description & Requirements
Our attacks manipulate the client’s routing table such that
traffic will be sent outside the VPN tunnel, i.e., without en-
cryption. Normally, when the VPN is not enabled, a client’s
routing table might look like the following:

[tester@zbook ~]$ ip route
default via 192.168.1.1 dev wlp0s20f3
192.168.1.0/24 dev wlp0s20f3 scope link

The IP address of the client in this example is
192.168.1.101. The two output lines mean:

• The first line says that by default all outgoing IP packets
are forwarded via 192.168.1.1. Here 192.168.1.1 is the
router. The rule also specifies “dev wlp0s20f3”, mean-
ing that the packets are sent over the wlp0s20f3 Wi-Fi
network card. All combined, all outgoing IP packets are,
by default, sent to the router using the Wi-Fi network
card.

• The second line is an exception [2] to the above rule:
all IP packets to 192.168.1.0/24, so to IP addresses be-
tween 192.168.1.0 and 192.168.1.255, are sent over “dev
wlp0s20f3”, specifically over the Wi-Fi network card.
Moreover, “scope link” means these IP addresses are
directly reachable: the packets can directly be sent to
their destination instead of first being forwarded to the
router.

When a VPN is enabled, a client’s routing table might look
like this:

[tester@zbook ~]$ ip route
default via 10.8.0.1 dev tun0
76.26.140.111 via 192.168.1.1 dev wlp0s20f3
192.168.1.0/24 dev wlp0s20f3 scope link

Here, the IP address of the VPN server is 76.26.140.111.
The first rule says that by default, all outgoing IP packets
are sent over “dev tun0”. Here tun0 is a virtual network card
representing the encrypted VPN tunnel. In other words, by
default, all packets are sent through the VPN tunnel. There
are two exceptions:

1. The second rule says that packets with as destination
the VPN server must be sent to the router using the
Wi-Fi network card. This exception avoids a rooting loop
where already-encrypted VPN packets would otherwise
get encrypted again.

2. The third rule is the same as when the VPN wasn’t en-
abled: all packets to the local network (notice the “scope
link”) are directly transmitted over the Wi-Fi network
card to the destination (so not through the VPN tunnel).
This assures that local devices in the network, such as
printers and file servers, remain accessible when using
the VPN.

A.2.1 Security, privacy, and ethical concerns

During the experiment, two types of traffic (see two claims)
may be sent outside the VPN tunnel. It is best not to enter
sensitive information while doing the experiments.

A.2.2 How to access

We have compiled a GitHub repository that provides a readme
and additional necessary files.

A.2.3 Hardware dependencies

Table 1 displays the list of required soft- and hardware equip-
ment. In terms of hardware, to conduct the experiment, a
malicious AP (Access Point) is necessary to create an AP
on any channel. Often the built-in Wi-Fi network card of
a laptop can be used. Alternatively, an an external wireless
USB adapter can be used, such as the Panda Wireless PAU06
300Mbps Wireless N USB (see Figure 1). The test platform
we used is shown in Figure 1.
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(a) A Panda PAU06 300Mbps
Wireless USB Adapter.

(b) A laptop with an external wire-
less USB Adapter.

Figure 1: Our example test platform running Ubuntu.

Table 1: Hardware and Software requirements to conduct the
experiment.

Class Item name

hardware Laptops or cellphones, e.g., iPhones or Androids
hardware Wireless network card (built-in or USB dongle)
software Wireshark
software create_ap script
software VPN clients

A.2.4 Software dependencies

The create_ap script to start and configure the AP is re-
quired [3]. Wireshark can be used to check leaks outside the
VPN tunnel by inspecting traffic. Sections A.4.2 and A.4.3
provide detailed instructions on which commands to run.

The targeted commercial VPN clients are available on Ap-
ple App Store and Google Play Store, or on the vendor’s
website, and can be directly downloaded from these stores.
The paid VPN apps require a subscription.

A.2.5 Benchmarks

None.

A.3 Set-up
This section includes all the installation and configuration
steps required to prepare the environment to be used for the
evaluation of the attacks.

A.3.1 Installation

We used the create_ap tool to create a Wi-Fi network for the
tests. The generic installation instructions are available here:
create_ap. On certain Linux distributions, it can be installed
using the package manager. On Ubuntu, it requires to install
the following dependencies:

sudo apt install hostapd wireshark

A standard AP can be created using the command:

sudo create_ap wlan1 wlan0 testnetwork abcdefgh

Figure 2: An example of creating an AP.

Figure 2 shows an example of how to create a Wi-Fi net-
work called testnetwork with password abcdefgh. The argu-
ments wlan1 and wlan0 depend on the machine used for the
test:

• The argument wlan0 refers to the built-in network card
and may be different depending on the machine. Find
out this name by executing ip addr and picking the
interface that is assigned an IP address.

• The argument wlan1 refers to the Wi-Fi dongle/wireless
USB adapter plugged in. Find out its name on the ma-
chine by executing ip addr before and after plugging in
the Wi-Fi dongle and seeing which interface was added.

One should now be able to connect to the created Wi-Fi
network. To inspect the traffic of any client connect to the AP
start Wireshark and listen for packets on the ‘ap0’ interface
(or on the interface of the Wi-Fi dongle in case it does not
support virtual interfaces).

Errors and warnings:

• If the error “ERROR: Failed to initialize lock” occurs,
then execute: sudo rm /tmp/create_ap.all.lock

• The warning “Your adapter does not fully support AP
virtual interface” means the Wi-Fi dongle cannot simul-
taneously act as a client and AP. If creating the Wi-Fi
network fails, then try a different USB dongle.

A.3.2 Basic Test

Install the VPN app and connect to the Wi-Fi hotspot. Open
Wireshark on the platform to monitor packets. Then enable
the VPN and perform the following tests.

A.4 Evaluation Workflow
This section includes all the operational steps and experiments
which must be performed to evaluate our attacks.

A.4.1 Major Claims

(C1 – LocalNet): Traffic to local IP addresses is not sent
through the VPN tunnel.

(C2 – ServerIP): Traffic sent to the IP address of the VPN
server is not (again) sent through the VPN tunnel.
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A.4.2 Testing LocalNet Attacks

A quick method to test for this vulnerability is to make
the router hand out non-RFC1918 IP addresses for the lo-
cal network, e.g., using 207.241.237.0/24 for the local net-
work. Then enable the VPN and try to visit visit http:
//207.241.237.3/. In Wireshark, this should result in ARP
requests for the IP address 207.241.237.3, indicating that the
tested VPN is vulnerable to the LocalNet traffic leak attack.

Alternatively, start the create_ap script to hand out public
IP addresses. For example, if we want to intercept traffic to
web.archive.org, which has IP address 207.241.237.3 at
the time of writing, the hotspot has to hand out IP addresses
from a subnet that contains this IP address. This can be done
by starting create_ap as follows:

sudo create_ap wlan1 wlan0 testnetwork abcdefgh
-g 207.241.237.3

Now connect with the created AP and enable the VPN
client. Open Wireshark. Then try to visit http://207.241.
237.3 in a browser. If TCP SYN packets can be seen to
207.241.237.3, this means that the VPN app is vulnerable: by
using the Wireshark filter tcp.flags.syn == 1, it is easy to
filter for plaintext TCP SYN packets. One successful example
is shown in Figure 3.

Figure 3: An example of LocalNet Attacks. The target IP
address is 207.241.237.3.

A.4.3 Testing ServerIP Attacks

Start the create_ap script and then connect with the device
being tested:

sudo create_ap wlan1 wlan0 testnetwork abcdefgh

Now start capturing frames on the test platform. After starting
to capture frames, connect to the VPN server, and then iden-
tify the IP address of the VPN server based on the transmitted
traffic in Wireshark. Then visit “http://$VPN_SERVERIP”.
If there are no plaintext TCP SYNs in Wireshark, then the
VPN client is not vulnerable (we can use the Wireshark filter

tcp.flags.syn == 1 to filter for plaintext TCP SYN pack-
ets). If the VPN protocol is using TCP or UDP then you can
also try to visit “http://$VPN_SERVERIP:$PORT” where
we add the port that is also used by the VPN server. One
successful attack is shown in Fig. 4.

Figure 4: An example of ServerIP Attacks. The IP address of
the VPN server is 45.9.250.124.

In case there are plaintext TCP SYN packets, the next
step is to test whether the VPN client used plaintext DNS
to find the VPN server’s IP address. To determine this, we
can use the Wireshark filter ‘dns.a == $VPN_SERVERIP’. If
there are any results, then the VPN client is highly likely
vulnerable.

A.5 Stable URL
We provide a stable URL where the community can find the
final copy of our artifact in order to achieve replicability of
the experiments [1].
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A Artifact Appendix

A.1 Abstract

The primary artifact provided is a Docker image containing
an implementation of the Greenhouse prototype presented in
our paper, along with the complete dataset of 7,140 firmware
images referenced in our evaluation. Greenhouse is a Python3
framework that implements user-space single-service rehost-
ing, using various interventions detailed in our paper to enable
the emulation of a specific web-facing service for a given
firmware image. Unlike previous rehosting works, the re-
hosted firmware service is executed via user-space emulation
(qemu-user) instead of a full-system emulation environment.

We evaluated Greenhouse on a dataset of 7,140 firmware
images from nine different vendors to demonstrate its scal-
ability and generalizability. Greenhouse successfully re-
hosts 2,841 HTTP web-services, and an additional 685 web-
services to partial connectivity. Our experiment demonstrates
the usability of these images by finding 717 N-day vulnera-
bilities using the open-source framework Routersploit and 26
zero-day vulnerabilities through fuzzing with AFL++.

A.2 Description & Requirements

Greenhouse was evaluated using a kubernetes cluster contain-
ing 42 nodes and over 2,000 CPU cores in order to complete
our analysis on 7,140 firmware images. The Docker image
packaged in this artifact contains an entrypoint script that the
cluster pods use to run Greenhouse on each firmware target.
As this script is designed for automation with our kubernetes
cluster setup, we have also provided a run.sh wrapper script
for the purposes of manual evaluation. Our submitted artifacts
consist of the following items:

• greenhouse-ae.tar, a prepackaged Docker image contain-
ing our experiment setup for manual evaluation

• greenhouse-rehosted.csv, a file detailing the rehosting
success of each sample in our dataset

• gh2routersploit.csv, a file mapping the 717 N-days found
to their respective rehosted targets

• source code and instructions for building the Greenhouse
docker image, fuzzer component and minikube setup on
GitHub

Within the prepackaged Docker container are the following:

• a standalone version of Greenhouse for manual evalua-
tion + a run script /gh/run.sh

• a modified routersploit framework used to find the 717
N-days on our rehosted images + a run script /router-
sploit/run_routersploit.sh

• 2 crashing input files that demonstrate two of the 26
zero-day vulnerabilities discussed in our paper that have
since been publicly released by D-Link

A.2.1 Security, privacy, and ethical concerns

Greenhouse itself has a low risk of causing issues on the ma-
chine it is run on. However, many of its functions require
control of device mounts and network interfaces that necessi-
tate that the Docker image is run in privileged mode. While
Greenhouse itself does not perform any malicious activity, the
firmware it is emulating may execute commands that affect
the host machine. It is thus recommended to run Greenhouse
within the provided container to minimize the impact of such
behavior on the host machine.

A.2.2 How to access

A copy of our artifact is available on Zenodo
(https://doi.org/10.5281/zenodo.8217895). We also
open-sourced the code used to build our Greenhouse artifacts
on GitHub1.

1https://github.com/sefcom/greenhouse/tree/08f7caf45
6f31de4f9c25325302705f7881a5e39
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A.2.3 Hardware dependencies

Greenhouse requires at least 1 CPU core and 8GB of RAM.
As the amount of storage needed varies based on the firmware
and scale of the job, we recommend having at least 50GB of
disk space available. Our full dataset of all 7,140 firmware
images requires at least 125GB of disk space. The total disk
space of our experiment, including all rehosted images and
log files, is approximately 655GB. To perform large-scale
evaluation of Greenhouse, a kubernetes cluster is necessary.
Running on a local minikube instance is possible, but is unsta-
ble compared to kubernetes and may have reduced rehosting
performance.

A.2.4 Software dependencies

Greenhouse was tested on a host machine using Ubuntu
20.04 and Python 3.7. Greenhouse is dependent on qemu-
user, docker, angr and binwalk, and makes use of another
rehosting tool, FirmAE, as a supplementary component. The
Docker image provided as part of the artifact contains a sta-
ble, working version of Greenhouse for evaluation and all
third-party software needed for it to run. The artifact Docker
image provided must be run in privileged mode for optimal
results. It is recommended that the host machine be running
Ubuntu 20.04 or later, and have Docker and docker-compose
installed.

A.2.5 Benchmarks

Greenhouse was run on a dataset of 7,140 firmware images
crawled from nine different vendors. This dataset is hosted
privately as part of our artifact submission. Please contact the
authors for access to the dataset if necessary.

A.3 Set-up

Install Docker and docker-compose on the host machine.

• Docker version 24.0.2, build cb74dfc

• docker-compose version 1.29.2, build 5becea4c

To manually validate the rehosted images, we recommend
installing curl and a web-browser such as Firefox.

Greenhouse and Docker use the network ip addresses in the
range 172.17.0.0 and 172.21.0.0 by default. We recommend
keeping these network ranges open. A significant number
of firmware web services were observed to make use of ad-
dresses in the range 192.168.0.0. Thus, we recommended
ensuring that ip addresses in this range are available during
the rehosting and testing process.

A.3.1 Installation

• Load the Docker image with ‘docker load -i greenhouse-
ae.tar’

• Check that the image greenhouse:usenix-eval-jul2023 is
present ‘docker image list -a’

• Start the container in privileged, interactive mode:

docker run --privileged -v /dev:/host/dev -it
greenhouse:usenix-eval-jul2023 bash

• Copy a firmware image file from the dataset into the
Docker container:

docker cp <externalpathtoimage> <container-
name>:/<imagepath>

• Inside the Docker container, run the setup script:

bash /gh/docker_init.sh

• The container and target are now ready.

A.3.2 Basic Test

The provided Docker image comes with a simple bash script
/gh/test.sh that can be run from within the Docker container.
One run, the script should exit with the message ‘All tests
pass!’ after about a minute of execution.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Greenhouse is able to perform user-space rehosting
of single-services with a success rate of 39.7%. This
is proven by experiments described in Section 7.2 of
our paper. The results of our evaluation are reported in
Table 2 of our paper, and reflected in the greenhouse-
rehosted.csv table provided as part of this artifact evalu-
ation. Note that due to the non-deterministic nature of re-
hosting firmware, the exact number of rehosted services
may fluctuate, but should average out to our experimen-
tal numbers over a sufficiently large dataset.

(C2): Firmware images rehosted by Greenhouse are of suf-
ficient fidelity to be used with dynamic analysis to find
real-world vulnerabilities. Greenhouse found 717 N-day
vulnerabilities on images it rehosted using routersploit,
and 26 zero-day vulnerabilities via fuzzing with AFL++.
This is described in Section 7.4 and 7.5 of our paper, with
results specified in Table 7 for the routersploit N-days
and Table 9 for the crashing inputs found2. A breakdown
of these numbers is reflected in the routersploit.csv table
provided.

2We do not provide all the crashing inputs mentioned in Table 9 as not
all have been made public. The 2 crashing inputs provided with the artifact
were publicized here: https://supportannouncement.us.dlink.com/
announcement/publication.aspx?name=SAP10313
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A.4.2 Experiments

(E1): [Rehosting a single firmware] [30 human-minutes 2 to
8 compute-hours + 50GB disk]: This section describes
how to run Greenhouse to rehost a single firmware image
using the provided Docker image artifact. This experi-
ment validates C1.

Preparation: Make sure to setup the Docker container
provided and the target sample as discussed in the Instal-
lation section above.

Execution: To rehost a target firmware image with
Greenhouse, run

/gh/run.sh <brand> <image-path-in-container>

from inside the Docker container. The script performs
the rehosting from start to finish, printing logs to std-
out and /tmp/gh.logs. A step-by-step can be found in
the README file with the rest of our Zenodo artifact.
A larger scale, parallelised approach to running Green-
house can be done with a kubernetes cluster or minikube
setup. Instructions on how to do so can be found in the
MINIKUBE.md file on our GitHub.

Results: Greenhouse takes approximately 2 to 8 hours
to rehost an image. When it completes, the script will
print ‘GHREHOST COMPLETE’. The rehosted im-
age itself can be found inside the container under
/gh/results/<sha256hash>.

The file config.json describes the results of the rehost-
ing. A ‘SUCCESS’ result corresponds to the Interact
column of Table 2, which contributes to our total of
2,841 rehosted images. More detailed instructions on
how to manually run and evaluate an individual rehosted
image are in the README file.

Note that the Greenhouse rehosted services may super-
ficially deviate from the original, though functionality is
usually unaffected. As emulating firmware images tends
to come with a degree of non-determinism, results ob-
served may also vary on a sample-to-sample basis. This
should average out over larger sets for a given brand.

(E2): [Exploit replay with routersploit] [30 human-
minutes + 4 compute-hours + 50GB disk]: This section
describes how to use the rehosted image created in E1
with routersploit and crashing scripts to validate C2.

Preparation: Make sure that a rehosted image is avail-
able inside the container with a folder named debug (e.g.
/gh/results/<sha256hash>/debug.)

Execution: Routersploit can be run inside the Docker

artifact via a script given the path to a rehosted image
(e.g. /gh/results/<sha256hash>.)

/routersploit/run_routersploit.sh <path-to-rehosted-
image>

Results: The script takes approximately 4 hours to
run all 125 N-days that are built into the router-
sploit framework used for our evaluation. Results
should be automatically consolidated inside /router-
sploit/results/vulnerable.csv. ‘gh2routersploit.csv’ is a
breakdown mapping each routersploit N-day to the re-
hosted sample on which it found the vulnerability.

(E3): [Validating crashing PoCs] [10 human-minutes +
0.2 compute-hours + 50GB disk]: This section describes
how to use the two crashing inputs provided on their
corresponding Greenhouse rehosted services to validate
C2. Only two of the 26 vulnerabilities discovered are
provided as the rest have to yet to be made public at the
time of this report.

Preparation: Make sure that a rehosted image is avail-
able inside the container with a folder named debug (e.g.
/gh/results/<sha256hash>/debug.) The crashing input
files are available inside the folder /crashing_inputs.

Execution: Follow instructions in the README on
starting up a Greenhouse rehosted image manually using
docker-compose. Once the rehosted firmware is fully up,
emit the crashing input to its target using the built-in
netcat client:

cat <crashing-input-file> | nc -w2 <ip> <port>

Results: The two crashing inputs provided are for two
zero-days found for the DIR-601_REVA_1.02 and DIR-
825_REVB_2.03 firmware samples in Table 9 and Table
11 of our paper. Emitting them to the rehosted web ser-
vice should cause it to crash, with a segmentation fault
in the terminal output of the artifact container.

A.5 Notes on Reusability
Greenhouse can be extended to run on other types of web-
services. We provide two such extensions in the image for
UPNP and DNS services.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
The artifact of ACFA is a hybrid (hardware/software) archi-
tecture to enable secure auditing of vulnerability sources and
guaranteed remediation when compromise is detected on a
remotely deployed MCU. ACFA prototype is written in C and
Verilog. It is designed alongside an open-source TI MSP430
(openMSP430) and evaluated on a Basys3 FPGA. The artifact
includes Python scripts to execute an end-to-end active CFA
protocol between a remotely deployed MCU Prover (P rv)
equipped with ACFA and a Verifier (V rf) who manages the
MCU and verifies reports from P rv. This appendix aims to as-
sist evaluators in verifying the following ACFA major claims:
low hardware cost of the hybrid CFA design, the ability to
audit periodic runtime reports containing fixed-size control
flow logs (CF Log), and the ability to execute a guaranteed
remediation action as soon as a compromise is detected.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Commit tree 9cf6550 of the ACFA Github Repository.

A.2.3 Hardware dependencies

The Basys3 Artix-7 FPGA development board is required.

A.2.4 Software dependencies

The current version was evaluated using the 64-bit Ubuntu
18.04 OS. Xilinx Vivado Toolset 2021.1 or higher is required
for synthesizing Verilog files and generating a bitstream for
the Artix-7 FPGA. ACFA build scripts install Ubuntu pack-
ages dependencies in Part 1 of Sec. A.3.1. A minimum

Python version of 3.6.9 is required, and Python dependen-
cies are specified in Part 3 of Sec. A.3.1.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

Part 1: Download ACFA source code and Ubuntu libraries:
1. Clone the ACFA Github Repository
2. cd into the directory scripts

3. Run sudo make install
Part 2: Download and install Xilinx Vivado

1. Visit Xilinx Vivado Download page.
2. Select the latest version of Vivado that supports Ubuntu.
3. Download and follow directions in the installer.

Part 3: Install pyserial using:
• sudo apt install python3-serial .

. Verify Python required packages from standard distribution:
• time, hmac, hashlib, argparse, pickle,
dataclasses, os, collections.

Part 4: Create ACFA project in Vivado
• Follow the instructions from README.md in the ACFA

Github Repository to Create ACFA project in Vivado.

A.3.2 Basic Test

A simple functionality test includes running a Vivado behav-
ioral simulation of a basic application, an Ultrasonic Sensor,
on ACFA equipped MCU.

1. Open openMSP430_defines.v to set ACFA configu-
rations. For the basic test, everything will be simulated
in Vivado. Therefore, the flag ACFA_EQUIPPED should
be set. However, the flag ACFA_HW_ONLY should not be
set for any simulation. Therefore, "comment-out" this
flag by adding "//" to the start of line 58.
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2. Now we are ready to synthesize openmsp430 with ACFA
hardware. On the left menu of the PROJECT MAN-
AGER, click "Run Synthesis", and select execution pa-
rameters (e.g., number of CPUs used for synthesis) ac-
cording to your PC’s capabilities. This step takes 2-10
minutes.

3. If synthesis succeeds, a window to "Run Implementa-
tion" will appear. Do not "Run Implementation" for the
basic test, and close this prompt window.

4. In Vivado, click "Add Sources" (Alt-A), then select "Add
or create simulation sources", click "Add Files", and
select everything inside openmsp430/simulation .

5. Open the tb_openMSP430_fpga.v file and find lines
193-202. These lines open *.cflog files to simulate
the transmission of CF Log slices for the basic test. There-
fore in lines 193-202, replace <LOGS_FULL_PATH>

with the full file path of the logs subdirectory of the
ACFA directory.

6. Now, navigate to the "Sources" window in Vivado.
Search for tb_openMSP430_fpga , and in the "Simula-
tion Sources" tab, right-click tb_openMSP430_fpga.v
and set its file type as the top module.

7. Go back to the Vivado window, and in the "Flow Naviga-
tor" tab (on the left-most part of Vivado’s window), click
"Run Simulation," then "Run Behavioral Simulation."

8. On the newly opened simulation window, select 8ms as
the time for the simulation to run. Then press "Shift+F2"
to run.

9. The simulation waveform will show two ACFA triggers
occur during the execution due to the device boot and
the program ending. In the logs sub-directory of the
ACFA directory, two *.cflog files were generated. If
two *.cflog files are generated and match the contents
of logs/expected_cflogs_basic_test/ , the basic
test has completed successfully.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1) Hardware Cost: ACFA incurs an additional hardware
cost of 275 Look-up Tables (LUTs) and 202 Flip-Flop regis-
ters (FFs). This is proven by the experiment (E1). The results
of this experiment reflect the results illustrated in Fig. 11 and
discussed in Sec. 6.1 of our paper.
(C2) Secure Auditing via Active CFA: ACFA generates a
series of control flow logs of a maximum size which allow
for a continuous and active control flow attestation protocol.
This is proven by the experiment (E2) and demonstrates the
offline and online phases described in Sec. 6.2 of our paper
when P rv is not compromised.
(C3) Compromise Detection & Guaranteed Healing: When
a control-flow violation has been detected by V rf, ACFA

immediately executes a remediation action. This is proven
by the experiment (E3) and demonstrates the effect of the
remediation phase described in Sec. 6.2 of our paper when
P rv is compromised.

A.4.2 Experiments

(E1): Verifying (C1) [10-15 minutes]

This experiment determines additional LUTs and FFs re-
quired by ACFA hardware on top of the openMSP430 verilog
project in order to estimate the hardware cost. To account
for the cost of ACFA and all interconnections between ACFA
and the openMSP430, we determine the cost by taking the
difference between the cost of openMSP430+ACFA and open-
MSP430 alone.
[Preparation:] To prepare for this experiment, open ACFA
Vivado project, as the Vivado toolset will be used to synthe-
size the Verilog design files into hardware. In addition, open
the file openMSP430_defines.v . For both of these experi-
ments, the flag ACFA_HW_ONLY will always be enabled (en-
sure no "//" precedes the ‘define ACFA_HW_ONLY on line
58). This ensures that only ACFA hardware is measured, and
additional registers to simulate/emulate memory, which is not
part of ACFA hardware, are not included in the measurement
of hardware cost.
[Execution:] The first phase is to determine the cost of
ACFA + openMSP430. Ensure ACFA_EQUIPPED is enabled
(no "//" preceeds the ‘define ACFA_EQUIPPED on line
54 of openMSP430_defines.v ). On the left menu of the
PROJECT MANAGER, click "Run Synthesis" as performed
in the Setup. After Synthesis completes, scroll down to "Uti-
lization" in the "Project Summary" window. Press "Post-
Synthesis" and "Table" to see a table of the hardware cost
utilized by the synthesized Verilog files. The "Utilization
Column" shows the total count of each resource in the "Re-
source" column. Therefore, this table will show the total LUT
(row 1, column 2) and FF (row 3, column 2) required for
ACFA + openMSP430. Take note of these values (referred to
as LUTACFA+MSP430 and FFACFA+MSP430, respectively) since
they are required to determine the final result. To get the cost
of openMSP430 alone, open openMSP430_defines.v ) and
disable ACFA_EQUIPPED (add "//" to the beginning of line
54). Next, save all changes and rerun Synthesis. After it com-
pletes, check the LUT and FF utilization using the previous
steps. This time, the listed LUT and FF specify the cost of
openMSP430 without ACFA. Note these values (referred to
as LUTMSP430 and FFMSP430, respectively) since they are re-
quired to determine the final result.
[Results:] The cost of ACFA is determined by taking the
difference between the cost of ACFA + openMSP430 and the
cost of openMSP430 alone. Below are the expected results.
Look-Up Tables (LUTs):

• LUTACFA+MSP430 = 12373
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• LUTMSP430 = 12098
• LUTACFA = LUTACFA+MSP430 −LUTMSP430
• LUTACFA = 12373−12098 = 275

Flip-Flop Registers:
• FFACFA+MSP430 = 1844
• FFMSP430 = 1642
• FFACFA = FFACFA+MSP430 −FFMSP430
• FFACFA = 1844−1642 = 202

(E2): Verifying (C2): [45-75 minutes]

This experiment demonstrates ACFA ability to provide se-
cure auditing of periodic reports through enabling active CFA.
In this experiment, ACFA executes a simple program that re-
ceives a remote user’s password input and compares it with
an expected password. After receiving a correct password, the
Prover (P rv) records six readings from an ultrasonic sensor.
The Verifier (V rf) has configured ACFA to have a maximum
CF Log size of 256B, and the timeout period is set as the
maximum value to effectively deactivate triggers due to a
timeout. This experiment demonstrates ACFA ability to halt
execution and a series of fine-grained and timely reports. In
addition, this experiment demonstrates the effectiveness of
the end-to-end demo’s offline and online phases.
[Preparation:] Add "//" to the start of line 59, remove
any "//" from the start of line 54 in demo_prv/main.c ,
and save changes. Then, open a terminal window and cd

into scripts . Run make demo to compile the software.
After this, open openmsp430_defines.v and make sure
ACFA_EQUIPPED is enabled and ACFA_HW_ONLY is dis-

abled. Save all changes, then run Synthesis as performed
in the Basic Test. Once Synthesis completes, select "Run
Implementation." This process takes 30mins-1hour. After Im-
plementation completes, select "Generate Bitstream," which
will take 1-2mins. P rv will execute on the FPGA using the
bitstream that was just generated. V rf will execute using a
Python script during offline and online phases. During the
online phase, V rf and P rv connect through a USB-UART
interface. Connect the Basys3 FPGA to the machine using the
USB cable included with the board. Then, determine which
serial port the device is connected to (using dmesg com-
mand or some other means). After determining the serial port,
update lines 16-17 in demo_vrf/vrf_online.py to reflect
the correct port. The openMSP430 design shares a port be-
tween the GPIO and UART, and the GPIO port is selected by
default. Therefore to select (and enable) the UART, turn on
the physical switch SW1 on the Basys3 FPGA board.
[Execution]: First complete the offline phase of V rf. Dur-
ing this phase, V rf computes the control flow graph (CFG)
of the application software and computes an HMAC over
the expected application binary. This is completed by the
Python script vrf_offline.py . Open a terminal and ex-
ecute this script by running python3 vrf_offline.py ,
and the binary objects from the offline phase are seen in

demo_vrf/objs . Next, start the online phase of V rf by run-
ning python3 vrf_online.py . V rf will start running and
wait for a report. Next, in Vivado, click "Open Hardware Man-
ager" and then click "Auto-Connect". The FPGA should now
be displayed on the hardware manager menu. Right-click the
FPGA and select "Program Device ."After this, the ACFA-
equipped MCU is programmed onto the FPGA, and P rv will
start running.
[Results]: During the online phase, V rf receives reports from
P rv which contain a CF Log. The directory /logs will be
populated with four CF Log slices during the execution of
the online phase. During each iteration of the active CFA
protocol, V rf will authenticate and verify CFlog slices by
comparing them to the CFG and maintaining a shadow stack.
In demo_vrf/objs , a binary object of the shadow stack
is stored and modified during the online phase. ACFA gen-
erates and sends each report because of an ACFA trigger;
0.cflog and 3.cflog are generated due to the boot/end

of program trigger; 1.cflog and 2.cflog are generated
due to CF Log reaching maximum size. The seven segment
display of the FPGA board will show the current instruction
address: the end of program ( 0xe24a ).

(E3): Verifying (C3) [45-75 minutes]
This experiment executes the same example application as

(E2). However, a buffer overflow is purposefully introduced
in this experiment to cause a control flow attack. Therefore,
this experiment shows that after a control flow violation has
occurred, ACFA guarantees the remediation mechanism exe-
cutes immediately.
[Preparation:] First add "//" to the start of line 54, remove
any "//" from the start of line 59 in demo_prv/main.c , and
save changes. This is the reverse of the first step in (E2) and
enables the buffer overflow. After this, follow all remaining
steps in the Preparation of (E2).
[Execution]: Follow the same steps of Execution of (E3).
[Results]: V rf detects the buffer-overflow during the first
intermediate report ( 1.cflog ). Because of this, V rf sends
a command to execute the healing mechanism: shut down
P rv. On MSP430, this is achieved by setting a bit in the sta-
tus register. After doing so, P rv does not continue executing
and pauses in TCB. This demonstrates that the compromised
P rv could not continue executing due to ACFA. In addition,
because ACFA triggers sent V rf an intermediate report, V rf
could find the vulnerability before the adversary could com-
plete their attack. The seven segment display shows that the
software is contained at TCB-Heal ( 0xa606 ).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artefact Appendix

A.1 Abstract

The artefact is an instance of a USB device capable of inject-
ing transmissions that a USB host will attribute to a neigh-
bouring connected device, as described in the paper. It is
configured to present itself as a USB mouse and can inject
keystrokes on behalf of an adjacently connected USB key-
board, while optionally also blocking genuine input from the
keyboard victim.

The artefact is in the form of a bitstream to be programmed
onto an FPGA training board (ported for a Basys 3). The RTL
source is also provided for modification and re-generation of
the bitstream for use on other boards. A 1.5 kΩ resistor and
basic cable splicing/rewiring is required.

With reference to the paper, the basis of this artefact is
described in Section 5.1, and the claims to be reproduced are
described in Section 7.1.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

There is no risk of destructive behaviour from evaluation of
this artefact.

A.2.2 How to access

Most recent source available at:
https://github.com/0xADE1A1DE/USB-Injection/

Stable tag:
https://github.com/0xADE1A1DE/USB-Injection/
releases/tag/PosSec23AE

A.2.3 Hardware dependencies

Target hardware: A Digilent Basys 3 FPGA development
board is required. This is a cheap (149 USD) and commonly
used FPGA board. If you are at a university with an
Elec Eng department, they are likely to have some of
these available. (Other FPGA boards can be used if they
have 3.3V IO, modification of constraints file and gener-
ation of a new bitstream from RTL source would be required).

Supplementary:
• A USB A to Micro B cable is needed to program the FPGA

board (this should come in the Basys 3 box)
• A secondary USB cable must be spliced (exposing internal

connector wires) while leaving the side of the type-A male
connector intact (part that plugs into computer USB ports)

• 1.5 kΩ resistor
• Wires / connectors / breadboard
For testing:
• Any PC with USB ports
• A LS (Low-Speed) keyboard (majority are LS)
• USB hub(s)

A.2.4 Software dependencies

Any version of Xilinx’s Vivado software, including free
versions, can be used to configure the injection platform. See
https://www.xilinx.com/support/download.html for
latest versions.

[Windows users] We highly recommend USB Device Tree
Viewer (https://www.uwe-sieber.de/usbtreeview_e.
html) by Uwe Sieber for viewing the complete hierarchy
of USB devices connected to your computer along with
their descriptor sets. This will help to confirm the device is
working.
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Figure 1: Basys 3 Pmod pinout

A.3 Set-up
A.3.1 Installation

1. Connect Basys 3 board to a computer running Vivado and
program the target FPGA with the bitstream file from the
repository (OS is according to the host computer the injec-
tion platform will be plugged into – this can be the same
PC to which the Basys 3 is connected for programming):
[Windows]
LS Keystroke Injector > USB_Demo.bit
[Linux]
LS Keystroke Injector > USB_Demo_Linux.bit

2. Connect wires from a spliced USB cable to the Basys 3
board with the pin correspondence described in Table 1.
See Figure 1 and Figure 2.

USB pin USB wire colour Basys 3 JB Pmod pin

D+ Green JB1
D- White JB3
Gnd Black JB5
Vs Red Leave unconnected

Table 1: USB wire to FPGA pin correspondence

Figure 2: Pmod connector header pin numbering

3. Pull up the D- line to 3.3V across a 1.5kΩ resistor (as
in Figure 3). To do this, you can connect one side of the
resistor through JB6 (Vcc at 3.3V) on the same Basys 3
Pmod header, and connect the other side to the junction of
JB3 and D- from the spliced cable.

Figure 3: D- pullup resistor wiring

4. Continue to ’Basic Test’

A.3.2 Basic Test

With the Basys board programmed and connected to the
spliced cable as instructed, plug the USB connector from
the spliced cable into a PC (this can be the same PC to which
the Basys 3 is connected for programming its FPGA). This
should connect as a new mouse device. Confirm artefact func-
tional as follows:
[Windows] Can either use device manager or preferably the
USB Device Tree Viewer software previously mentioned in
Appendix A.2.4.
[Linux] the lsusb command can be used to display the entire
USB connection hierarchy.
Check the connection hierarchy with the device unconnected
vs plugged in to confirm it appears.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The injector device can inject keystroke data on be-
half of an adjacently connected victim keyboard when
both the injector and victim are connected to the same
vulnerable single-TT standard hub. This is proven by
experiment (E1) described in Section 7.1 of the paper.
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(C2): The injector device can effect a Denial-of-Service to
the adjacently connected victim keyboard when both
the injector and victim are connected to the same non-
vulnerable, single-TT standard hub. This is also proven
as an alternative outcome of experiment (E1) described
in Section 7.1 of the paper.

A.4.2 Experiments

(E1): Keystroke injection [10 human-minutes]:
How to: Connect both the injection platform and victim
keyboard to a common USB hub which is connected
to a host PC. This can be the same host machine that
the Basys board is connected (or any other machine).
Connect no other devices through the hub. The hub is the
device under test here, if it is vulnerable to injection the
injection platform will be able to inject keystroke data
on behalf of the connected victim keyboard [Results].
If the hub is not vulnerable, the injector should still be
able to effect a Denial-of-Service against the victim key-
board [Alternative Results].
Preparation: Ensure the injection platform and key-
board are both logically connected to the same USB 2.0
hub and are both operating at LS. This will require us-
ing USB Device Tree Viewer (Windows) or the lsusb
command (Linux).
The common hub must not be the computer root hub,
injection will not work against root hubs.
Ensure the USB 2.0/2.1 hub is single-TT.
Ensure the Reset switch (SW0) is off (down), this is
furthest right of the switches lining the bottom of the
board (Figure 1).
Configure board switches into State 3 as in Table 2.

State inj (SW1) DoS (SW2) Behaviour

0 0 0 NAKs being injected
1 0 1 No injection - victim works
2 1 0 NAKs being injected
3 1 1 Data being injected

Table 2: Injection platform switch configurations

[Linux] Open a document in a text editor.
[Windows] Same as above or do nothing.
Execution: Push the buttons on the Basys 3 board (5
buttons arranged in + shape on the bottom right side of
the board) as follows (orientation as shown in Figure 1):
[Windows] Left, Left + Right, release both, Up, release,
Centre, release, Down, release, Right
[Linux] Push and release any of Up, Centre, Down, or
Right.
Results: If the hub under test is vulnerable to injection,
you should see the following behaviour:
[Windows] The sequence of injected keystrokes opens a
command prompt.

[Linux] The following keys are typed on the text editor
document: c (Up), m (Centre), d (Down), and enter
(newline) (Right).
If possible try with various hubs. USB 2.0 hubs are likely
to be vulnerable, whereas USB 3.0 hubs are unlikely as
a very small portion have been found vulnerable.
Additional Evidence of Results: [Optional – if injec-
tion working and hub vulnerable]
Wireshark’s USBPcap function can be used to view in-
jected traffic.
Unplugging the victim keyboard and pressing the same
buttons on the still-connected injector will result in no
keystrokes being fed.
Install any software-based USB authorisation policies
and attempt injection with the victim keyboard allowed
while the injector is blocked – as in Section 8. Injection
will still work.
Alternative Results: Denial-of-Service against the key-
board victim should still be evident with hubs that are
not vulnerable to injection. With the injector connected,
open a text document and attempt to type keystrokes
through the victim keyboard. No keystrokes should pass
through. Change the injector switches to State 1 and the
victim should then be able to type keystrokes.

A.5 Notes on Reusability
We have made the source RTL available so the injector device
can be modified with generation of new bitstreams. Note, this
source is for the Windows-compatible injector. Compatibility
issue is just a bug from how different OS drivers process
descriptors which we have not yet resolved. Some possible
alterations for reuse are as follows:
Changing injected input. To change what data is injected,
modify what is written to PCIn in USBF_Demo.vhd. See HID
keyboard scan codes for data corresponding to keystrokes.
Changing injector device descriptors. To change any of
the descriptor fields (ID, device type, etc.), modify values in
USBF_Declares.vhd. Injection function is agnostic to the
injector platform device type.
Use injector as FS device to target gaming keyboards. Re-
peat experiment with files under FS Keystroke Injector
and pull up D+ instead of D-.
Use with different boards. The injector configuration should
work with various FPGA boards, all that is needed is 3.3V IO
and a different set of constraints (.xdc file).

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220912. Submission, reviewing and badging method-
ology followed for the evaluation of this artifact can
be found at https://secartifacts.github.io/usenix%
20sec2023/.
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A Artifact Appendix

A.1 Abstract
This artifact permits to reproduce the formal verification of
the LAKE EDHOC protocol. It comes as a docker image
containing

• the software needed (SAPIC+, TAMARIN, PROVERIF,
DEEPSEC);

• the models of the LAKE EDHOC protocol;

• the scripts to batch run the verification of the models
using the SAPIC+ platform.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The artifact is hosted on docker hub: https://hub.docker.
com/r/protocolanalysis/lake-edhoc/.

A.2.3 Hardware dependencies

There are two main sets of experiments, one relying on the
PROVERIF tool and one on the TAMARIN tool. The PROVERIF
experiments can be executed in a couple of hours on a modern
laptop (8 threads at 2.8Ghz), while the Tamarin one while
take multiple days. Having access to a server with 48 threads
ensures that everything will run under a day.

A.2.4 Software dependencies

Docker is the only required dependency.

A.2.5 Benchmarks

[Mandatory] None.

*This work was partly done while Charlie Jacomme was at the CISPA
Helmholtz Center for Information Security.

A.3 Set-up

[Mandatory] Installation instruction for Docker are
provided at https://docs.docker.com/engine/
install/.

A.3.1 Installation

The artifact is fetched with

docker pull protocolanalysis/lake-edhoc:draft-14

A.3.2 Basic Test

A bash should be opened inside the docker when running:

docker run -it protocolanalysis/lake-edhoc:draft-14 bash

A.4 Evaluation workflow

Once inside the Docker, there are two subfolders
lake-draft12 and lake-draft14. Each folder con-
tains a README, bash scripts to run the exhaustive
verification as well as the tool chain to generate the models
from jinja2 templates. To ease the artifact evaluation, we
automated all the relevant verifications under two main
scripts:

• ./run-proverif.sh

• ./run-tamarin.sh

A.4.1 Major Claims

The LAKE EDHOC protocol draft 12 and draft 14 can be
analyzed automatically using the SAPIC+ platform under dif-
ferent scenarios. This yields the analysis results provided in
Table 7 and 8 of Appendix B of our paper. Those tables where
manually produced by formatting in LATEX the results stored
in the two csv files located in the expected-results folder.
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A.4.2 Experiments

(E1): PROVERIF results: 5 human-minutes + 5.8 single-
threaded (2.8Ghz) compute hours. With 7 threads at
2.8Ghz and 31 GB of RAM the verification runs in 62
minutes, and can go down to 31 minutes with additional
cores.
Preparation: Enter the docker image. Check the num-
ber of available threads, e.g. with htop.
Execution: Run ./run-proverif.sh i, where i is
the number of available threads, and wait for full com-
pletion. The script displays which verification are started
(mainly for debugging purposes).
Results: The script produces a res-proverif.csv
file. To compare the obtained results with
the one stored in expected-results, the
compare-diff-proverif.sh script highlights
any differences. The diff should only highlight timing
differences, or additional timeouts in case of different
hardware.

(E2): TAMARIN results: 5 human-minutes + 64 single-
threaded (2.8Ghz) compute hours. With parallelization
over 48 threads at 2.8Ghz and 756GB, the experiments
takes 14 hours.
Preparation: Enter the docker image. Check the num-
ber of available threads, e.g. with htop.
Execution: Run ./run-tamarin.sh i, where i is the
number of threads divided by 4 (as we allocate 4 threads
to each instance of TAMARIN), and wait for full comple-
tion. The script displays which verification are started
(mainly for debugging purposes).
Results: The script produces a res-tamarin.csv file.
To compare the obtained results with the one stored in
expected-results, the compare-diff-tamarin.sh
script highlights any differences. The diff should only
highlight timing differences, or additional timeouts in
case of different hardware.

In addition, the privacy analysis of Table 6 can also be
verified, running ./lake-draft12/run-anonimity.sh and
./lake-draft14/run-anonimity.sh.

A.5 Notes on Reusability
The docker also contains a README.md meant for users famil-
iar with the underlying TAMARIN/PROVERIF/SAPIC+ tool
chain, which explains how to either reuse our general structure
or update the models.

To build the docker, the following actions can be per-
formed:

git clone https://github.com/charlie-j/tamarin-prover/
cd tamarin-prover;
git checkout e59304fb8f51e1e25118362daeb3fc008a6e292d;
./etc/docker/build.sh
./etc/docker/build-platform.sh
cd ../
git clone https://github.com/charlie-j/edhoc-formal-analysis

git checkout e2e3f7407e9eb331a8112614fe9e116e57a25e51
cd edhoc-formal-analysis
./Docker/build.sh

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

356    Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2023/


USENIX’23 Artifact Appendix:
Automated Analysis of Protocols that use Authenticated Encryption:

How Subtle AEAD Differences can impact Protocol Security

Cas Cremers1, Alexander Dax1,3, Charlie Jacomme2, and Mang Zhao1,3

1CISPA Helmholtz Center for Information Security, Germany
2Inria Paris, France

3Saarland University

A Artifact Appendix

A.1 Abstract

This artifact appendix presents a description of the experi-
ments and case studies conducted in the research paper Auto-
mated Analysis of Protocols that use Authenticated Encryp-
tion: How Subtle AEAD Differences can impact Protocol
Security. One of the core objectives of this research is to
analyze the impact of subtle differences in AEADs on the
security of a variety of protocols.

We provide means to reproduce our case studies of 8 dis-
tinct security protocols, namely YubiHSM, Facebook’s Mes-
sage Franking, SFrame, WebPush, Whatsapp Group Messag-
ing, GPG, saltpack, and Scuttlebutt. These protocols are ana-
lyzed under different various AEAD models. We structured
and defined those models in a library file. All models in the
library, along with the case studies, are implemented using
the Tamarin Prover, a symbolic analysis tool for security pro-
tocols.

The AEAD models and case studies are made available
in a public Github repository with detailed instructions and
automated means to replicate the experiments discussed in the
original research paper. Additionally, a Docker image with
the necessary software is made available for easy setup and
execution.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

All our files are publicly available and can be accessed
in the following GitHub repository https://github.com/
AutomatedAnalysisOf/AEADProtocols/tree/V1.

A.2.3 Hardware dependencies

Our artifact does not require any specific hardware. However,
as the used software (e.g. the Tamarin Prover 1 ) does also
scale with computation power and memory, we recommend to
at least use a modern notebook or similar modern computing
devices. GPUs are not required.

A.2.4 Software dependencies

We provide access to a docker2 image which has all the nec-
essary software dependencies pre-installed.

(Optional) Dependencies for manual installation In case
the reviewers choose to manually install the dependencies,
they should install the following
1. Tamarin Prover3 (depends on haskell-stack, graphviz,

and maude. ) Note that Tamarin does not run on Win-
dows systems and a virtual machine/WSL may be
needed. Additionally, we added a .zip file with the cor-
rect Tamarin version to the GitHub repository.

2. Python3 - install pip, and use it to install tabulate and
matplotlib.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Clone the repository using:

$ git clone https://github.com/
AutomatedAnalysisOf/AEADProtocols.git↪→

1https://tamarin-prover.github.io
2https://docs.docker.com/engine/install/
3https://tamarin-prover.github.io/manual/book/002_

installation.html
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Figure 1: Exempt of the terminal output produced by tamarin_wrapper.py.

and navigate inside the repository.
After installing docker, pull the docker image using

$ docker pull aeads/tamarin

Now, you can run the image using:

$ docker run -it -v $PWD:/opt/case-studies
aeads/tamarin bash↪→

(Optional) Hints for manual installation

In the case you want to set up the experiments without docker
here are some hints:
- Make sure to use the tamarin prover version provided in

the GitHub repository.
- Follow the instruction on https://tamarin-prover.

github.io/manual/book/002_installation.html
to install the tamarin prover. Common problems are
missing Haskell dependencies or outdated versions of
Maude

- Make sure that the tamarin-prover executable is in the
$PATH.

A.3.2 Basic Test

Execute

$ tamarin-prover test

to see whether the docker started successfully (or whether
your manual installation worked).

You should see a message containing
- a check for maude,
- a check for Grapviz, and
- a test for the unification structure (0 errors and 0 failures).
In the end you should see the following:

All tests successful.
The tamarin-prover should work as intended.

:-) happy proving (-:

A.4 Evaluation workflow
A.4.1 Major Claims

One of the primary objectives of the case study analysis is
to identify the most robust AEAD model that preserves the
desired security property for each protocol.

The provided models in the artifact appendix include for-
mal representations, so-called lemmas, expressed in the input
language of the Tamarin Prover, which capture the desired
security properties of the protocols.

Through automated execution of Tamarin with different
AEAD models using a provided Python script, the lemma
results are checked to determine if they hold or provide coun-
terexamples, facilitating efficient analysis. Further details on
the Python script and the core idea can be found in the original
paper.

Table 1 shows an output of the Python script for the What-
sapp group messaging protocol model. Here, for instance,
the lemma marked as consistency does not hold under the
collkeys or the the collmmax AEAD models. The name
tags are explained in the README.md file and defined in the
original paper.

Our focus lies on identifying the weakest AEAD model
that ensures the security property proven by the lemma, as
well as determining the strongest AEAD models that lead to
potential attacks. However, it is important to note that certain
models may not terminate within the specified timeout. In
such cases, we still identify AEAD models that demonstrate
both secure properties and attack possibilities. In this case,
we do not claim that these models represent the strongest
or weakest models where the property still holds or yields a
counterexample.

We give details on the reported results in the orig-
inal paper and provide the concrete results in the
GitHub https://github.com/AutomatedAnalysisOf/
AEADProtocols/tree/V1.

A.4.2 Experiments

Instead of running all models independently, we provide a
python program to run all of them at once. For that we used
a computing cluster with Intel® Xeon® Gold 6244 CPUs
and 1TB RAM. In case you do not have access to a com-
puting cluster, you may need to increase the timeout in the
case_studies.tamjson file. Open the file using the editor
of your choice and navigate to the line "timeout": 60, and
increase the number slightly. The number after the timeout is
defined as seconds.

In the GitHub repository we also provide the results of our
case studies when running them on our machine. We had a
total evaluation time of 17 hours and 29 minutes with a total
of 1404 tamarin prover calls. While we tested the case studies
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also on a modern notebook, we cannot guarantee the same
precise result, as specific lemmas using certain AEAD models
may not terminate within the timeout. This mostly concerns
the protocol models if YubiHSM and SFrame. All others
should finish rather fast (< 1hour), also on normal notebooks.
Preparation: After following the installation instruction in

Section A.3.1, enter the Models folder within the cloned
repository/docker image.

Execution: Execute

$ python3 tamarin_wrapper.py -f
case_studies.tamjson↪→

Note, that depending on your machine the results
may differ. You can increase the timeout in the
case_studies.tamjson

Results: While the results will be printed into the ter-
minal (see Figure 1), .csv files of the results are
also stored within the newly created results folder.
They can be compared to our provided results in the
results_precomputed folder in the Models directory.
We also refer to Table 3 and Table 4 in the original paper
to confirm that your run did find the same attacks

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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XiaoFeng Wang
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A Artifact Appendix

A.1 Abstract

The submission pertains to PrivRuler, a tool utilized in the
research paper titled "Credit Karma: Understanding Security
Implications of Exposed Cloud Services through Automated
Capability Inference." PrivRuler comprises two key compo-
nents. The first one, AppAnalysis, is a static app analysis
component that extracts cloud service credentials and usages
from mobile applications. The second component, Cloud-
Probe, takes the output of AppAnalysis as input and probes
the associated cloud services to infer the additional capabili-
ties granted to mobile applications.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The AppAnalysis component runs as a Java program on the
local machine, and it does not alter any system settings that
might impact security, nor does it transmit any data to backend
servers.

The CloudProbe component operates within an Android
emulator or a test Android device, allowing it to probe cloud
services and infer the capabilities associated with a specific
cloud credential. In this submission, we established a test
credential on our AWS accounts, ensuring that running the
CloudProbe component for functional testing would not com-
promise the privacy of any third parties. Additionally, we
minimized the risks associated with cloud service probing
using multiple strategies, as detailed in Section 3.6 of the
paper.

A.2.2 How to access

URL: https://github.com/privruler/PrivRuler-Public
Commit: 8ff0ae9c8d2611072fde0b112e71b8f662fb2507

A.2.3 Hardware dependencies

There is no hardware dependencies to run PrivRuler.

A.2.4 Software dependencies

• PrivRuler runs on basically all operating systems, in-
cluding Windows, MacOS, and Linux. We recommend
MacOS or Linux as these are the operating systems we
test more often.

• Recommend JDK Version 8
• Android Studio
• Android platform tools (e.g., adb)
• Android emulator or device of API Level < 30 (Recom-

mended 28).

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

Install AppAnalysis. AppAnalysis is written in Java, and we
have created a script to automate the compiling and depen-
dency management process. Users can follow the below steps
to compile it.

• cd $dir/PrivRuler-Public/AppAnalysis
• ./compile.sh

Install CloudProbe. CloudProbe is delivered as an Android
app. Therefore, we need an Android emulator and Android
Studio to install it.

• Create an Android Emulator with API Level 28.
• Import CloudProbe into Android Emulator, and hit “Run
app” button to install CloudProbe on the emulator.
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A.3.2 Basic Test

We created a test app folder at “$dir/PrivRuler-
Public/AppAnalysis/apks/” for basic testing.
Run AppAnalysis. Use the below commands to analyze test
apps using AppAnalysis:

• cd $dir/PrivRuler-Public/AppAnalysis
• ./analyze apks apks

The output will be stored in output/app-debug.output file.
A successful run of AppAnalysis will generate a line that
contains “cloudAPIs” keyword in the output file.
Transfer AppAnalysis result to Android emulator. Launch
the Android emulator, and run the below command to transfer
the output of AppAnalysis to the emulator.

• grep -Rh ’appName.*cloudAPIs’
$dir/PrivRuler-Public/AppAnalysis/output
» summary

• adb shell mkdir /sdcard/cloudassets
• adb push summary /sdcard/cloudassets

Run CloudProbe. In Android Studio, click the “Run app”
button to run CloudProbe. Once the app is launched in the
emulator, click the three buttons on the app UI. A success-
ful run will generate analysis results under emulator folder
/sdcard/AWSSummaries/, with each app has a file named
summary_⟨packagename⟩.json. Users may check presence
of this file by running: adb shell ls -alh $file_path.

A.4 Evaluation workflow

We do not request for a complete evaluation since it will
require analyzing over 1.3M apps (over 30TB) in storage, and
re-probe the cloud backends of 12K apps.

A.5 Notes on Reusability

In addition to inferring over-privileges in cloud services, the
artifact has the potential to be used in several other ways:

• Analyzing mobile apps for sensitive information be-
yond cloud service credentials. While the artifact’s pri-
mary focus is detecting cloud service credentials within
mobile apps, it can be customized to scan and identify
other sensitive information present within mobile apps
with ease.

• Identifying obfuscated APIs. As a part of the AppAnal-
ysis component, the code extracts fingerprints for obfus-
cated APIs by examining invariant information like the
number of arguments. The obfuscated APIs fingerprint-
ing module can be employed to analyze other obfuscated
APIs aside from cloud APIs.

• Enhancing mobile app security. By employing the
PrivRuler tool, app developers can evaluate the security
of their mobile apps and identify any potential vulnerabil-
ities in regard to cloud services, thereby enhancing their

app’s security posture and safeguarding against cyber
attacks such as data leaks.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

362    Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2023/


USENIX’23 Artifact Appendix: Remote direct memory introspection

Hongyi Liu Jiarong Xing Yibo Huang Danyang Zhuo† Srinivas Devadas‡ Ang Chen
Rice University †Duke University ‡MIT

A Artifact Appendix

A.1 Abstract

This artifact appendix describes the workflow to setup and
run RDMI. It includes an artifact check-list, description of
hardware/software dependencies to install RDMI as well as
setup instructions and experiment workflows. Please refer to
the GitHub repository for further installation and execution
details.

A.2 Description & Requirements
We provide a check-list for meta-information here.

• Compilation: GCC v7.5.0, Tofino SDE v8.4.0.

• Binary: Source code included to generate binaries

• Run-time environment: End host codes are tested on x86
servers with Ubuntu18.04 OS.

• Hardware: Intel/Barefoot Wedge 100BF-32X Tofino switch
×1, x86 server with Mellanox ConnectX-4 RNICs ×2.

• Metrics: Throughput, latency, CPU utilization, defense effec-
tiveness.

• Output: The compiler will output configuration files used for
configuring the programmable switch to enforce policies. La-
tency and traffic volume can be measure by tools like tcpdump
or using in-switch telemetry. CPU utilization can be measure-
ment by tools like top.

• Experiments: DSL compilation, connection establishment,
switch reconfiguration and policy execution.

• How much disk space required (approximately)?: 1GB
(dependencies not included)

• How much time is needed to prepare workflow (approxi-
mately)?: Compiling all programs needs about 1 hour (instal-
lation of software dependencies and hardware is not included)

• How much time is needed to complete experiments (approx-
imately)?: About 2 hours to see the effect of all defenses.

• Publicly available?: Yes, code is available on GitHub.

• Code licenses: MIT license

A.2.1 Security, privacy, and ethical concerns

There is no security, privacy, and ethical concerns.

A.2.2 How to access

Our artifact and guidelines for installing and evaluating RDMI
are publicly available at the following GitHub repository:
commit: 7b8b15cf9a.

A.2.3 Hardware dependencies

To run RDMI, it requires two x86 servers connected by an
Intel/Barefoot Tofino switch through Mellanox ConnectX-4
RNICs.

A.2.4 Software dependencies

Our experiments are performed on x86 servers running 64-
bit Ubuntu 18.04, but similar Linux distributions should also
work. To enable RDMA, Mellanox MLNX_OFED driver
must be installed on the servers. RDMI’s P4 code is compiled
by proprietary toolchains provided by the switch vendors.

A.2.5 Benchmarks

None.

A.3 Set-up
To run RDMI, user needs to install all the dependency listed
in check-list as well as install the NIC driver. We provide
more details in the GitHub repository.

A.3.1 Installation

We list the main steps to install RDMI here. More details can
be found in our GitHub repository.

• Install RNIC drivers to enable RDMA on end hosts.

• Install and setup the programmable switch following the
vendor instructions.

A.3.2 Basic Test

To test compiler, run make & python parse.py & ./RDMI
1000 100 1 inside compiler directory. It should result in a
generated cmd file used for configuring the switch. To test the
connections, run sudo ./rdmatry_server -a SERVER_IP
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-n 10 -m 1 -M 1000000000 -d 0 in the introspected ma-
chine side and ./rdmatry_client -a SERVER_IP -n 10
-M 1000000000 -r 10000000 -c 1 -t 99999999999
-p 1 in the remote side inside switch directory, and follow the
instructions to establish the connections. The program should
print out connection success information if the connection is
setup correctly. To test the switch, run ./run_switchd.sh
-p master on the corresponding Tofino SDE environment.
The load success information will be printed if the switch
environment and program is correct. Then the user can follow
the vendor provided instructions to configure the switch with
the generated configuration files.

A.4 Evaluation workflow
We listed detailed workflows to conduct the experiments of
the system in the GitHub repo. Here we provide three key
steps below for the evaluation workflow. Please refer to our
GitHub repository for further details:

• Establish the RDMA connections.

• Compile the policy and generate the corresponding con-
figuration files.

• Configure the switch and run the program.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
This artifact contains the codebase to run SQIRL, a novel ap-
proach to detecting SQL injection vulnerabilities using deep
reinforcement learning with multiple worker agents. Each
worker intelligently fuzzes the input fields discovered by an
automated crawling component. It also includes all the code
required to run the different versions of SQIRL including its
random (RAND-SQIRL), and federated (FED-SQIRL) variants.
The requirements to create the SQLiMicroBenchmark (SMB)
are also included. We further detail how to run SQIRL on the
SMB in order to reproduce the results found in the main body
of the paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

To reduce the effect of possible security concerns the SMB
runs inside a docker container. The SMB should not be ex-
posed on externally available ports as the SMB contains delib-
erately vulnerable samples.

SQIRL has the potential to find zero-day SQLi vulnerabili-
ties in web applications. However, we have designed SQIRL
to be a greybox tool that requires privileged access to the
webapplication-under-test. This prevents malicious user from
using this on targets that are unware they are being tested.

A.2.2 How to access

We release the artifact as a repository, a sta-
ble version of which can be found at: https:
//github.com/ICL-ml4csec/SQIRL/tree/
5a444ee7782a33a097f345fca837125ac2505ee0

A.2.3 Hardware dependencies

None

A.2.4 Software dependencies

• Python >= 3.8.16
• Python pip >= 23.0.1
• Docker Engine >= Docker version 23.0.5, build bc4487a
• Docker Compose version >= v2.17.3

A.2.5 Benchmarks

The SQLiMicroBenchmark or SMB is provided in the arti-
fact in the directory SQLiMicroBenchmark/. This requires
Docker in order to be run, and tested on.

A number of baselines are used as a point of comparison
to SQIRL. We do not document here how to install and setup
these baselines, we refer the reader to the relevant baselines if

they wish to compare against these. Please see the Appendix
in the main paper for the configuration used for the baselines.

Baselines:
• OWASP ZAP v2.11.1
• Sqlmap v1.6
• BurpSuite Pro v2022.6.1
• Arachni v1.6.1.3
• Wapiti 3.1.2
If user wish to experiment with the production grade web

applications we provide here the list of web applications and
plugins where relevant:

1. WordPress core v6.0 and plugins (Download Monitor
WordPress V 4.4.4, WP User Frontend 3.5.25, Sliced
Invoices 3.8.2, Plugin Photo Gallery 1.5.34, Supsystic
Ultimate Maps 1.1.12, WP Statistics 13.0.7, JoomSport)

2. B2evolution v7.2.3-stable
3. BBpress v2.6.9
4. Big tree CMS v4.4.16
5. Drupal v9.3.18
6. Joomla v4.2.0
7. Admidio v4.0
8. Gila CMS
9. Media wiki v1.38.2

10. Pbboard v3.0.3
11. Impresscms v1.4.4
12. WackoWiki v6.0.31
13. Sourcecodester E-learning System v1.0,
14. Sparks Hotel Management System v1.0

A.3 Set-up
A.3.1 Installation

Clone Repository:
git clone https://github.com/ICL-ml4csec/SQIRL

Install docker: If the docker engine and docker compose re-
quirements are not already met, then install them. Instructions
for this can be found here.
Setup SMB: From the SQLiMicroBenchmark/ directory cre-
ate the required docker containers: docker-compose up -d.
This can take a minute or two to install and configure. Note
that one of the containers ‘db-seeder’ will sleep for 40 seconds
before configuring the ‘db’ docker container, and will then
exit. This is the intended behaviour, after the configuration
containers ‘db’ and ‘php-apache’ should be running.

The log file required by SQIRL must be edited to provide
read and write access chmod +rw mysql/general.log.
SQIRL dependencies: We recommend running the SQIRL
framework from a virtual Python environment. We recom-
mend using conda, which can be installed following the guide
here. Note conda is not required and other frameworks such
as poetry or venv can be used. After install create the conda
environment:

• conda create -name sqirl python=3.9
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Figure 1: Expected result for basic test of SQIRL, showing
help options.

Figure 2: Expected result for basic test of SMB, showing all
containers have started.

SQIRL packages: Installing the SQIRL packages with pip
can be done using the following command: conda activate
sqirl && pip install -r requirements.txt.

A.3.2 Basic Test

SQIRL: python sqirl.py -help
This should startup SQIRL and then display the flags that

can be used when running, as shown in Figure 1.
SMB: cd SQLiMicroBenchmark && docker-compose up
-d && cd ..

This will start the containers required by the SMB, resulting
in the expected result shown in Figure 2

A.4 Evaluation workflow
We provide here the framework and instructions for using
SQIRL and the SMB.

A.4.1 Major Claims

(C1): SQIRL is able to find more vulnerabilities than existing
state-of-the-art-scanners and achieve 0 false positives.

Figure 3: Example of a vulnerability identified by SQIRL and
shown in the log files results_stats_X.stats, where X is
the worker agent that found the vulnerability.

(C2): SQIRL is able to find vulnerabilities in a lower number
of requests than other scanners.

A.4.2 Experiments

(E1): [10 human minutes + 20 compute hours + 16GB disk
+ 6CPU ]: train SQIRL on the SMB to ensure training
functionality.
How to: First the SMB and python environment must
be set up. Then SQIRL can be run to start training. After
training has finished the log files and trained model can
be seen in a new sub-directory in stats_logs.
Preparation: Activate the docker container
docker-compose up -d. Then activate the envi-
ronment for SQIRL: conda activate sqirl.
Execution: Run from a terminal window Example A in
Table 1. Note this should run as a single command and
copying directly from the Table may cause an error due
to a newline.
Results: Each agent should finish running, after which
the worker server can be closed. There will be a new
directory in stats_logs that will contain a new model
in addition to log data.

(E2): [10 human minutes + 1 compute hour + 16GB disk +
6CPU]: Test SQIRL on the SMB to ensure get test results
functionality.
How to: First the SMB and python environment must
be set up. Then the SQIRL can be run to test for the SQLi
in the SMB. SQIRL will create a new sub-directory in
stats_logs containing log files and the model check-
point that resulted from the new run.
Preparation: Activate the docker container
docker-compose up -d. Then activate the envi-
ronment for sqirl: conda activate sqirl.
Execution: Run from a terminal window Example B in
Table 1. Note that the dir_from_training should be
changed to that from training in Experiment E1. Where
the save_dir is the resulting directory from the first
experiment.
Results: In the new sub-directory in stats_logs the
log file ‘results_stats_1.stats’ will contain the vul-
nerabilities found by SQIRL. These are identified by the
pattern shown in Figure 3. The number of requests used
to find these vulnerabilities can then be found by access-
ing http://localhost:8000/server-status and is
identified by the total number of accesses.
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Table 1: Example commands used to run SQIRL. A: Training SQIRL with 4 worker agents, B: Testing SQIRL with 1 worker agent.

A: python3 sqirl.py -u http://localhost:8000/training.php --log_file ./SQLiMicroBenchmark/mysql/general.log \
--loss_criteria 200 --win_criteria 14 --agent 4 -i 4

B: python3 sqirl.py -u http://localhost:8000/no_feedback.php --log_file ./SQLiMicroBenchmark/mysql/general.log \
--agent 4 --model_dir ./stats_logs/dir_from_training/Checkpoint_Worker_Server/

A.5 Notes on Reusability
SQIRL is designed to be independent of the SQL database
that is being tested. We have developed SQIRL to work with
mysql v5.X, this can be extended by adding in the ability to
parse the required logs to the SQL Proxy (SQL_Proxy.py).
Any tokens specific to the database syntax would also be
required by the environment in order to generate syntactically
correct payloads.

Note that for newer versions of mysql the error logging
functionality changed to include malformed queries in the
general log. This can lead to SQIRL producing false positives
so it is advised to use mysql v5.X when testing SQIRL.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
The artifact is a code repository (with supporting documen-
tation) for Marsea, an automated concolic analysis pipeline
used to perform a scalable and retroactive study of malware
that abuses web applications. Marsea consists of the backend
for malware’s symbolic execution and the hook project for
dynamic binary instrumentation.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact should not pose any inherent security, privacy, or
ethical concerns. No preexisting data is read or transmitted.
If the user decides to install and run active malware for the
purpose of verifying Marsea’s claims, they do so at their own
risk. For security and ethical reasons, the artifact does not
include any active malware.

A.2.2 How to access

The artifact is a code repository and well-documented
tutorial thta can can be accessed on GitHub:
https://github.com/CyFI-Lab-Public/MARSEA/
tree/fc53c4629065eeaad78258a11d950265cb059c5d

A.2.3 Hardware dependencies

Marsea requires a Linux machine and a Windows Machine.

A.2.4 Software dependencies

The preferred environment for running Marsea is Ubuntu
22.04 LTS (Long Time Support). However, Marsea should
work with any recent version of Ubuntu. Given the fact that
Ubuntu is Debian based operataion system. Marsea should
also work on Debian 11 and up (64 bit).

Another important component of Marsea is its customized
DLL (Dynamic Linked Library), which enables Marsea to
instrument the malware and introduce symbolic value amid

the execution The maintaining and the building of this DLL
project requires a Windows machine (Windows 7 or above).
The preferred environment for the DLL project is Microsoft
Visual Studio (2017 or above), with Windows 8.1 SDK and
version 141 Platform Toolset. However, the newer version of
SDK and Platform Toolset should works as well.

A.2.5 Benchmarks

The primary bench mark used in the paper is a collection
of Web-App-Engaged (WAE) malware, such as information
stealer, dropper, and other types of malware that target web
applications. because it represents a common and important
threat to web applications and it allows for a thorough evalua-
tion of the effectiveness of the Marsea. The benchmark was
run on the Ubuntu 22.04 LTS operating system with Marsea
deployed, and the results are show in Table 2 of the paper. We
also performed the baseline concrete execution comparison
using Marsea with no instrumentation.

A.3 Set-up
A.3.1 Installation

Users should follow the Setup section of the README to
deploy Marsea.

A.3.2 Basic Test

Users should follow the Usage section of the README,
which covers includes a step-by-step tutorial of running
Marsea against malware, Razy, which abuses the Twitter to
resolve the C&C server address. Notably, to avoid the pos-
sible security risk, we verified that the resolved C&C server
has already been mitigated.

Running Marsea against Razy should reveal:

1. The context-rich execution trace of the target malware.
For Razy, Marsea explores different paths and reveals
the its connection to VirusTotal, Twitter, and the backend
C&C server.

2. Reconstructed network sessions initiated by the target
malware. For Razy, Marsea reveals (a) a connection to
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the VirusTotal with an API key in the request and the
malware itself as payload; (b) a connection to Twitter
with an user specified.

3. The malicious vectors the malware performed given the
abused web apps. For Razy, Marsea reveals (a) the flood-
ing attack the malware performed towards VirusTotal;
(b) the backend C&C server resolving by abusing the
tweet posted on the Twitter.

The README contains step-by-step instructions for de-
ployment and provides running examples to assist users in
verifying the successful completion of each phase.

A.4 Evaluation workflow
This subsection serves to illustrate the assertions made in our
paper. However, due to ethical considerations, we are unable
to release the malware dataset utilized in our research at this
time. Consequently, users are required to obtain their own
malware dataset for analysis.

A.4.1 Major Claims

(C1): Marsea is able to identify 40 abuse vectors across 20
malware samples. This is proven by experiment (E1)
described in Section 4.1 of the paper and illustrated in
Table 2.

(C2): Marsea identified 86% of vectors compared with con-
crete execution. This is proven by experiment (E2) de-
scribed in Section 4.1 of the paper and illustrated in
Table 2.

(C3): Marsea revealed a 226% increase in malware only
relying on web apps since 2020, showing malware’s
growing adoption of web app abuse. This is proven by
experiment (E3) described in Section 5.1 of the paper
and illustrated in Table 3.

(C4): Marsea revealed 893 WAE malware in 97 families
abusing 29 web apps. This is proven by experiment (E4)
described in Section 5.2 of the paper and illustrated in
Table 4.

(C5): Marsea found that 48% of 893 WAE malware remained
actiev until the day of our study. This is proven by ex-
periment (E5) described in Section 5.3 of the paper and
illustrated in Table 5.

(C6): Marsea revealed that WAE malware could have in-
fected up to 909,788 victims from 33 abused web app
content. This is proven by experiment (E6) described in
Section 5.4 of the paper and illustrated in Table 6.

A.4.2 Experiments

(E1): [10 human-days + 3 compute-days + 300GB storage]:
Evaluate the performance of Marsea in ground truth
dataset.

Preparation: Collected malware are manually reverse-
engineered to derive ground truth.
Execution: Run Marsea against the malware in the
ground truth dataset and collect the generated results,
such as the execution trace, malicious vectors, and re-
constructed network sessions.
Results: Marsea should be able to identify the web apps
that have been abused and detect most malicious vectors.

(E2): [5 human-days + 3 compute-days + 400GB storage]:
Compare the performance of Marsea with the concrete
execution.
Preparation: Prepare for concrete execution analysis
and set up Marsea.
Execution: Analyze the malware using both Marsea
and concrete analysis techniques, and compare the ma-
licious vectors identified by Marsea and the concrete
analysis.
Results: Marsea should be able to identify more mali-
cious vectors and abused web apps than concrete analy-
sis.

(E3): [10 human-days + 10 compute-days + 5TB storage]:
Execute Marsea on the large scale to evaluate the preva-
lence of WAE malware.
Preparation: Collect malware from online resources.
To ensure an unbiased dataset, the collection should be
random and normalized across the timeline (i.e., the
same number of samples should be taken for each eval-
uated time slot). Use domain reputation resources to
evaluate the maliciousness of the communication tar-
gets.
Execution: Run Marsea against the malware and collect
the communication targets. Extract the effective Second-
Level Domain (eSLD) for each communication target
and measure its maliciousness using domain reputation
resources.
Results: Marsea should be able to identify the increase
of WAE malware in the last three years.

(E4): [3 human-days + 20 compute-days + 10TB storage]:
Run Marsea on large-scale WAE malware to evaluate
the capabilities the abused web apps provide attackers.
Preparation: Collect WAE malware.
Execution: Run Marsea on a large-scale WAE malware
collection, collect the execution trace, and identify the
vectors.
Results: Marsea should be able to a wide range of vec-
tors the malware could perform using web apps.

(E5): [10 human-days + 2 compute-days + 50GB storage]:
Examine the effectiveness of the current mitigation of
WAE malware by evaluating the activity of the malicious
web app content.
Preparation: The communication targets as the inter-
mediate results from E4. VirusTotal access is required to
identify the first seen date and the last seen date of the
malware.
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Execution: Query the first seen and last seen date of the
analyzed malware on VirusTotal. Then, run the web app
harvest component of Marsea to extract the first creation
time and the last update time of abused web app content.
Results: Marsea should be able to show that some web
app content can remain on the platform for a long time,
even after the corresponding malware has been identified.
Note that users may need to write their own harvest
components to support additional web apps.

(E6): [3 human-days + 2 compute-days + 20GB storage]:
Use the engagement data on the web app platform to
prove the large scope of infection caused by WAE mal-
ware.
Preparation: The communication targets results inter-
mediate results from E4.
Execution: Run Marsea’s web app harvest component
to extract the engagement data from the abused web app
platforms.
Results: Marsea should be able to identify a significant
scope of infection on specific web apps.

A.5 Notes on Reusability

Marsea has a wide range of in-house scripts that can be used
directly or easily extended for other research purposes.

• custom-hook.cpp: A general framework to inject
the DLL into the target program.

• utils.cpp: An in-house extension built on top of
S2E symbolic analysis framework. It supports symbolic
tag extraction, on-demand concretization, VM-to-host
dropped file transferring, memory symbolic expression
extraction, and taint analysis logic.

• forkprofiler.py: This is an investigation-oriented
analysis tool that iterates through the execution traces
generated by Marsea and reports the triaged path explo-
sion source (i.e., system APIs) if there is any.

• NewCodeSearcher.cpp: This is a code-coverage-
driven exploration technique that has been implemented
as an S2E plugin. Unlike the default exploration tech-
nique, which picks a random module and then a random
execution state to explore, our technique prioritizes unex-
plored code regions in the target module being analyzed.

• LibraryCallMonitor.cpp: This is a customized
built-in S2E plugin that provides detailed execution trac-
ing by logging all system APIs invoked by the target
binary during analysis.

• CyFiFunctionModels.cpp: This is an in-house
S2E plugin that provides the backbone functionality for
the injected DLL.

• pipeline.py: This is the pipeline script used to cre-
ate a Marsea project and terminate the analysis in case
of a timeout.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
This artifact contains a proof-of-concept implementation of
a device tracking technique for Linux-based devices by ex-
ploiting the way Linux selects TCP source ports. The Linux
TCP port selection algorithm is an adaptation of Algorithm 4
(“Double-Hash Port Selection Algorithm”) from RFC 6056.
The algorithm is used starting from kernel version 5.12-rc1.

The artifact contains a tracking server written in Go and a
tracking snippet written in HTML+JavaScript, served by the
tracking server using HTTP.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our attack generates a device ID for the tested device, that can
identify it across browsers, browser privacy modes, networks,
containers and VPNs. Therefore, for the sake of maintaining
evaluator’s privacy, we recommend evaluating our artifact on
a local/private network.

In addition, in the “Set-up” section, we instruct the evalua-
tor to use older versions of Ubuntu 22.04 and Google Chrome.
Older versions are at risk of security bugs, therefore using
local network is preferred.

A.2.2 How to access

The artifact is available on GitHub:
https://github.com/0xkol/

rfc6056-device-tracker/tree/
09dd6ab68e10566eb6ca7760ef78d4689c7e2b85

A.2.3 Hardware dependencies

8GB of RAM, 4 CPU cores and 50GB free disk space.

A.2.4 Software dependencies

Tracking client requirements

1. Linux kernel: The Linux kernel of the client device
must be one of the following versions: 5.12.*, 5.13.*,
5.14.*, 5.15–5.15.40, 5.16.*, 5.17–5.17.8.

2. Google Chrome: version 96.0.

3. (Optional) Python: Python 3.5 or above.

Tracking server requirements We assume that the track-
ing server runs on a Linux host.

1. Go version 1.18, the google/gopacket library and the
google/gopacket/pcap library.

2. libpcap-dev package (on Ubuntu).

3. git.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

To evaluate our attack, you will need two Linux machines:
one for our tracking server and one for the tracking client (that
interacts with the server using Chrome). The client machine
has specific Linux kernel constraint, so we recommend using
a virtual machine (VM) for it. The tracking server can run on
any Linux machine that has network connectivity (IPv4 and
IPv6) to the client machine. In this document we describe how
to run both server and client as (separate) virtual machines.

Configure Oracle VirtualBox: Download and Install Or-
acle VirtualBox from this URL https://www.virtualbox.
org/wiki/Downloads.

Configure Host-Only Network on VirtualBox:

1. Disable address range control (required
on Linux hosts only): Create the file
/etc/vbox/networks.conf and write this line
to it (including the asterisk): * 0.0.0.0/0 ::/0
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2. Open "Host Network Manager": Open VirtualBox
and click on "File" → "Host Network Manager".

3. Create a New Host-Only Network: On "Host Network
Manager", click on the "Create" button. This will create
a new interface on your host with the name vboxnet0
(or similar).

4. Configure IPv6: By default, only IPv4 prefix will be
assigned to the new virtual interface (192.168.56.1/24
or similar). To configure IPv6, use our pre-generated
ULA prefix fd3f:e8d8:3a1f:0::/64. On the "IPv6
address" field enter fd3f:e8d8:3a1f:0::1 and on the
"IPv6 Prefix Length" enter 64.

5. Click on the "Apply" button. You should see no errors.

Tracking Client Installation: We describe here how to
setup a tracking client machine using Oracle VirtualBox.

1. Download and Install Ubuntu 22.04: Download
Ubuntu Desktop 22.04 (not 22.04.1) from this URL
http://old-releases.ubuntu.com/releases/
jammy/ubuntu-22.04-desktop-amd64.iso. Install
Ubuntu as a new Virtual Machine on Oracle VirtualBox.
Notes:

• You may follow these instructions for refer-
ence: https://brb.nci.nih.gov/seqtools/
installUbuntu.html

• We recommend assigning to the VM 4GB of RAM, 2
CPUs and 20GB of disk space.

• Avoid downloading updates during installation.
Otherwise, Ubuntu will auto-update its kernel. Also,
make sure your machine is NOT connected to the
Internet during installation by changing the network
adapter from "NAT" to "Not attached" in the VM "Set-
tings" window.

• The kernel version of your installed Ubuntu should
be 5.15.0-25-generic. You can view it using the
command: uname -a

2. Connect to the Internet: When your VM is up and run-
ning, connect it to the Internet by changing the network
adapter from "Not attached" to "NAT" in the VM "Set-
tings" window. (Avoid updating Ubuntu if it prompts for
an update.)

3. Download and Install Google Chrome: Down-
load Google Chrome v96.0 from https://dl.
google.com/linux/chrome/deb/pool/main/g/
google-chrome-stable/google-chrome-stable_
96.0.4664.110-1_amd64.deb

Install using the following command:
sudo dpkg -i google-chrome-stable_96.*.deb

4. Switch to Host-Only Network: Open the VM "Set-
tings" window. On the "Network" tab change the net-
work adapter to "Host-only adapter" and choose the
name of the adapter you created previously (probably
vboxnet0 or similar).

5. Configure IPv6: Use the following command to ensure
IPv6 connectivity between the VMs:

sudo ip address add
fd3f:e8d8:3a1f:0::10/64 dev IFNAME

To find IFNAME, list the network adapters on the ma-
chine using the ip address command and note the in-
terface name whose name is not lo. Beware: This com-
mand does not survive reboot.

6. (Optional) You can verify that the machine you installed
is vulnerable (i.e. uses the un-patched version of Algo-
rithm 4 of RFC 6056) by invoking our Python 3 detection
tool: python3 CVE-2022-32296_tester.py

Expected output:

Verdict: RFC 6056 Algorithm 4 (Vulnerable)

Tracking Server Installation:

1. Install Ubuntu Desktop 22.04 on a separate virtual ma-
chine, similar to the "Tracking Client Installation".

2. Install Packages: Run the following commands:

sudo apt update
sudo apt install git golang-go libpcap-dev

3. Clone Repository: Clone the git repository using the
following commands:

git clone
https://github.com/0xkol/rfc6056-device-
tracker.git

cd rfc6056-device-tracker
git checkout 09dd6ab

4. Install Go Libraries: On the repository folder, type the
following commands:

go get github.com/google/gopacket
go get github.com/google/gopacket/pcap

5. Switch to Host-Only Network: Similar to what you did
for the client machine, change the network adapter to
"Host-only adapter" and choose the name of the adapter
you created previously. After this step, both the client
and server VMs should be up and running, with their net-
work adapter configured to the same Host-Only network
created previously.
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6. Configure IPv6: Similar to what you did on the client
machine, type the following command:

sudo ip address add
fd3f:e8d8:3a1f:0::20/64 dev IFNAME

Beware: This command does not survive reboot.

7. Compile and Run the Tracking Server: Switch to the
git repository folder. Then, compile the tracker using:
go build -o tracker tracker.go

The compilation should succeed (no output on
the console). Proceed by running the server on
the interface you discovered on the previous step.
For example (assuming the interface is enp0s3):
sudo ./tracker -iface enp0s3

You should see the output:

RFC 6056 Device Tracker v1.3 start
(capturing on: enp0s3)

A.3.2 Basic Test

Connectivity Test: By now you should have two VMs con-
nected to the same Host-Only network, with IPv4 and IPv6
connectivity. Verify that you can ping from the client VM to
the server VM by issuing:

ping6 fd3f:e8d8:3a1f:0::20
ping SERVER_IPV4_ADDRESS

You can find SERVER_IPV4_ADDRESS by issuing the
ip address command on the server machine.

Browser Test: On the client VM, open the Google Chrome
browser and browse to the server using both IPv4 and
IPv6 (i.e. to URLs http://[fd3f:e8d8:3a1f:0::20]/
and http://SERVER_IPV4_ADDRESS/). You should see
a webpage with the title "RFC 6056 Device Tracker Demo".

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The same device ID is obtained in a Google Chrome
regular tab and an incognito tab. Section 6.1 in the paper.
Proven by experiment (E1).

(C2): The same device ID is obtained when using IPv4/IPv6.
Section 6.2 in the paper. Proven by experiment (E2).

(C3): The dwell time on Google Chrome varies between 5-15
seconds, depending on the RTT to the tracking server and
the physical machine. Section 6.4 in the paper. Proven
by experiment (E3).

A.4.2 Experiments

In all of the experiments, you should verify that the tracking
server is up and running, and that it has both IPv4 and IPv6
connectivity from the tracking client.
(E1): Cross browser privacy modes consistency. 30 human-

minutes, 30 compute-minutes.
Tracking Client VM Preparation: Open two Google
Chrome windows: a regular window and an incognito
window. On each window, browse to the tracking server.
Make sure that the "Tracker address" field contains the
IP address of the tracking server.
Execution: On the normal window, hit "Fingerprint
me!" to launch the fingerprinting process. Few seconds
later, you should see "fingerprint" and "fingerprint hash"
on the webpage. Write these down for later. Continue by
hitting "Fingerprint me!" on the incognito window and
ensure you get the same fingerprint. Avoid running two
fingerprinting measurements simultaneously.
Results: The same fingerprint should be generated on
each window.

(E2): Cross protocol consistency. 30 human-minutes, 30
compute-minutes.
Tracking Client VM Preparation: Open a Google
Chrome window (normal one is enough), and browse to
the tracking server (over IPv4 or IPv6, does not matter).
Execution: Fingerprint the client machine once us-
ing an IPv4 address of the tracking server. Write
down the fingerprint for a later comparison. Finger-
print the client machine again, but now use IPv6 as
the tracking server. (On the "Tracker address" field use
[fd3f:e8d8:3a1f:0::20] (including brackets!).) Ver-
ify that you get the same fingerprint on each run.
Results: The same fingerprint should be generated for
both IPv4 and IPv6.

(E3): Dwell time. 30 human-minutes, 30 compute-minutes.
Tracking Client VM Preparation: Open a Google
Chrome window and browse to the tracking server.
Execution: Fingerprint the client machine using IPv4
or IPv6 (it doesn’t matter which at this point) and write
down the "total time" reported in the webpage. Repeat
the experiment a few times to obtain an average readout.
Results: You should observe an average dwell time of 5-
15 seconds, depending on the network RTT and physical
machine.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220912. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

This artifact performs model inference on a programmable
switch to complete traffic classification. It specifically in-
cludes the transformation of the decision tree model to the
flow table and the logic of the control plane and data plane
on the programmable switch. The evaluation requires a In-
tel Tofino 1 programmable switch with SDE version 9.1.0,
and two servers to send and receive traffic respectively. In
addition, a python execution environment is needed that can
perform model transformation and interaction between the
control plane and data plane. The verification is done by cal-
culating the accuracy of the received packet class, and the
expected result is that the accuracy is basically the same as
the result in the paper.

A.2 Artifact check-list (meta-information)
• Algorithm: New algorithm

• Publicly available (explicitly provide evolving version ref-
erence)?: https://github.com/IDP-code/NetBeacon

• Code licenses (if publicly available)?: MIT License

• Archived (explicitly provide DOI or stable reference)?: Yes

A.3 Description
A.3.1 How to access

https://github.com/IDP-code/NetBeacon

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

N/A

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

No

A.4 Installation
Download from the https://github.com/IDP-code/NetBeacon

A.5 Experiment workflow
N/A

A.6 Evaluation and expected results
N/A

A.7 Version
Based on the LaTeX template for Artifact Evaluation V20220119.
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D Artifact Appendix

D.1 Abstract

This appendix describes our artifacts for SPECTREM, a phys-
ical transient execution attack. In our paper, we discuss how
the physical effects of transient instructions can be leveraged
to extract secret information. In this artifact, we provide the
source code for our proof-of-concept implementations and
the scripts to take and evaluate the traces. To allow the repro-
duction of our work, we also provide the side-channel traces
that were used to produce the results in our paper.

D.2 Description & Requirements

D.2.1 Security, privacy, and ethical concerns

None.

D.2.2 How to access

Our artifact consists of two repositories. The first one, hosted
on GitHub, contains all source code and scripts related to
our POC implementations. This repository can be accessed
at https://github.com/KULeuven-COSIC/SpectrEM/
tree/1c0207db3d55580b7f31dfb22f57100ea5544707.

Additionally, to enable the reproduction of our results, we
also provide the side-channel traces for our work in KU Leu-
ven’s Research Data Repository (RDR). This dataset can be
accessed at https://doi.org/10.48804/AHTI1A.

D.2.3 Hardware dependencies

To allow the reproduction of our results without requiring an
extensive EM side-channel setup, we provide our pre-recorded
traces, as discussed above. Therefore, we do not require any
specific hardware setup.

To download all pre-recorded traces, at least 520 GB of
free disk space is required. Additionally, the provided Python
scripts to evaluate these traces use up to 12 GB of RAM. We,
therefore, recommend at least 16 GB of RAM.

D.2.4 Software dependencies

The evaluation of the side-channel traces was performed us-
ing Python 3.11.4. The exact required Python packages are
detailed in our GitHub repository.

D.2.5 Benchmarks

None.

D.3 Set-up
D.3.1 Installation

1. Create a new Python environment and install all depen-
dencies as described in readme.md in our GitHub repos-
itory.

2. Download the traces from the data repository. We pro-
vide a Python script to download these folders in our
GitHub repository (traces/download-traces.py).
Specifically, download the following directories:

• 0-base-experiments/ (33 GB)

• 1-additional-experiments/ (39 GB)

• 2-reducing-assumptions/ (21 GB)

• 3-case-study/ (2 GB)

The directory containing the MLP training data
(4-mlp-data/ (89 GB)) may also be downloaded but is
not required as we provide pre-trained MLP networks
along with the evaluation traces.

D.3.2 Basic Test

Activate the created Python environment and
start Jupyter Notebook. Open the notebook
scripts/evaluate/evaluate_extraction_methods.ipynb
and run the first cell. If no errors are displayed, all packages
are installed correctly.

To make sure the traces are downloaded to the correct loca-
tion, step through the notebook. If the traces are downloaded
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to a different location, the path pointing to these traces can be
changed by modifying the prerecorded_traces_dir vari-
able.

If no errors are encountered when stepping through this
Jupyter Notebook, everything is set up correctly.

D.4 Evaluation workflow

D.4.1 Major Claims

(C1): Variable-time instructions and control flow dependen-
cies enable physical transient execution attacks. In opti-
mal conditions, both SPECTREM and MELTEMDOWN
can achieve low BER, even when only considering a
single trace (cf. Section 6 of our paper).

(C2): The simplifications introduced for evaluation can be
removed by additional post-processing (cf. Section 7
of our paper). Specifically, we show that SPECTREM
attacks can still be carried out when the clock frequency
is not locked, when the POC is not pinned to a specific
core, and when using cache thrashing.

(C3): The code pattern that forms control flow gadgets can
be found in OpenSSH. With only minor changes, the two
uncovered gadgets can be exploited through the network
interface (cf. Section 8 of our paper).

D.4.2 Experiments

Before running the experiments, we recommend
stepping through the following Jupyter notebook:
scripts/evaluate/evaluate_extraction_methods.ipynb
[30 human-minutes + 10 compute-minutes]. This notebook
details how the traces are evaluated. For each of the
following experiments, we provide Python scripts that use
the techniques discussed in this notebook to automatically
evaluate the traces.
(E1.1): [Base experiments] [15 human-minutes + 20

compute-minutes + 92 GB disk + 4.2 GB RAM]: This
experiment evaluates the baseline performance of the
SPECTREM and MELTEMDOWN POCs.
Preparation: Download the traces in folder
0-base-experiments from the data repository.
Execution: Run the following Python script:
scripts/reproduce/0-base-experiments.py.
This script will output the BERs for each POC.
Results: The Python script will print the BERs for the 5
different base POCs. The expected outputs are included
in scripts/readme.md. These results can be compared
with the results in our paper in Table 1 and Section 6.2.

(E1.2): [Additional experiments] [15 human-minutes + 20
compute-minutes + 110 GB disk + 4.5 GB RAM]: This
experiment evaluates the performance of the POCs un-
der different numbers of training packets and different
numbers of udiv instructions.

Preparation: Download the traces in folder
1-additional-experiments from the data repository.
Execution: Run the following Python script:
scripts/reproduce/1-additional-experiments.py.
This script will output the BERs for each POC.
Results: The Python script will print the BERs for the
different conditions and produce two figures. The ex-
pected outputs are included in scripts/readme.md.
These results can be compared with the results in our
paper in Figure 5 and Figure 7.

(E2): [Reducing assumptions] [15 human-minutes + 2
compute-hours + 58 GB disk + 12 GB RAM]: This ex-
periment evaluates the effect of removing the evaluation
assumptions.
Preparation: Download the traces in folder
2-reducing-assumptions from the data reposi-
tory.
Execution: Run the following Python script:
scripts/reproduce/2-reducing-assumptions.py.
This script will output the BERs for each experiment.
Results: The Python script will print the BERs for the 5
different base POCs. The expected outputs are included
in scripts/readme.md. These results can be compared
with the results in our paper in Table 1 and Section 6.2.

(E3): [Case study] [30 human-minutes + 2 compute-minutes
+ 5 GB disk + 2.8 GB RAM]: This experiment evalu-
ates the performance of two real-world code patterns in
OpenSSH.
Preparation: Download the traces in folder
3-case-study from the data repository.
Execution: Verify that the two code snippets in Listings
4 and 5 in our paper are indeed taken from the latest
version of OpenSSH at the time of submission (9.3). To
evaluate the performance of these two gadgets, run the
script scripts/reproduce/3-case-study.py.
Results: The Python script will print the BERs for
the two gadgets. The expected outputs are included in
scripts/readme.md. These results can be compared
with the results in our paper in Section 8.

D.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

ARMore’s artifact contains the source code necessary to run
our static rewriter. This document describes how to set-up
our prototype, gives a brief overview of the resource require-
ments to replicate some of the experiments conducted in our
evaluation, along with instructions to run them.

A.2 Description & Requirements

This artifact is shipped as an aarch64 Docker container. The
provided script run.sh takes care of importing the container
and spawning a shell. All the relevant files for the experiment
are in the root home folder.

A.2.1 Security, privacy, and ethical concerns

This artifact does not contain any threat to the system’s in-
tegrity or privacy. However, we still recommend running it
inside a sandboxed environment (either a VM or a container).

A.2.2 How to access

ARMore’s artifact is available online at https://zenodo.
org/record/7707863. ARMore’s source code can be found
at https://github.com/hexhive/retrowrite. Evalua-
tors can visit commit 4a7193b to reproduce experiments
shown in the paper.

A.2.3 Hardware dependencies

The evaluation of ARMorerequires an aarch64 machine with
large amounts of RAM (around 64 GB for all the experiments).
Since we do not expect the evaluators to have access to such
hardware, we provide in this artifact a reduced version of our
experiments that should run even on an emulated aarch64
VM running on a x86 host with 8 GB of RAM. We provide
instruction to run the experiments on both aarch64 or x86.

Note: if the evaluators consider running the full suite of
experiments a necessity, we can provide remote ssh access to
the required hardware.

A.2.4 Software dependencies

Since the artifact is shipped as a Docker container, all de-
pendencies are already installed. However, in case evaluators
would like to run it outside Docker, those are the required
dependencies:

ARMore’s evaluation was run on Ubuntu 20.04.2. The
requried Ubuntu packages are python3-pip, tcl-dev,
build-essential, make. The required python libraries are
the following:

• archinfo

• pyelftools

• capstone (version >= 4.0.2)

the can be all installed by running from the home folder of
the Docker container:
pip3 install -r retrowrite/requirements.txt
Finally, a working installation of AFL++ is required.

Note: if the evaluators want to verify the fourth claim too,
please contact us and we can prepare a disk image with the
kernel patch already applied.

A.2.5 Benchmarks

ARMore’s evaluation in the paper used 3 different bench-
marks:

• SPEC CPU 2017: to measure the baseline overhead in-
troduced by ARMore, we use the entire SPEC bench-
mark. However, this benchmark requires large amount of
RAM (64 GB) and considerable compute time (around
12 hours). For this reason, in this artifact evaluation we
provide a reduced experiment using small benchmarks
taken from https://benchmarksgame-team.pages.
debian.net/benchmarksgame/.

• MAGMA: to measure the overhead introduced by
ARMore’s coverage instrumentation, we run the
MAGMA fuzzing benchmark. As before, this bench-
mark is quite expensive to build and run - we provide
another minified version of this experiment to be able to
run it in an emulated environment.
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• SQLite test suite: we include the source code of the
testsuite in the artifact along with scripts to test and run
it.

A.3 Set-up

A.3.1 Installation

The artifact is shipped as an aarch64 docker image. Depending
on the available hardware, we provide two options:
arm64 host: This is the preferred way, as it will make

the experiments considerably faster. All the depen-
dencies are already setup inside the Docker container.
If not using the container, the following steps need
to be taken: The following ubuntu packages need
to be installed: build-essential, python3-pip,
tcl-dev, make. Afterwards, go inside the retrowrite
directory and run:
pip3 install -r requirements.txt
to install ARMore’s dependencies.

x86 host: To run it on an x86 host, install the support for
emulation of the arm64 architecture in docker images.
The simplest way to do this is to run the following:
docker run -privileged -rm
tonistiigi/binfmt -install arm64
as explained in https://docs.docker.com/build/
building/multi-platform/. To test if multi-
architecture support is running, you can try the
following:
docker run -rm arm64v8/alpine uname -a.
Afterwards, download the artifact and use the run.sh
script to import the image and spawn a shell inside the
container.

A.3.2 Basic Test

To test basic functionality of ARMore, run run.sh to spawn
a shell, go inside the home folder and run:
./retrowrite/retrowrite /bin/ls ls.s
./retrowrite/retrowrite -a ls.s rewritten_ls
./rewritten_ls
If the output is exactly the same as when running /bin/ls,
then ARMoreis set up correctly.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): ARMore’s baseline overhead is <1%. This is proven
by experiment (E1) which is a reduced version of the
one described in Section 5.2 of the paper.

(C2): ARMore’s rewriting is correct and preserves function-
ality. This is proven by experiment (E2), as described in
Section 5.1 of the paper.

(C3): ARMoreenables efficient fuzzing of aarch64 closed-
source binaries. This is proven by experiment (E3), a
reduced version of the one described in Section 5.4 of
the paper.

A.4.2 Experiments

(E1): [Baseline overhead] [10 human-minutes + 1 compute-
hour]: This experiment shows how rewriting bina-
ries without instrumentation adds negligible overhead
(<1%). We took some binaries from the benchmarks-
game 1 and use them to test the overhead introduced by
ARMore.
How to: Go inside the folder
/claim_one_low_overhead. The script run.sh
will compile the benchmarks and store the binaries in
the compiled folder. Afterwards, the script will rewrite
the binaries with ARMoreand store the result in the
rewritten folder. Finally, the benchmarks will be run
and the 2 different set of times will be printed.
Execution: Go inside the folder
/claim_one_low_overhead and run the script
run.sh.
Results: While this experiment is certainly not conclu-
sive compared to more heavy-weight benchmarks, the
times noted by Rewritten time should be around 1%
higher than the times noted by Original time.

(E2): [Correctness] [5 human-minutes + 2 compute-hours]:
This experiments verifies the correctness claims of
ARMore, namely that it exactly preserves the original
binaries’ behaviour. This is done by rewriting the SQLite
binaries and running their relevant testsuites.
How to: Go inside the folder
/claim_two_correctness. The script
test_sqlite.sh inside will build and rewrite
the binaries from SQLite, and then run the testsuite on
them.
Execution: Go inside the folder
/claim_two_correctness and run the script
test_sqlite.sh, and check its output.
Results: The fifth to last line of the script output
should report 0 errors out of 252692 tests, indi-
cating that all tests passed correctly.

(E3): [coverage instrumentation overhead] [30 human-
minutes + 2 compute-hours]: This experiment verifies
the claims in Section 5.4, that is fuzzing with ARMore’s
coverage instrumentation is comparable to fuzzing with
source-based instrumentation (afl-cc).
How to: Go inside the folder
/claim_three_fuzzing. The script inside will
build the binaries from the first experiment (E1) and
store the result in the compiled folder. Then, it will com-

1https://benchmarksgame-team.pages.debian.net/
benchmarksgame/
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pile them again with source instrumentation and store
the result in the folder source_instrumented. Finally,
the script will instrument the original binaries inside
the compiled folder, adding coverage instrumentation,
and store the result in the rewritten_instrumented
folder.
Execution: Go inside the folder
claim_three_fuzzing and run the script run.sh to
build the instrumented binaries. Then, run the script
fuzz.sh to fuzz each binary twice for 2 minutes: first,
the source-instrumented version compiled with afl-cc
will be fuzzed — secondly, the binary-instrumented
version rewritten with ARMorewill be fuzzed. The AFL
UI is disabled, and only the executions per second are
reported.
Results: As claimed in the paper, the average difference
in executions per second should be slower for ARMore-
compared to afl-cc by around 25%. We note that this
number is very variable, due to the non-deterministic
nature of fuzzing.

In all of the above blocks, please provide indications about
the expected outcome for each of the steps (given the sug-
gested hardware/software configuration above).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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Prime Match: A Privacy-Preserving Inventory Matching System

Antigoni Polychroniadou Gilad Asharov1 Benjamin Diamond Tucker Balch
Hans Buehler Richard Hua Suwen Gu
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Greg Gimler Manuela Veloso

A Artifact Appendix

A.1 Abstract
In this work, we introduce secure multiparty computation in fi-
nancial services by presenting a solution, called Prime Match,
for matching orders in a stock exchange while maintaining
the privacy of the orders. Information is revealed only if there
is a match. Our central tool is a new protocol for secure com-
parison with malicious security, which can be of independent
interest. In this artifact, we showcase the major claims of our
paper titled “Prime Match: A Privacy-Preserving Inventory
Matching System”.

A.2 Description & Requirements
Prime Match involves a server/bank and (at least) a client
which submits orders to buy or sell a particular stock/symbol,
along with the intended quantity (number of shares), to the
bank. The bank does not learn any information about what
the client is interested in on any stock that is not matched, and
likewise, the client does not learn any information on what
is available in the bank unless she/he is interested in that as
well. Only after matches are found, the bank and the client
are notified, and the joint interest is revealed.

A.2.1 Security, privacy, and ethical concerns

No concerns.

A.2.2 Hardware dependencies

Our code can run on any commodity hardware since our
implementation is targeted to a real-world application where
clients hold conventional computers. For example, for our
experiments, one of the two clients runs on an Intel Core i7
processor, with 6 cores, each 2.6GHz, and another one runs on
an Intel Core i5, with 4 cores, each 2.00 GHz. Both of them
are Windows machines. Our server runs in a Linux AWS
instance of type c5a.8xlarge, with 32 vCPUs. However, it is
possible for a reviewer to test our system by running both the
server and client(s) on the same machine. If two clients are
selected for a test on the same machine, one of the two clients
needs to be executed in incognito mode from the browser.

1Currently at Bar-Ilan University, based on work that was conducted
while at J.P. Morgan.

A.2.3 Software dependencies
For the purposes of practical convenience, adoption, and porta-
bility, our client module is entirely browser-based and written
in JavaScript. Its cryptographically intensive components are
written in the C language and compiled using Emscripten
into WebAssembly (which also runs natively in the browser).
Our server is written in Python and also executes its crypto-
graphically intensive code in C. Both components are multi-
threaded—using WebWorkers on the client side and a thread
pool on the server’s—and can execute arbitrarily many con-
current instances of the protocol in parallel (i.e., constrained
only by hardware). All players communicate by sending bi-
nary data on WebSockets. Our code is independent of the
operating system (MacOS is recommended) and can run on
any browser (Google Chrome is recommended).

A.2.4 Benchmarks
None, our code generates random inputs on the fly.

A.3 Set-up
A.3.1 Installation

Our library consists of multiple components. Its client is
written in JavaScript, while we provide both Python and
JavaScript implementations of the server. Both the Python
server and the JavaScript client use C code, which is separated
into its own folder. Next, we provide the installation guide to
install both the server and the client (the same information is
also provided in the Readme files of the repo).

Python Server Instructions:
Prerequisites.Install Python 3.8 and pip. Add ./src
to the PYTHONPATH environment variable. Run
pip3 install − r requirements.txt.

Installation. In the python folder directory execute:

mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_C_FLAGS_
RELEASE="-DNDEBUG -O3" -DCMAKE_SHARED_LINKER_
FLAGS_RELEASE="" ..
make
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JavaScript Client Instructions:
Prerequisites. Install Yarn (tested with version v1.22.4). To
build the C components, download and install emscripten.
Installation. After installing the tools in the Prerequisites,
navigate back to the JavaScript folder directory and type yarn.
To build the WASM components, then type:

mkdir build
cd build
emcmake cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE
_C_FLAGS_RELEASE="-DNDEBUG -O3" -DCMAKE_SHARED_
LINKER_FLAGS_RELEASE="" ..
make

To build the webpack components, type yarn run build.

A.3.2 Basic Test

To run an example (1 server and 1 client) the following steps
must be followed.

1. Open a terminal at the JavaScript folder, run the Server
with the command $python −m http.server 9000 (the
server starts listening).

2. Open another terminal at the Python server,
run the application with the command
$python3 src/app.py < symbol− size> < wait− time>
e.g. $python3 src/app.py 100 40
The symbol− size refers to the number of sym-
bols/stocks, and wait− time refers to the time till the
server waits (in seconds) to start the matching process.
This means that the client has submitted 100 symbols to
be matched (or not) with the symbols of the Server.

3. Next in a browser, go to http : //localhost : 9000/dist/
and answer the prompts with the symbol− size= 100
(should match the symbol− size we entered above) and
the 1 (Short) or 0 (Long) direction/side. Short is for
selling stock, and Long is for buying a stock. The hard-
coded direction for the server is Long.

4. Initially, the client browser shows the table of sym-
bols with randomly assigned quantities and with 0
as Matched; however, when the wait− time ends, the
Matched will be updated after matching the symbols
with the symbols of the server. This will conclude a
successful execution.

A.4 Evaluation workflow
A.4.1 Major Claims

In this section, we provide the major claim of our paper. For
testing purposes, we have created a UI that differs from the
one in Figure 5 of [1], as the UI in effect is found in J.P.

Morgan’s markets portal, where Prime Match is deployed.
The markets portal has been built over many years, and it
is not available since it can reveal private information from
other applications about the bank which are not relevant to
this paper. The same holds for the trade management platform.
In particular, our code in production was integrated into the
trade management platform of the US bank, as described in
detail in the paper (See Figure 6 for our final architecture).
Table 2 of our paper is generated by running the repository
we have uploaded on the private GitHub. We summarize our
claim as follows:
(C1): Prime Match has a throughput of 10 matches per sec-

ond. This is proven by the experiment (E1) (See Sec-
tion A.4.2) described in Section 5 of our paper, whose
results are illustrated/reported in Table 2 of our paper.

A.4.2 Experiments

Our experiment is described in Section 5 in the second para-
graph of "Secure Minimum Protocol Performance".
(E1): [25 human-minutes + 10 compute-minutes + <500MB

disk]: This experiment aims to run an experiment with
two clients and verify the running times as presented in
Table 2 for 100, 200, 500, and 1000 symbols (for bank-
to-client). This is done by adjusting the symbol− size in
the command of Step 2 in Section A.3.2 per client. The
code can also run for a larger number of symbols, such
as 2000, 4000, etc. If one tests these cases, they should
ensure that the wait− time is increased to a range of 50
to 100 seconds such that there is enough time to register
the symbols of the clients before the matching process
starts.
Preparation: Install the packages as described in Sec-
tion A.3.1.
Execution: Follow all steps in Section A.3.2 but repeat
Step 3 two times (sequentially) to accommodate a second
client. Note that both clients must be initiated before
the wait− time is passed. Moreover, the second client
needs to be executed in incognito mode from the browser.
Repeat the process for different numbers of symbols.
Results: After the completion of the experiment, right-
click on the client browser to select console and check
the running time and the MB sent and received, which
are reported in the third, fifth and sixth columns of Table
2, respectively.

References

[1] Antigoni Polychroniadou, Gilad Asharov, Benjamin Dia-
mond, Tucker Balch, Hans Buehler, Richard Hua, Suwen
Gu, Greg Gimler, and Manuela Veloso. Prime match:
A privacy-preserving inventory matching system. Cryp-
tology ePrint Archive, Paper 2023/400, 2023. https:
//eprint.iacr.org/2023/400.
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A Artifact Appendix

A.1 Abstract
We provide EOS, a Rust library that realizes our delegation
protocols for zkSNARKs, and includes components of in-
dependent interest. EOS relies on, and contributes to, the
state-of-the-art arkworks libraries. We generalize the exist-
ing arkworks implementations of PIOP and PC schemes of
the Marlin zkSNARK to support our new abstractions for
secret-shared field elements and polynomials.

A.2 Description & Requirements
EOS can be run on any system with access to a C and Rust
compiler. All the experiments we describe in subsequent sec-
tions can be run on a single machine, but recreating the exper-
imental setup used in the paper requires the following AWS
instances running Ubuntu >18.04:

• Delegator: A r4.xlarge instance in the us-west-2
region

• Worker 1: A c5.24xlarge instance in the us-west-1
region

• Worker 2: A c5.24xlarge instance in the us-west-2
region

This setup emulates the LAPTOPHB delegator setup de-
scribed in the paper. To emulate the LAPTOPLB delegator
setup, see Appendix A.2.4. We don’t provide instructions for
emulating the MOBILE delegator setup since this assumes
access to specific hardware.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

A tarball of EOS can be found at this link.

A.2.3 Hardware dependencies

None.

*Work partially done while at UC Berkeley.
†Work partially done while at UC Berkeley.

A.2.4 Software dependencies

EOS can be run on any system with access to a C and Rust
compiler. The Rust compiler can be installed using this link
and the C compiler can be installed from here. Parsing the ex-
ecution traces from the experiments required Python3 which
can be installed from here.

To emulate the LAPTOPLB delegator setup described in
the paper, the bandwidth of the delegator must be throttled to
350Mbps downlink and 13Mbps uplink. On Linux platforms,
this can be accomplished via the wondershaper package as
follows:

sudo wondershaper {interface} 350000 13000

This can be reset by running:

sudo wondershaper clear {interface}

A.2.5 Benchmarks

None.

A.3 Set-up

All machines used should accept TCP traffic on ports 8000-
10000.

A.3.1 Installation

See the README contained in the artifact.

A.3.2 Basic Test

To run a simple functionality test, navigate to the
experiments/artifact_evaluation directory and run
the bench_snark_delegator.sh, bench_snark_w1.sh,
and bench_snark_w2.sh locally within three separate shells.
These scripts should finish within 5 minutes (assuming
you’ve already built EOS) with the following output:

Running snark delegator with 2^15 constraints
Running snark delegator with 2^16 constraints
...
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After it completes, run python3 parse.py from the del-
egator machine and ensure that no errors occured, i.e., you
should get text output that looks something like:

SNARK (mode 0, constraints 2^15):
Online latency: 3.7720s
Delegator uptime: 1.7731s
----
Online comm.: 11.5403MB

and not:

Failure when reading trace for SNARK (mode
0, constraints 2^15) -- try rerunning

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): EOS reduces end-to-end latency of proof generation by
up to 26× and lowers the delegator’s active computation
time by up to 1447× with minimal communication over-
head. This is proven by the experiment (E1) described
in Section 8.3 of our paper whose results are shown in
Table 1 and Figures 5, 6, 7, and 8.

(C2): EOS enables proving instances up to 256× larger in-
stances within a memory budget of 3GB. This is proven
by the experiment (E2) described in Section 8.2 of our
paper whose results are shown in Table 1.

A.4.2 Experiments

(E1): [10 human-minutes + 10 compute-minutes]: This ex-
periment will confirm the numbers given in Table 1 +
Figures 5, 6, 7, and 8 for the LAPTOPHB and LAPTO-
PLB setups. By default, it will run for instance sizes
of 215 − 220, but can be easily modified to run up to
instances of size 225 at the cost of more compute-time.

Note that, if desired, the latency baselines can be re-
created by running benchmarks for the Marlin zkSNARK
over the BLS12-381 curve locally on the worker and
delegator machines.

How to: See the README contained in the artifact for
information on how to configure and run the experiments
Results: The latency + communication results should
match the upperbounds given in Table 1 and the numbers
given in Figures 5, 6, 7, and 8 for the LAPTOPHB and
LAPTOPLB setups.

(E2): [10 human-minutes + 10 compute-minutes]: This
experiment follows a similar workflow as above, but
memory-usage is measured for each protocol execution.

How to: Run the same experiment above, except mod-
ify the relevant benchmarks/scripts to also output the
memory usage. For example, on Linux we can simply
prepend /usr/bin/time -v to the relevant command.

Results: After running, inspect the execution traces on
the delegator (in results/delegator) to retrieve the
memory usage. Using the /usr/bin/time command
described above, this can be obtained by looking for the
"Maximum resident set size" field. Ensure that this value
is consistent with the upperbounds given in Table 1.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
This document describes the code that was used to produce
the experimental results in Section 6 of the TAP paper. TAP
provides a level of security and privacy that exceeds that of
related multi-user approaches (e.g., a trusted server), so the
main purpose of the experiments is to demonstrate that TAP
still has practical performance at scale despite the additional
security guarantees. As such, the experiments demonstrate the
feasibility (in terms of execution times) of database operations
in TAP, e.g., look-up, sum, min, max, and quantile queries.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None – however, if the machine on which the code is run
already has MySQL Server installed, then please remember
to reset the root password after concluding the experiments.

A.2.2 How to access

The artifact can be found here: https://github.
com/tap-group/transparent-data-service/tree/
9e97cd42e12fb2941253b0960d4689bf944889a0

A.2.3 Hardware dependencies

The microbenchmark experiments were performed on a Mac-
Book Pro with the following specifications (the code should
also work on Linux and Windows systems):

• Processor: 2.4 GHz Quad-Core Intel Core i5
• Memory: 16 GB 2133 MHz LPDDR3
• Operating System: MacOS Monterey Version 12.5.1

The other experiments were performed on Amazon Web Ser-
vices (AWS) machines: t2.micro to represent low-capacity
machines, t2.xlarge to represent medium-capacity machines,
and m5.4xlarge to represent high-capacity machines. The lat-
ter types have an hourly cost to run, and all types require an

AWS account. In the following, we will therefore focus on
running the code on a single PC or laptop with the above
specifications or similar – we will refer to such a machine as
a “medium-capacity machine”.

A.2.4 Software dependencies

Working installations of Go, MySQL, and GCC are required
(see also the installation guide below). All other dependencies
are installed automatically by Go.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

Go. The programming code is written in the Go language
and therefore requires a working Go installation (version 1.16
or above). To install Go, download it from https://go.dev/
doc/install and follow the installation instructions.

MySQL. The TAP implementation requires a working ver-
sion of MySql Server to simulate the server’s back-end, which
can be obtained, e.g., through https://dev.mysql.com/
downloads/installer/ for Windows. The installer may re-
quire that a root password is set. If so, set a temporary pass-
word (e.g., ‘0000’). The TAP code assumes that the root user
can access the database without a password. Once MySQL
Server has been installed, the password for the root user can
be removed as follows: start MySQL from the command line
using the following command (which assumes that ‘0000’ is
the root user’s password)

mysql -uroot -p0000

then run

SET PASSWORD FOR root@localhost='';
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to remove the password. Finally, create a database named
‘tap’ by executing the following command in the command
line tool:

CREATE DATABASE tap;

GCC. The TAP implementation uses go-ethereum for op-
erations on elliptic curves, and go-ethereum in turn requires
GCC. To install GCC on Windows, one can use MinGW
https://www.mingw-w64.org/downloads/ – make sure
that the main executables are accessible via the system path
(e.g., by adding C:\Users\...\mingw64\bin to the system
path variable). On Linux-based systems, run

sudo apt install build-essential

in the command line.

TAP Code. After downloading the TAP code, use the com-
mand line tool to navigate to the main folder and execute

go mod tidy

to instruct Go to download the required external libraries. It is
also helpful to ensure that the output folder is empty to avoid
confusion with the sample output files that are included with
the repository.

A.3.2 Basic Test

To check whether Go was successfully installed, execute the
following command on the command line:

go version

which should return the installed Go version. To check
whether MySQL Server was successfully installed, execute
the following command:

mysql -uroot

The above command should start the MySQL command line
tool. To check whether GCC was successfully installed, exe-
cute the following command:

gcc --version

This should return the version number of the GCC installa-
tion. Finally, to check whether the TAP implementation was
successfully built, execute the following command:

go run . -experiment1a

This starts a basic experiment that tests the time cost of pro-
cessing data insertions at the server – it should run for less than
a minute on a medium-capacity machine. After its comple-
tion, it should write “results:” to the command line, followed
by a list of simulation results (time and storage costs).

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Look-ups, which are essential for clients who monitor
their own data, have negligible overhead, and the cost of
the other operations is reasonable on a medium-capacity
machine. In particular, a look-up query in TAP takes
≈0.005s, a sum query takes ≈0.1s, a min/max/quantile
query takes ≈1s, and an audit takes ≈10s in a table with
100–10,000 rows. This is demonstrated by Experiment
E1 described in Section 6.2 whose results are displayed
in Figure 8a.

(C2): For look-up and sum queries, total processing times
are dominated by proof generation times at the server.
For min and quantile queries, proof generation and ver-
ification times are similar (around 10 seconds) at the
client and server. This is demonstrated by Experiment
E2 described in Section 6.3 whose results are displayed
in Figure 8b.

(C3): TAP has a smaller storage requirements for the ADS
than Merkle2, although audits and inserts are faster in
Merkle2. This is demonstrated by experiment E3 de-
scribed in Section 6.4 whose results are displayed in
Figure 9. (The IntegriDB implementation1 requires a
different set-up – e.g., a specific version of OpenSSL on
Linux – and is hence not integrated into the artifact.)

(C4): On a high-capacity machine, it is feasible to build
TAP’s data structure, audit (targeted portions of) the
data structure, and perform queries even in real-world
settings – i.e., databases to which millions of rows are
added every hour. In particular, the time cost of building
TAP’s data structure increases from ≈0.01s for 100 rows
to ≈1000s for 107 rows regardless of the number of sub-
trees. Furthermore, the cost of a full audit increases from
≈1 second for 100 rows to ≈450 seconds for 15 000
rows. Finally, the cost of a quantile query over 1) the
entire dataset or 2) a fixed number of subtrees depends at
most logarithmically on the total number of rows. This
is demonstrated by Experiment E4 described in Section
6.5 whose results are displayed in Figure 10.

A.4.2 Experiments

(E1): Microbenchmarks: <1 compute-hour + <1 MB disk
Execution: This experiment can be reproduced by exe-
cuting
go run . -experiment3
in the repository’s main folder. One query type – look-
up, sum, average, count, min, max, median, and top 5%
queries – is performed in each of experiments 3a–h
across 100 epochs.
Results: After each experiment (i.e., 3a–h), a csv-file
with a corresponding name will be written to the output

1https://github.com/integridb/Code
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folder – each row in the csv-file corresponds to the re-
sult for one epoch. Each csv-file can be used to plot a
line in Figure 8a with the epoch counter on the x-axis
and the query time duration on the y-axis. (The line for
audits comes independently from a modified version of
experiment7 as discussed under E4.) The time costs in
the output table should be similar to those mentioned
under C1 on a medium-capacity machine.

(E2): End-to-end Costs: ≈1 compute-hour + <1 MB disk
Execution: This experiment can be reproduced by exe-
cuting
go run . -experiment4
Results: Each row in the resulting csv-file (out-
put/experiment4.csv) corresponds to a unique combi-
nation of a) query type (look-up, sum, min, and quantile)
and b) number of epochs (10, 30, 100) with 100 new rows
per epoch. The following columns contain the relevant
data: prefix_proc_time_server, prefix_proc_time_client,
query_proc_time_server, query_proc_time_client, and
total_time. The first two correspond to the “prefix tree
proof generation” and “prefix tree proof verification”
bars in Figure 8b. The “sum tree proof generation”, and
“sum tree proof verification” bars in Figure 8b represent
the difference between the total processing times and
the prefix tree processing times. Finally, the “other” bar
in Figure 8b represents the difference between the total
times and the query processing times. The “other” bar
captures network latency, but this is only relevant if the
client and server run on different machines.
The claim C2 can be verified by comparing
“query_proc_time_server” to “query_proc_time_client”
in the output file: the difference should be more stark in
the first six data rows (look-up and sum queries) than in
the last six data rows (min and quantile queries)

(E3): Baselines: 5–10 compute-hours + <1 MB disk
Execution: This experiment can be reproduced for TAP
by executing
go run . -experiment5
This records the storage cost of building TAP’s data
structure and the execution cost of the different query
types for a varying number of data rows. To reproduce
the results for Merkle2, execute
go run .
in the msquare subfolder of the repository.
Results: After completing the first command, a single
output table is created with the data for the graphs of
Figure 9 for TAP. The ‘storage’ column corresponds
to Fig 9a, the ‘auditor’ column to Fig 9b, the ‘insert’
column to Fig 9c, the ‘lookup’ column to Fig 9d, the
‘sum’ column to Fig 9e, and the ‘min’ column to Fig
9f. The number of rows is not printed by default, but
corresponds to 100 times the number in the function call
(as per lines 648-654 of main.go). The second command
will produce a table for Merkle2 with a similar structure

to the one for TAP in the msquare folder. C3 can be
verified by comparing the values in the two tables for
the same row index.
(Perhaps confusingly, the x-axis of Fig. 9a is labeled
“epochs” despite there being only one row per epoch.)

(E4): Scalability: >10 compute-hours + <1 GB disk
Preparation: The scalability experiments were de-
signed to be run overnight on a high-capacity machine,
and will take a considerable amount of time to complete
with the default settings (i.e., >10 hours on a high-end
AWS machine). The range of the experiments can be
changed by modifying lines 701 and 704 (the second
number in the function call represents the maximum
number of epochs, so setting this to a lower number will
substantially reduce processing times), and the number
of samples can be reduced by setting nSamples6 and
nSamples7 to 1 in lines 712–713 of main.go.
For example, setting nSamples6 and nSamples7 to 1,
and using
getExperimentRange(100, 10000, 3, 10, 100, 2)
in line 701 and
getExperimentRange(100, 1000, 2, 10, 100, 2)
in line 704 should cause both sets of experiments to con-
clude within 15 minutes on a medium-capacity machine.
Execution: This experiment can be reproduced by exe-
cuting
run . -experiment6
for Figures 10a, c, and d, and
run . -experiment7
for Figure 10b.
Results: The output table consists of one row for each
combination of user/sum tree numbers (assuming one
sum tree per district), and each cell contains the aver-
age result over several queries of the same type. The
“quantile_all_total” column contains the results for a
quantile query on the entire dataset (Fig. 10c) and “quan-
tile_limited_total” (Fig. 10d) for query over a single
subtree. On a medium-capacity machine, C4 can be ver-
ified by observing the trends in the table entries (even if
the overall execution times are higher).

A.5 Notes on Reusability
The TAP code can be used to perform queries on data tables
with the same format as those generated for the experiments
(as specified in tables/table_factory.go).

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix:
Trojan Source: Invisible Vulnerabilities

Nicholas Boucher & Ross Anderson

A Artifact Appendix

A.1 Abstract
We provide a repository with proofs-of-concept implementing
Trojan Source attacks in C, C++, C#, JavaScript, Java, Rust,
Go, Python, SQL, Bash, Assembly, and Solidity. When viewed
and compiled using vulnerable tools, these short proof-of-
concept programs will output different values when executed
than would be expected from reading the rendered source
code.

A.2 Description & Requirements
Our paper describes a manner of encoding source code that
can hide malicious logic in a manner that is not rendered to
the user. Our artifact is a collection of proofs-of-concept, for
which validation will take the form of verifying that the proofs-
of-concept visually match the claimed rendering described in
the paper and output the same adversarial logic when executed
as described in the paper.

A.2.1 Security, privacy, and ethical concerns

The code provided does not take destructive action. While ex-
ecution of the provided programs will output different values
than expected from reading the rendered source code, view-
ing, compiling, and executing the provided code is designed
to have no negative consequences for the reviewer.

A.2.2 How to access

The artifact is provided as a GitHub repository:
https://github.com/nickboucher/trojan-source/
tree/e3dc153fcf465f4a84424ea874ff39be29adb1f7.

A.2.3 Hardware dependencies

None

A.2.4 Software dependencies

Validating this artifact will required opening the proofs-of-
concept programs any vulnerable language (Table 2 of the
paper) in a vulnerable code viewer (Table 3 of the paper). We

recommend C viewed with Visual Studio Code (v1.61) and
compiled with clang (v12.0.*), and these tools are reasonably
cross-platform.

Our experiments were repeated across Window 10 build
19043, MacOS Big Sur, and Ubuntu 20.04, although we antici-
pate that any modern version of Windows, MacOS, or Ubuntu
will work.

A.2.5 Benchmarks

None

A.3 Set-up

Clone the artifact repository.

A.3.1 Installation

Install at least one vulnerable compiler and code viewer as
listed Section A.2.4.

A.3.2 Basic Test

Validate that C/commenting-out.c is rendered as shown in
Figure 4 of the paper when opened in a vulnerable editor such
as Visual Studio Code (v1.61)

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Trojan Source attacks produce different outputs when
executing compiled programs written with Trojan Source
techniques than would be expected from the rendered
source code (absent any defenses).

A.4.2 Experiments

(E1): [10 human-minutes + .01 compute-hours + <1GB
disk]:
How to: Open each of the proofs-of-concept in the C
sub directory of the artifact repository using a vulnerable
language and compiler as described in Section A.2.4.
Confirm that the code is visualized as shown in Figure 4
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of the paper. Compile the code, and confirm that the out-
put matches the output claimed in the paper and differs
from what would be expected from reading the rendered
source code.
Preparation: Complete the software dependency instal-
lations described above.
Execution: Compile and execute the proofs-of concept,
with e.g. clang commenting-out.c && ./a.out.
Results: The output should match Section 4.2 of the
paper.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: Cheesecloth:
Zero-Knowledge Proofs of Real-World Vulnerabilities

Santiago Cuéllar*

Galois, Inc.
Bill Harris
Galois, Inc.

James Parker
Galois, Inc.

Stuart Pernsteiner
Galois, Inc.

Eran Tromer
Columbia University

A Artifact Appendix

A.1 Abstract

This artifact accompanies the paper, Cheesecloth: Zero-
Knowledge Proofs of Real-World Vulnerabilities. It contains
pointers to the software repository for the work described
in the paper, instructions for compiling the software and its
dependencies, and instructions for running the benchmarks in
the paper.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

There is no risk for evaluators.

Ethical concerns CHEESECLOTH aids in responsible dis-
closure by producing zero-knowledge proofs of the existence
of vulnerabilities while keeping the vulnerabilities and ex-
ploits secret. All vulnerabilities used in our evaluation have
been previously disclosed publicly, and fixes are widely de-
ployed. Thus, the work presented in the paper does not consti-
tute an unethical disclosure of potentially harmful information.
A black hat researcher could use CHEESECLOTH as part of the
process to sell a vulnerability, however CHEESECLOTH’s in-
volvement is unlikely to change the fact that the vulnerability
will still be sold and abused.

A.2.2 How to access

The source code accompanying this paper is avail-
able at https://github.com/GaloisInc/cheesecloth/
tree/usenix-2023-artifact.

A.2.3 Hardware dependencies

All measurements reported in the paper were performed on
a 128 core Intel Xeon E7-8867 CPU with 2 TB of RAM,
although our implementation uses considerably less mem-
ory. 592 GB of disk space is required to store the outputs of
all benchmarks. The OpenSSL benchmark takes up most of

*Authors listed alphabetically.

this disk space. The GRIT and FFmpeg benchmark outputs
combined require less than 35 GB.

A.2.4 Software dependencies

Benchmarks were run on Debian 11. LLVM version 9 is a re-
quired dependency. The Haskell (stack) and Rust (cargo) de-
velopment tools are also required to build CHEESECLOTH. All
other Haskell and Rust dependencies are listed in project con-
figuration files and are automatically retrieved using stack
and cargo.

A.2.5 Benchmarks

Experiments require the vulnerable versions of GRIT, FFm-
peg, and OpenSSL. All vulnerable versions are provided as
git submodules of the CHEESECLOTH repository and point to
the appropriate commit.

A.3 Set-up
A.3.1 Installation

LLVM version 9, stack, and cargo are dependencies
that must be installed. The two main components of
the CHEESECLOTH compilation chain are MicroRAM and
witness-checker, which both live in git submodules. For
convenience, the scripts ./scripts/build_microram and
./scripts/build_witness_checker will compile each
tool.

A Dockerfile is provided for reproducible builds, how-
ever Docker may add too much overhead in practice. You can
build and run the Docker container with:

d oc ke r b u i l d −− p l a t f o r m l i n u x / x86_64 − f
c h e e s e c l o t h / D o c k e r f i l e − t
c h e e s e c l o t h −image .

d oc ke r run −− p l a t f o r m l i n u x / x86_64 − i t
c h e e s e c l o t h −image : l a t e s t / b i n / bash

A.3.2 Basic Test

Correctness tests for MicroRAM and witness-checker can
be run with stack test in the MicroRAM directory and
cargo test in the witness-checker directory.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium    395

https://github.com/GaloisInc/cheesecloth/tree/usenix-2023-artifact
https://github.com/GaloisInc/cheesecloth/tree/usenix-2023-artifact


A.4 Evaluation workflow

A.4.1 Major Claims

(C1): CHEESECLOTH produces Zero-Knowledge proofs of
vulnerabilities for GRIT, FFmpeg, and OpenSSL with
multiplication gate counts as described in Table 1 of the
paper.

(C2): Turning off the sparsity and public-pc segment opti-
mizations increases circuit size in terms of multiplication
gate counts as described in Table 2 of the paper.

A.4.2 Experiments

For each of the experiments, running GRIT and FFmpeg takes
hours, while OpenSSL takes days. You may wish to skip the
OpenSSL runs.
(E1): Generate the ZK proofs of vulnerabilities for GRIT,

FFmpeg, and OpenSSL.
How to: Once all the dependencies are installed, run
the following scripts to generate the ZK proofs:

. / s c r i p t s / r u n _ g r i t && mv o u t / g r i t
o u t / g r i t _ b a s e l i n e

. / s c r i p t s / run_f fmpeg && mv o u t /
f fmpeg o u t / f f m p e g _ b a s e l i n e

. / s c r i p t s / r u n _ o p e n s s l && mv o u t /
o p e n s s l o u t / o p e n s s l _ b a s e l i n e

Results: All of the scripts should finish successfully
and the corresponding output directories will contain a
witness-checker.log file. This file contains the mul-
tiplication gate counts at the "mul_gates" key (under
"gate_stats") which correspond to Table 1.

(E1.5): Run the ZK proofs from E1 through the Diet
Mac’n’Cheese ZK proof backend.
How to: While our contribution is agnostic to the ZK
backend, you can run the Diet Mac’n’Cheese back-
end with the following scripts (you will need to update
swanky_dir in the script to point to the location of Diet
Mac’n’Cheese on your file system):

. / s c r i p t s / dmc . sh v e r i f i e r o u t /
g r i t _ b a s e l i n e &

. / s c r i p t s / dmc . sh p r o v e r o u t /
g r i t _ b a s e l i n e

You may want to invoke the prover and verifier in sepa-
rate terminals.
Results: The scripts will report the backend protocol
time for the given ZK proof (replace prover with
prover-count to report protocol communication).

(E2): Regenerate the ZK circuits with the sparsity and public-
pc segment optimizations turned off.

How to: Run the following scripts to regenerate the ZK
proofs:

. / s c r i p t s / r u n _ g r i t _ n o _ s p a r s i t y && mv
o u t / g r i t o u t / g r i t _ n o _ s p a r s i t y

. / s c r i p t s / r u n _ g r i t _ n o _ p u b l i c p c && mv
o u t / g r i t o u t / g r i t _ n o _ p u b l i c p c

. / s c r i p t s / r u n _ f f m p e g _ n o _ s p a r s i t y &&
mv o u t / f fmpeg o u t /
f f m p e g _ n o _ s p a r s i t y

. / s c r i p t s / r u n _ f f m p e g _ n o _ p u b l i c p c &&
mv o u t / f fmpeg o u t /
f f m p e g _ n o _ p u b l i c p c

. / s c r i p t s / r u n _ o p e n s s l _ n o _ s p a r s i t y &&
mv o u t / o p e n s s l o u t /

o p e n s s l _ n o _ s p a r s i t y
. / s c r i p t s / r u n _ o p e n s s l _ n o _ p u b l i c p c &&

mv o u t / o p e n s s l o u t /
o p e n s s l _ n o _ p u b l i c p c

Results: All of the output directories will contain a
witness-checker.log file again with the multiplica-
tion gate counts which correspond to Table 2.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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VulChecker: Graph-based Vulnerability Localization in Source Code

Yisroel Mirsky1, George Macon2, Michael Brown3, Carter Yagemann4

Matthew Pruett3, Evan Downing3, Sukarno Mertoguno3 and Wenke Lee3

1Ben-Gurion University of the Negev
2Georgia Tech Research Institute
3Georgia Institute of Technology

4Ohio State University

A Artifact Appendix

A.1 Abstract

In this document we describe the artifact for our vulnerabil-
ity detection tool VulChecker. The artifact consists of source
code, datasets and pre-trained models for reproducing the re-
sults from the USENIX’23 paper. This document we only
provide the steps requires to demonstrate that the tool is avail-
able and functional.

A.2 Description & Requirements

To reproduce the results from the paper you will need to use
the source code and assets available on GitHub. There you
will find detailed instructions on how to install the tool or
acquire the VM which has the tool already installed. You will
also find a detailed guide on how to use the the entire pipeline
in your own projects.

You can also find our implementation of the baseline
VulDeeLocator here:
https://github.com/evandowning/VulDeeLocator

A.2.1 Security, privacy, and ethical concerns

There are no risks in executing our tool since it is a vulnera-
bility detector. However, the provided datasets are deviates of
projects collected from GitHub. Therefore, users should con-
sider that the projects may contain security risks if executed
and users should note the respective software licenses.

A.2.2 How to access

To gain access to the source code an assets, please check out
our GitHub repository at https://github.com/ymirsky/
VulChecker

VulChecker uses a number of components that must be
installed in order for it to operate. Here is a list of components
of Vulchecker which we maintain in seperate repositories:

• VulChecker: the core library for processing data and
training models. All operations with this library are
through a command line tool called hector. https:
//github.com/ymirsky/VulChecker.git

• LLAP: a plugin to LLVM for extracting ePDGs
from cmake C/C++ projects. https://github.com/
michaelbrownuc/llap

• Structure2Vec: our pyTorch implimentation of the graph-
based neural network by Dai et al. https://github.
com/gtri/structure2vec

• vulchecker-misc: a collection of helpful (optional)
scripts, such as automatic labeling Juliet samples. https:
//github.com/michaelbrownuc/vulchecker-misc

Information on where the VM and datasets are hosted can
be found the main VulChecker repo.

A.2.3 Hardware dependencies

To execute the tool on the VM, you will need a host system
with at least 16GB RAM. If you intend to preprocess the
raw datasets yourself, you will need significantly more RAM
(128GB). You can use the VM to train a model on a CPU, but
it is highly recommended to use a system with a cuda GPU
(we used an NVIDIA TITAN RTX with 24GB RAM). The
VM does not come with cuda installed. Therefore, if you want
GPU acceleration, you will either need to (1) install the vGPU
and cuda libraries on the VM or (2) make a clean installation
on a cuda enabled system with the instruction from the repo.

A.2.4 Software dependencies

To make a clean install of the detection tool (instead of using
the VM), you will need a Linux system with Ubuntu Ubuntu
20.04 and python 3.8.10.
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A.2.5 Benchmarks

Although we provide source code to the baselines used in the
paper, we do not provide end-to-end instructions for running
them on our datasets at this time. Please follow our VulDee-
Locator repo for updates.

A.3 Set-up
For a quickstart, download the VM (link in the README.md
of from the VulChecker repo). Configure the VM to have at
leag 16GB RAM (prefferably more).

A.3.1 Installation

For a clean installation, follow the clean-install steps provided
in the repo’s README.md. Note that a clean installation can
save several hours since LLVM must be compiled.

A.3.2 Basic Test

Once you have booted the VM, you will find three demo
scripts on the desktop. These scripts are also available in
demos/ in the repo if you performed a clean-install. These
scripts which demonstrate how the tool can be used on a
single project provided (Avian) for CWE-121:

1. Convert a C or C++ project into a set of ePDGs

2. Augment datasets (requires large RAM)

3. Train a model

4. Make predictions with model

You can run them to verify that the tool has been installed
successfully.

A.4 Evaluation workflow
To use the tool, a separate model and dataset must be prepared
for each CWE (190, 121, 122, 415, 416).

There are three ways to reproduce the results from the
paper, depending on how far back into the pipeline you want
to go: (1) start from raw source code projects, (2) start from
preprocessed datasets, (3) start from preprocessed datasets
and pretrained models.

The first approaches can take days to perform. Therefore
we recommend following the third approach.

(2) For working with the preprocessed files, the
training data for CWE<id> can be found here:
/CWE<id>/proc_graphs/wild_augmented-labels.
Use the file that has the format
CWE<id>_*_clean_<N>_<P>.json.gz
which is the dataset after removing a ratio of <N> negative
and <P> positive manifestation points.

The test data (projects with CVEs) can be found here:
/CWE<id>/proc_graphs/*/combined. Use the file that has
the format
CWE<id>_*_clean_<N>_<P>.json.gz

(3) To start with preprocessed datasets and pretrained mod-
els, follow the instruction in (2) and model files stored in
models/

A.4.1 Major Claims

(C1): The provided VulChecker tool is functional and can
be used to detect vulnerabilities/bugs in source code.

A.4.2 Experiments

(E1): Tool Execution [30 human-minutes + 3 compute-hour
+ 200GB disk + 128GB RAM]:
How to: Download the provided VM and allocate the re-
quired RAM to the machine. Run the three demo scripts
on the VM’s desktop. The demos will operate on a single
project (Avian) for CWE-121.
Results: The final script should output a csv listing the
likelihoods for each potential manifestation point is an
actual bug/vulnerability for CWE-121.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

(1) For working with the Raw source code files: Follow the
instructions in the repo using the diagram provided there. To
get the data, follow the link provided in the repo’s README.
The training data is the ‘clean-wild‘ projects augmented with
the Juliet projects. The test data is the ‘wild-labeled‘. The
parameters used to train our models can be found in the
models/trained_on_aug/ directories next to each model.
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A Artifact Appendix

A.1 Abstract
The artifact consists of the Tamarin model files with the corre-
sponding oracles for the three exposure notification systems
ROBERT, DP3T, and the CWA presented in the paper. The
artifact is available as a ZIP archive as well as packaged in a
Docker container featuring a recent version of Tamarin.

Our analysis results presented in Section 6 of the paper can
be revalidated by verifying the lemmas of each model with
Tamarin.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The artifact can be directly downloaded from https://doi.
org/10.6084/m9.figshare.21304305.

The provided Docker container with the artifact and
Tamarin can be obtained by executing

docker pull kevinmorio/usenix23-ens

A.2.3 Hardware dependencies

The evaluation of the artifact requires about 43.15 GB of
memory (peak) and ideally 12 cores.

A.2.4 Software dependencies

Tamarin with its dependencies Maude and Graphviz can be
directly installed on the system. Alternatively, for using the
provided Docker container, a working installation of Docker
is required.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Tamarin and its dependencies can be installed following the
instruction from the Tamarin manual: https://tamari
n-prover.github.io/manual/book/002_installa
tion.html. The artifact can be downloaded from https:
//doi.org/10.6084/m9.figshare.21304305.

Installation instruction for Docker are available in the
Docker documentation: https://docs.docker.com/en
gine/install. The Docker container can be obtained by
executing

docker pull kevinmorio/usenix23-ens

A.3.2 Basic Test

To check that Tamarin works correctly, execute

tamarin-prover test

for a local installation of Tamarin or

docker run kevinmorio/usenix23-ens \
tamarin-prover test

when using the Docker container.
The output should be

Self-testing the tamarin-prover installation.

*** Testing the availability of the required tools ***
maude tool: ’maude’
checking version: 2.7.1. OK.
checking installation: OK.

GraphViz tool: ’dot’
checking version: dot - graphviz version 7.0.1 (20221109.1506). OK.
checking PNG support: OK.

*** Testing the unification infrastructure ***
Cases: 55 Tried: 55 Errors: 0 Failures: 0

*** TEST SUMMARY ***
All tests successful.
The tamarin-prover should work as intended.

:-) happy proving (-:
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where the reported versions for Maude and Graphviz can
differ depending on the system.

A.4 Evaluation workflow

A.4.1 Major Claims

(Claim 1): A1–A4 categorise all attacks against upload au-
thorisation (Def. 3) for ROBERT as described in Section
6.2. X1–X7 categorise all attacks against soundness (Def.
1) for ROBERT as described in Section 6.3. This is veri-
fied by experiment (E1).

(Claim 2): B1–B3 categorise all attacks against upload au-
thorisation (Def. 2) for DP3T as described in Section 6.2.
Y1–Y7 categorise all attacks against soundness (Def. 1)
for DP3T as described in Section 6.3. This is verified by
experiment (E2).

(Claim 3): C1–C2 categorise all attacks against upload au-
thorisation (Def. 2) for the CWA as described in Section
6.2. Z1–Z4 categorise all attacks against soundness (Def.
1) for the CWA as described in Section 6.3. This is veri-
fied by experiment (E3).

A.4.2 Experiments

(E1): [Verification of ROBERT] [10 human-minutes + 14
compute-hours]: Verify the lemmas in robert.spthy
with Tamarin. All lemmas should verify.
Preparation: Install Tamarin directly and download +
extract the artifact or obtain the Docker container as
described above.
Execution: For the local Tamarin install, enter the direc-
tory where the artifact has been extracted to and execute

tamarin-prover --prove robert.spthy

Alternatively, for Docker execute

docker run kevinmorio/usenix23-ens \
tamarin-prover --prove robert.spthy

The number of cores and the amount of mem-
ory used by Tamarin can be configured by adding
+RTS -N<num-cores> -M<gb-mem>g -RTS directly af-
ter tamarin-prover in the commands above. The re-
ported compute-hours have been obtained with -N12 and
no memory limit on an Intel(R) Xeon(R) CPU E5-4650L
workstation.
Results: When Tamarin terminates, it reports a sum-
mary of summaries listing all lemmas and their verifica-
tion result line-by-line, e.g.,
soundness (all-traces): verified (.. steps)

The verification result of each lemma should be
verified. Moreover, the summary of summaries re-
ported should be the same as the summary of summaries
at the end of robert.spthy

(E2): [Verification of DP3T] [10 human-minutes + 2
compute-hours]: Verify the lemmas in dp3t.spthy
with Tamarin. All lemmas should verify.
This experiment is the same as the one above for
ROBERT except for using dp3t.spthy instead of
robert.spthy.

(E3): [Verification of the CWA] [10 human-minutes + 1
compute-hour]: Verify the lemmas in cwa.spthy with
Tamarin. All lemmas should verify.
This experiment is the same as the one above for
ROBERT except for using cwa.spthy instead of
robert.spthy.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

This document contains the description of the formal models
and proofs of the three modes of Security Protocol and Data
Model (SPDM) protocol version 1.2.1. We provide four mod-
els that capture the main device attestation mechanism, and
the three modes of key exchange with (i) preshared symmet-
ric keys, (ii) preshared public keys, and (iii) public key pair,
certificates over the public key, and a root of trust. During
our analysis we prove the main security guarantees of each
of the models, such as Responder Authentication, Measure-
ments Authentication, Handshake Secrecy, etc. Our proofs
and models are formalized using the Tamarin Prover’s input
language.

We provide the artifacts in a public Github repository for
inspection and reproduction with instructions on how to repli-
cate each of the proofs. In addition, the repository includes a
Python programm to obtain all our results automatically.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

All our files are public and can be inspected and reused by
accessing the following GitHub repository https://github
.com/FormalAnalysisOf/SPDM/tree/V1.

A.2.3 Hardware dependencies

The hardware dependencies are inherited from the Tamarin
Prover, although the manual of the latter does not mention
any hardware dependencies. To the best of our knowledge,
any modern notebook should be sufficient to run Tamarin.

A.2.4 Software dependencies

In the following we list all software dependencies:
1. Tamarin Prover1 which depends on haskell-stack,

graphviz, and maude. Note that Tamarin does not run
on Windows systems. To run Tamarin on Windows refer
to WSL2.

2. Python3 - install pip, and use it to install tabulate and
matplotlib.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Clone the repository using

$ git clone
https://github.com/FormalAnalysisOf/SPDM.git↪→

To install the Python dependencies, please install Python3,
pip, tabulate, and matplotlib. For instance, on an Ubuntu sys-
tem you can install them using

$ apt install python3
$ apt install pip3
$ pip3 install tabulate matplotlib

Afterwards install the development branch of Tamarin.

Installing Tamarin Some package managers let you install
Tamarin directly. We suggest compiling it from scratch (de-
velop branch) using the manual https://tamarin-prover.
github.io/manual/book/002_installation.html. for
instructions. The exact commit we used to obtain our proofs
in the develop branch is:

1https://tamarin-prover.github.io/manual/book/002_instal
lation.html

2https://learn.microsoft.com/en-us/windows/wsl/install
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7c980321158ebf7c7c03c53cee93248507584065

Our models can also be executed using the latest development
version of Tamarin, however, that might affect the execution’s
runtime.

A.3.2 Basic Test

Make sure that the tamarin-prover executable is in the $PATH.
To test if you correctly installed the Tamarin Prover, execute

$ tamarin-prover test

You should see a message containing
- a check for maude,
- a check for Grapviz, and
- a test for the unification structure (0 errors and 0 failures).
In the end you should see the following:

All tests successful.
The tamarin-prover should work as intended.

:-) happy proving (-:

A.4 Evaluation workflow

A.4.1 Major Claims

Our artifact contains formal models of the SPDM specifica-
tion and the means to execute them. The models include at
the end of the file the main security properties of our analysis,
and sanity checks expressed by the so-called lemmas, which
are a formal representation using the Tamarin Porver’s input
language. The user can automatically reproduce the proofs
for all lemmas by either using the python program or the
instruction sets in our artifact. We state the security properties
investigated in our analysis in the following:

(C1) Device attestation: For the part of SPDM that aims to
provide device attestation, we prove Responder Authen-
tication and Measurement Authentication. Definitions
of those properties can be found in Section 4 of our paper.
Our claims are proven with experiment (E1).

(C2) Certificate KEX: For the key exchange based on cer-
tificates and public key cryptography, we prove Re-
sponder Authentication, Mutual Authentication, and
Handshake Secrecy. Definitions of those properties can
be found in Section 4 of our paper. Our claims are proven
with experiment (E2).

(C3) Pre-Shared KEX: For the key exchange based on pre-
shared public keys, we prove Mutual Authentication
and Handshake Secrecy. Further, for a restricted model
(see section 4.5 in the paper), we also prove Forward
Secrecy. Definitions of those properties can be found
in Section 4 of our paper. Our claims are proven with
experiment (E3).

(C4) PSK Exchange: For the key exchange based on pre-
shared symmetric keys, we prove Mutual Authentica-
tion and Handshake Secrecy. Definitions of those prop-
erties can be found in Section 4 of our paper. Our claims
are proven with experiment (E4).

A summary of our proof results and runtime can be found in
Table 1 of our paper.

A.4.2 Experiments

In the following we list all the different models and explain
how to execute them individually. Afterwards we introduce
the python program to execute all models in experiments
(E1)-(E4) at once.

We ran our models initially on an Intel(R) Xeon(R) CPU
E5-4650L 2.60GHz machine with 756GB of RAM using 4
threads and the estimated runtime is based on this machine.

First navigate in the cloned repository’s model folder

$ cd SPDM/TamarinModels

and then make the oracle file executable

$ chmod +x oracle

(E1): [1 human-minute + ∼ 4 compute-minutes]:
Device attestation is modelled in the file: de-
vice_attestation.spthy. The lemma ResponderAuth
models Responder Authentication and the lemma
MeasurementAuth models Measurement Authentication.
The model file further contains several sanity lemma
and helper lemmas to prove the above property. With
the following instruction all of them will be executed.

Preparation: After cloning the repository and installing
the software dependencies, navigate into the Tamarin-
Models folder within the cloned repository.
Execution: Open the terminal in this folder and execute
the following command:

$ python3 tamarin_wrapper.py
device_attestation.spthy -p
"auth,Sanity" -c 4 -t 1800

↪→

↪→

Results: The results are printed into the terminal, and a
.csv file is also stored within the results folder.

(E2): [1 human-minute + ∼ 52 compute-minutes]:
The certificate based key exchange is modelled
in the file: key_exchange.spthy. The lemma
resp_authentication_at_finish models Responder
Authentication and the lemma mutual_authentication
models Mutual Authentication. Handshake Secrecy
is modelled via 2 lemma: secret_major_init_side and
secret_major_resp_side. The model file further contains
several sanity lemma and certain helper lemma to prove
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the above property. With the following instruction all of
them will be executed.

Preparation: After cloning the repository and installing
the software dependencies, navigate into the Tamarin-
Models folder within the cloned repository.
Execution: Open the terminal in this folder and execute
the following command:

$ python3 tamarin_wrapper.py
key_exchange.spthy -p "Sanity"
-c 4 -t 1800

↪→

↪→

Results: The results are printed into the terminal, and a
.csv file is also stored within the results folder.

(E3): [1 human-minute + ∼ 29 compute-minutes]:
The preshared public key based key exchange
is modelled in two file: preshared_pk.spthy
and preshared_pk_copy.spthy. The lemma mu-
tual_authentication models Mutual Authentication
and is executed in preshared_pk.spthy. The other file
executes Handshake Secrecy is modelled via 2 lemma:
secret_major_init_side and secret_major_resp_side.
The model file further contains several sanity lemma and
certain helper lemma to prove the above property. With
the following instruction all of them will be executed.

Preparation: After cloning the repository and installing
the software dependencies, navigate into the Tamarin-
Models folder within the cloned repository.
Execution: Open the terminal in this folder and execute
the following commands:

$ python3 tamarin_wrapper.py
preshared_pk.spthy -p
"auth,Sanity" -c 4 -t 1800

↪→

↪→

$ python3 tamarin_wrapper.py
preshared_pk_copy.spthy -p "fs"
-c 4 -t 1800

↪→

↪→

Results: The results are printed into the terminal, and
.csv files are also stored within the results folder.

(E4): [1 human-minute + ∼ 3 compute-minutes]:
The preshared public key based key exchange is mod-
elled in two files: preshared_psk.spthy and refl.spthy.
The lemma mutual_authentication models Mutual
Authentication and is executed in preshared_psk.spthy.
The other file executes Handshake Secrecy is mod-
elled via 2 lemma: secret_major_init_side and
secret_major_resp_side. The model file further contains
several sanity lemma and certain helper lemma to prove
the above property. With the following instruction all of
them will be executed.

Preparation: After cloning the repository and installing

the software dependencies, navigate into the Tamarin-
Models folder within the cloned repository.
Execution: Open the terminal in this folder and execute
the following commands:

$ python3 tamarin_wrapper.py
attack_refl_preshared_psk.spthy
-c 4 -t 1800

↪→

↪→

$ python3 tamarin_wrapper.py
preshared_psk.spthy -p "Sanity"
-c 4 -t 1800

↪→

↪→

Results: The results are printed into the terminal, and
.csv files are also stored within the results folder.

Easier alternative
Instead of running all models independently, it is also possible
to run all of them at once. On our computing device this took
∼ 1,5h.
Preparation: After cloning the repository and installing the

software dependencies, navigate into the TamarinModels
folder within the cloned repository.

Execution: open the terminal in this folder and execute the
following command:

$ python3 tamarin_wrapper.py -f
case_studies.tamjson↪→

Results: While the results will be printed into the terminal,
.csv files are also stored within the results folder.

Timeouts
Depending on the computing device it can happen that sin-
gle lemmas do not terminate in the given timeout. You can
either change the timeout at the -t parameter or if one is
running all at once, change the "timeout" field within the
case_studies.tamjson file.

A.5 Notes on Reusability
We conducted a first in-depth formal analysis of the three
models of SPDM, and proved their main security properties.
Ideally, we would verify all security properties on the com-
plete model, however this seems beyond reach of the current
state-of-the-art symbolic analysis tools. However, we mod-
elled the protocol in a modular fashion s.t. models can be
reused and adapted as the specification and standard evolve.
We hope that our models can serve as a starting point for
a unified model and encourage future work on the SPDM
protocol.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

APIDiff is an automatic tool that generates test cases for
each API and identifies execution discrepancies. APIDiff con-
sists of three key components. The Test Case Generator is
responsible for creating test cases for each API, initializing the
parameters correctly, resolving dependencies between APIs,
and mutating parameter values to achieve high coverage. The
Code Executor executes the test cases on different platforms
(Windows, Android, and iOS) to generate corresponding out-
puts and detect discrepancies that may pose security concerns.
The Discrepancies Analyzer employs differential analysis and
predefined policies to examine error codes and return values
of tested APIs, enabling the identification of discrepant APIs.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

To ensure compliance with community practices, it is impera-
tive to strictly adhere to the following requirements:

• Thorough Analysis and Controlled Environment: All
analysis and execution of attacks must be conducted
within a controlled environment, utilizing personal ac-
counts and machines.

• Confidentiality of Attack Code and Malware: Any
developed attack code and malware must be kept private
and confidential to prevent any potential harm to users,
miniapp developers, and platform providers.

• Responsible Reporting: Any discoveries made during
the analysis should be promptly and responsibly reported
to Tencent, following their specified guidelines and pro-
cedures.

A.2.2 How to access

Please find our project online: https://
github.com/OSUSecLab/APIDiff/tree/
f65137b3f8dc037021773134db40b1d384d542b7

A.2.3 Hardware dependencies

To run the tools, you require a specific environment with the
following software and hardware requirements. Firstly, you
need an operating system (OS) such as Linux, macOS, or Win-
dows. Additionally, you need Node.js, which is a JavaScript
runtime environment. You also need WeChat DevTools, which
is a development tool specifically for creating and debugging
MiniApps. In terms of hardware, you will need devices for
conducting experiments. This includes Android devices, iOS
devices, and Windows devices.

A.2.4 Software dependencies

Please ensure that you have the latest version of WeChat
installed on your devices. In order to create and debug a
MiniApp for API testing, it is necessary to have a WeChat
account and install the IDE specified by Tencent.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

To get started, please follow the steps below:

1. Clone the project: Use the Git command or a Git client
to clone the project repository. For example, you can use
the following command in your terminal:

1 git clone https://github.com/OSUSecLab/APIDiff/

2. Install additional dependencies:

1 # make sure node.js and npm is installed
2 node --version
3

4 # install for apitest-gen
5 cd apitest-gen && yarn && cd ..
6

7 # install for client
8 cd client && yarn && cd ..
9

10 # install for server
11 cd server && yarn && cd ..
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A.3.2 Basic Test

You can test each component by simply executing the follow-
ing commands:

• apitest-gen: npx ts-node
apitest-gen/src/apigen/main.ts

• client: npx ts-node client/src/index.ts

• server: npx ts-node server/agent/index.ts

A.4 Evaluation workflow

Generate the test cases Make sure you have documents
available for the test case generation. Note that the input
document should be an array of API (Array in typescript)
in JSON format. You can refer to Pre-processing for more
information.

You can specify the input document file via apitest-gen/
src/apigen/config.ts or via the environment variable
INPUT_DOC.

You can specify the output directory via the same config file
or via the environment variable OUTPUT_DOC.

Then, execute the apitest-gen/src/apigen/main.ts
to generate test cases. (i.e., ts-nodeapitest-gen/src/
apigen/main.ts)

Find the debug URL The debug URL is embedded in
WeChat DevTools. You need a WeChat account to create and
test a MiniApp, and via initiating a remote debug session you
can obtain such a debug URL.

1. Tweak the WeChat DevTools Locate your WeChat
DevTools installation directory, look for pack-
age.json inside package.nw (in macOS the location
is /Applications/wechatwebdevtools.app/
Contents/Resources/package.nw/package.json).
Then, find the -disable-devtools flag, remove it and
save the file.

2. Initiate a remote debug session. Choose a device target
to start a remote debug session. Make sure you are using
remote-debug 2.0 and enable LAN mode for best net-
work latency. Make sure the remote debugger window is
popped.

3. Find the debug URL Make sure the current fo-
cused window is the remote debugger, press F12
to open the chrome devtools. Switch to the El-
ements tab and find the webview tag (the se-
lector is body > div:nth-child(1) > div > div >
div.debugger > webview). Now you can find the de-
bug string is inside the src property starting with ws=.

An example debug string is ws=127.0.0.1:40204. You
can now transform this string into the debug URL:
ws://127.0.0.1:40204.

Run the server Make sure you have all dependencies in-
stalled. Then, you can start a server directly by the following
command:

1 cd server
2 REMOTE_DEBUG_WS=<your debug URL> ts-node agent/index.ts

Make sure the [evaluator init] global message is prompted
after running the server. If you did not see this message, the
debug URL might be invalid due to timeout. You need to redo
the previous steps. Note that the debug URL won’t change as
long as the WeChat DevTools is not closed or restarted.

You can also interact with the debugger via specifying EN-
ABLE_NODE_REPL environment variable. The Node.JS
REPL contains global objects for debugging. Please refer
to server/agent/index.ts for more information.

The server will open a port for the incoming re-
quests from the client. You can specify the port in
server/agent/listener/config.ts

Run the client You can now run the client to start testing.
You need to change the config file defined in client/src/
config.ts based on your previous configuration. After that,
you can run the client by the following command:

1 cd client && ts-node src/index.ts

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

This artifact describes NVLeak, a collection of
microarchitecture-level reverse-engineering tools and
covert/side channel attack proof-of-concept, which exploit
the microarchitecture design of Intel Optane DIMM. NVLeak
also comes with a set of scripts to set up system environments,
run experiments, collect results, and generate plots.

A.2 Description & Requirements

NVLeak artifacts are available online as a GitHub repo which
contains reverse engineering, covert/side channel code, data
parsing scripts, and documentation to use these tools. To
reproduce the major claims in the main paper, we recommend
using a server machine with Intel Optane DIMM, similar to
Server A or Server B described in the main paper.

A.2.1 Security, privacy, and ethical concerns

This artifact does not exploit any security breaches on evalua-
tors’ machines. The reverse-engineering and covert/side chan-
nel code is run on the server machine with Optane DIMMs,
and it is not destructive to evaluators’ environments. The only
code running on evaluators’ machines is data parsing and plot
generation scripts, which can run in the Docker images from
NVLeak.

A.2.2 How to access

NVLeak code is hosted on GitHub1.

A.2.3 Hardware dependencies

NVLeak exploits the microarchitecture designs of Intel Op-
tane DIMMs and thus requires these DIMMs to reproduce the
results presented in the main paper. An example server ma-
chine environment with Optane DIMM is shown in Table 1.

1https://github.com/TheNetAdmin/NVLeak/tree/
588567e6ec30f2df9f260e60385031c94e94c75e

Table 1: NVRAM-equipped server system configuration.
Hardware Configuration

CPU
Intel Xeon Gold 6230

20 Cores per socket, 2 sockets
HyperThreading off

L1 Cache 32 KiB 8-way I-Cache, 32 KiB 8-way D-Cache, private
L2 Cache 1 MiB, 16-way, private
L3 Cache 27.5 MiB, 11-way, shared

DRAM 6 channels per socket
DDR4, 16 GiB, 2666MHz

NVRAM
Intel Optane DIMM, 6 channels per socket

128 GiB, 2666 MHz
Firmware: 01.02.00.5355

A.2.4 Software dependencies

NVLeak has a kernel module that compiles with Linux 5.4
or older versions (tested with 5.1 and 4.15). A newer kernel
may have breaking changes to the filesystem APIs used by
NVLeak and thus may fail the compilation. NVLeak requires
ndctl (v67+) and ipmctl (v02.00.00.3885) to configure the
Intel Optane DIMMs, which can be compiled and installed
from their source code on GitHub. Additional NVLeak re-
quires e2fsprogs (v1.46.4 or newer) to configure the Ext4
filesystem, and sqlite3 (v3.31.1), PMDK library, wolfSSL
(v4.2.0) for side channel attacks. NVLeak GitHub repo has
more detailed documentation on installing and using these
tools.

A.2.5 Benchmarks

NVLeak requires NPPES NPI dataset for SQLite side chan-
nels and provides a script to download this dataset.

A.3 Set-up

NVLeak provides a set of scripts to set up the server machine
for experiments. Due to the space limit, we provide minimal
instructions in this artifact appendix and describe the complete
setup process in the NVLeak GitHub repo.
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$ sudo -i su
# cd NVLeak/nvleak
# bash scripts/machine/machine.sh setup
# reboot
# bash scripts/machine/optane.sh reset
# bash scripts/machine/optane.sh setup \

appdirect ni
# bash scripts/machine/optane.sh ndctl

Figure 1: Set up the Linux boot arguments and Optane DIMM
operation modes.

$ ndctl list -u
[

{
"dev":"namespace1.0",
"mode":"fsdax",
"map":"dev",
"size":"124.03 GiB (133.18 GB)",
"uuid":"***",
"sector_size":512,
"align":2097152,
"blockdev":"pmem1"

},
{

"dev":"namespace0.0",
"mode":"fsdax",
"map":"mem",
"size":"32.00 GiB (34.36 GB)",
"sector_size":512,
"blockdev":"pmem0"

}
]

Figure 2: Optane DIMMs are successfully configured into the
non-interleaved mode (the pmem1 device is around 128 GiB, a
single DIMM’s size), and the kernel boot arugment memmap
successfully creates an emulated PMEM device pmem0 using
DRAM.

A.3.1 Installation

NVLeak provides scripts to set up the system, including Linux
boot commands and Optane DIMM operation modes, as listed
in Figure 1.

Each NVLeak experiment requires a different set of tools
and Optane DIMM configurations. In general, each setup in-
volves three steps: (1) Install required tools, e.g., sqlite3;
(2) Configure Optane DIMMs and mount them as Linux de-
vices; (3) Compile the source code in NVLeak. Please refer
to NVLeak GitHub’s documentation for more details.

A.3.2 Basic Test

To check if the setup takes effect, run ndctl and check
if a non-interleaved PMEM device and an emulated PMEM
device are created, as shown in Figure 2.

A.4 Evaluation workflow

Table 2: Major claims and corresponding results.
Figure Type Claims

2

Reverse
Engineering

L1/L2 NVCache sizes, their block sizes, and
WPQ size

4 L1/L2 NVCache set structures
5 Wear-leveling policy
6 Wear-leveling’s trigger condition
7 Robustness of wear-leveling data migration

17 Detailed pointer chasing results on Server A
18 Reverse engineering results on Server B

9b-c Covert
Channel

Cross virtual machine covert channel perfor-
mance and signal

10 Filesystem inode-based covert channel

12
Side

Channel

Access patterns of SQLite executing different
SQL code

13 Access patterns of SQLite executing ranged
queries

14 Access patterns of PMDK key-value store
15 Detected function calls from wolfSSL library

16 Mitigation Effectiveness and performance of the PMDK-
based mitigation

A.4.1 Major Claims

As shown in Table 2, we have made the following four major
claims in our main paper:
(C1): NVLeak is able to reverse engineer the Optane

DIMM’s microarchitecture designs, including WPQ size,
NVCache set structures, and wear-leveling mechanisms.

(C2): NVLeak can establish covert channels based on the
recovered off-chip microarchitecture to break virtualiza-
tion and file system isolation.

(C3): NVLeak can establish side channels to leak sensitive
information from applications that use NVRAM as stor-
age or memory.

(C4): NVLeak can mitigate the recovered vulnerability by
patching the PMDK library’s memory allocator.

A.4.2 Experiments

The major NVLeak experiments can be categorized into four
types, as listed below. NVLeak GitHub repo provides com-
plete documentation to set up hardware/software environ-
ments and reproduce results. The GitHub repo also contains
scripts to collect and parse data, generate plots, and compile
a LaTeX PDF with all plots organized as in the main paper.
(E1): Reverse Engineering [1 human-hour + 6 compute-

hours + 18 GiB disk]:
Steps: Configure the Optane DIMM into non-
interleaved mode, then compile and insert the NVLeak
kernel module, and finally run the scripts to execute all
experiments. NVLeak also provides Slack integration
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to send experiment progress to the Slack channel
configured by the user.
Results: Reproduce Figure 2-7 and Figure 17-18.
Docs: See docs/reproduce/ReverseEngineering.md in
the NVLeak GitHub repo for more details.

(E2): Covert Channel [1 human-hour + 16 compute-hours
+ 32 GiB disk]:
Steps: Configure the Optane DIMM into non-
interleaved mode, and create two separate Linux PMEM
devices for the sender and receiver. Then compile the
user space proof-of-concept, including QEMU and
KVM-unit-tests. And finally, execute NVLeak’s scripts
to run experiments.
Results: Reproduce Figure 9-10.
Docs: See docs/reproduce/CovertChannel.md in the
NVLeak GitHub repo for more details.

(E3): Side Channel [2 human-hours + 1 compute-hours +
1 GiB disk]:
Steps: Create two separate Linux PMEM devices for
the attacker and victim. Then download the NPPES
dataset and initialize the SQLite database. And finally,
run NVLeak scripts to start experiments.
Results: Reproduce Figure 12-15.
Docs: See docs/reproduce/SideChannel.md in the
NVLeak GitHub repo for more details.

(E4): Mitigation [2 human-hour + 1 compute-hours + 1 GiB
disk]:
Steps: Download and compile the PMDK library, then
execute NVLeak scripts to evaluate the effectiveness and
performance of the mitigations described in the main
paper.
Results: Reproduce Figure 16.
Docs: See docs/reproduce/SideChannel.md in the
NVLeak GitHub repo for more details.

A.5 Notes on Reusability

NVLeak is able to exploit Optane DIMM’s microarchitecture,
and the user can establish attacks based on these hardware
designs. But NVLeak is not limited to Optane DIMM as
NVLeak is not bound to any Optane-specific hardware or
software. One example is that NVLeak can run on DRAM, as
shown in our main paper, Figure 10b.

We envision that NVLeak can be used to exploit future
memory devices’ microarchitecture designs, such as new
memory products based on the Compute Express Link (CXL)
technology. In fact, we have repurposed NVLeak to reveal
PCIe performance characteristics (not shown in this paper)
by attaching an FPGA to PCIe and using MMIO to map the
FPGA memory for NVLeak to access. We hope NVLeak
can facilitate future memory security research for not just
NVRAM but even broader memory technologies.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

CIPHERFIX is a framework for finding and mitigating cipher-
text side-channel leakages in software. It combines dynamic
binary instrumentation and dynamic taint tracking to pinpoint
vulnerable code parts. Then, it hardens the binaries against
ciphertext side-channel leakage with the help of static binary
instrumentation.

This artifact comprises our source code and usage instruc-
tions. We offer prebuilt Docker images which contain all
necessary dependencies, library binaries and precompiled ex-
amples. The GitHub repository presents detailed instructions
on how to build, run and extend CIPHERFIX.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Our source code is available at https://github.com/
UzL-ITS/Cipherfix. The commit used to reproduce the
results in the paper is 0d05fcb. The artifact contains
our dynamic analysis (static-variables, structure-
analysis and taint-tracking), the static mitigation
(static-instrumentation) and our evaluation modules
(memwrite-tracer and evaluation).

A.2.3 Hardware dependencies

For running CIPHERFIX, an AMD Zen1/Zen2/Zen3 CPU is
highly recommended (we tested on an AMD EPYC 7763 and
on an AMD EPYC 3151). Other x86 CPUs may also work,
but CIPHERFIX does not have support for all instructions (e.g.,
AVX-512), so there might be unsupported instructions and
therefore potential instabilities.

A.2.4 Software dependencies

We offer precompiled Docker images which contain all nec-
essary dependencies.

For building the whole framework and the examples from
scratch without Docker, please refer to the Prerequisites and
Compiling sections in the README.

A.2.5 Benchmarks

The example targets for evaluating the performance and
security of CIPHERFIX are located in the examples direc-
tory. The cipherfix-examples-full Docker image con-
tains precompiled binaries for all examples.

A.3 Set-up

A.3.1 Installation

As we ship the artifact as a precompiled Docker image, only
a Docker installation is required.

Our precompiled image (ghcr.io/uzl-its/cipherfix-
examples-full) was built on Zen3, which helps repro-
ducibility on other systems. For example, compilers may
check for certain CPU features and then emit instructions
which are not yet supported by our instrumentation frame-
work.

If you want to rebuild the Docker images, follow these
steps:

1. Clone the CIPHERFIX repository.

2. Run ./build-docker-images.sh to build the Docker
images. You may need sudo, if your local user is not
member of the system’s docker group.

A.3.2 Basic Test

Pull and run our precompiled Docker image:

docker run -it \
ghcr.io/uzl-its/cipherfix-examples-full
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A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Dynamic Analysis
(Section 4.2.1) The static variable detection tool writes
information about static variables in the program into a
static-vars.out file.
(Sections 4.1, 4.2) The static-vars.out file is sub-
sequently read by the taint tracking, which adds in-
formation about detected heap allocations and stack
frames. The taint analysis then tracks which memory
location contain secrets, and marks instructions that ac-
cessing them. All taint analysis results are written into a
taint.out file.
(Section 4.3) To aid static instrumentation, a structure
analysis tool collects basic blocks and register/flag
liveness information. The results are written into a
structure.out file.
The aforementioned files are acquired by experiment
(E1).

(C2): Static Instrumentation
(Section 5) The static instrumentation tool reads the dy-
namic analysis results and generates hardened binaries,
as shown by experiment (E2). The hardened binaries are
functionally correct.

(C3): Functional Correctness and Overhead
(Section 6.2) The hardened binaries are functionally
correct, but slower than the original ones. This is verified
in experiment (E3).

A.4.2 Experiments

In the following, we describe how to verify the claims made
in the previous section. For this, we have prepared a number
of scripts that run CIPHERFIX for two representative targets.

For the specific steps, we refer to the Running the example
targets section in the README file.
(E1): [Dynamic Analysis] [3 human-minutes + 0 compute-

hours + 50 MB disk]:
How to: Follow steps 1 and 2 of the Running the exam-
ple targets section in the README file.
The taint analysis may print a number of warnings and
a few errors about unknown instructions. Usually, those
can be safely ignored.
Results: The result files end up in /cipherfix/ci-
pherfix/examples/mbedtls/aes-multiround/ re-
spectively /cipherfix/cipherfix/examples/wolf-
ssl/eddsa/.

(E2): [Static Instrumentation] [10 human-minutes + 0
compute-hours + 15 MB disk]:
How to: Follow step 3 of the Running the example tar-
gets section in the README file.
Note that the structure.out files need to be manu-
ally extended with information about heap allocations

functions, as described in the README.
Results: The static instrumentation was success-
ful when there are several .instr files in the
/cipherfix/cipherfix/examples/mbedtls/aes-
multiround/instr-fast-aesrng and /cipherfix/
cipherfix/examples/wolfssl/eddsa/instr-fast-
aesrng directories.

(E3): [Functional Correctness and Overhead] [3 human
minute + 0 compute-hours]:
How to: Follow step 4 of the Running the example tar-
gets section in the README file.
Results: The standard output shows the computed ci-
phertexts and signatures for both the original and the
hardened binaries. If the outputs are identical, the func-
tional correctness is given. The Loop time specifies the
time needed for the cryptographic computations and al-
lows computing the overhead.

A.5 Notes on Reusability
Our proof-of-concept implementation includes modules for
the dynamic analysis and the static instrumentation module,
as well as evaluation modules. Each of them has a fixed input
and output format, which is documented in the docs folder
in the repository. As long as these formats are followed, each
module can be replaced without modification of the other com-
ponents. For example, it is possible to use another dynamic
analysis engine, or an alternative binary rewriting framework
with better performance guarantees. See the Replacing Frame-
work Modules section in the README for more information.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

This paper presents reverse-engineering on Intel Optane per-
sistent memory and demonstrates four attacks. This artifact
has included all the source code and scripts for reverse-
engineering Optane’s internal caches and the following at-
tacks: (1) a local covert channel based on Optane’s internal
caches, (2) a keystroke side-channel attack on a remote user
via an Optane-backed key-value store, pmemkv, (3) a fully
remote covert channel where the sender stealthily sends a
message through textttpmemkv. and (4) Note Board attack
where the sender leaves a message on Optane and the receiver
can retrieve the message after a long time.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our demonstrated attacks are all based on unmodified systems.
The evaluation system does not disable or modify any security-
related features in the system. Therefore, there is no risk for
evaluators.

A.2.2 How to access

The source code of our artifact is available at https://
github.com/Systems-ShiftLab/optane_sec23_ae/

A.2.3 Hardware dependencies

The experiments require a hardware platform as listed below:

• CPU: Intel Cascade Lake.

• Persistent Memory: 1st generation Optane DCPMM. If
the server contains multiple Optane modules, they must
be running under non-interleaved mode.

*Suraaj Kanniwadi contributed to this work during his internship at the
University of Virginia.

• Network: one-hop Ethernet connection between the two
Optane servers (for remote covert channels and side-
channel attacks).

A.2.4 Software dependencies

The experiments require a software environment as listed
below:

• Operating system: Ubuntu 18.04, kernel v5.4.

• Compiler: gcc and g++-7.5.

• Libraries and tools: PMDK v1.9, ndctl v68, ipmctl
v02.00.00.3852, and websocket-client.

• Optane mode: The Optane memory must be running in
App Direct mode using ipmctl.

• File system for Optane: The Optane device must be
mounted in DAX mode.

A.2.5 Benchmarks

This artifact includes the following workloads:

• pmemkv server: an Optane-optimized key-value store
server program. The covert channels and side-channel
attacks are performed via this program.

• weServer: a WebSocket server library. This library en-
ables the typer to send keystroke inputs to the pmemkv-
based storage server.

• Keystroke inputs: a dataset from http:
//personal.ie.cuhk.edu.hk/~ccloy/files/
datasets/keystrokes.zip. This input dataset is used
to generate keystorkes with realistic inter-keystroke
timings.

A.3 Set-up
A.3.1 Installation

To compile our microbenchmarks and run our experiments,
we require the following prerequisite software:
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• ndctl/daxctl v68
• pmdk 1.9.2
• pmemkv 1.3
• libuv 1.18
• websocket-client (pip package)

A.3.2 Basic Test

A small Reverse Engineering microbench-
mark can be used as a self test. One can run
reverse/wear-level/script-ae.sh as an example.
If this fails, this can be due to two reasons:

• Build failure: The required libraries are missing.
• Runtime failure: It is not the case that the system has

persistent memory mounted in dax mode with read/write
permissions.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Our Reverse Engineering Framework runs in user-
space and helps unveil interesting internal components
of Optane, such as:

• Size, associativity and replacement policies of Op-
tane internal buffers.

• Wear-levelling behaviour exhibited by Optane
when performing repeated writes to the same loca-
tion

• Effect of concurrent writes on read performance

Experiments involved: E1, E2, E3, E4, E5
(C2): Local Covert Channels using 3 techniques (RMW, AIT

and Read/Write contention) to transmit data covertly.
Experiments involved: E6

(C3): A Keystroke Attack which enables us to detect inter-
keystroke interval between typists.
Experiments involved: E7

(C4): A Remote Covert Channel which allows us to achieve
a bandwidth of 10 bps over the network.
Experiments involved: E8

(C5): The Noteboard Attack, which is an asynchronous,
persistent covert channel.
Experiments involved: E9

A.4.2 Experiments

For ease of artefact evaluation, we provide a single script
runall-ae.sh which builds our microbenchmarks, runs
all experiments, collects data, and finally generates a con-
cise report (report/report.pdf) with all the results.
runall-all.sh is simply a wrapper script which does the
following:

• Run all experiments: Each experiment directory has
a script-ae.sh script. runall-ae.sh finds all these
scripts and runs them all.

• Copy all results: Each experiment directory stores re-
sults in a results-ae/ directory. The script copies them
to a common report/ directory.

• Compiles the report: The report/ directory contains
latex files which plot all the results.

Information about each experiment is listed below:
(E1): [Reverse Engineering Heirarchy] [25 compute-

minutes + 64GB pmem disk]
How to: Run reverse/user_lens/script-ae.sh
Description: Runs the experiment with depicts the over-
all structure of Optane.

(E2): [Reverse Engineering Bitmask Pointer Chasing] [3.5
compute-hours + 64 GB pmem disk]
How to: Run reverse/bit_pc/script-ae.sh
Description: Runs experiments which depict Optane’s
internal buffer associativity.

(E3): [Reverse Engineering Replacement Policy] [10
compute-minutes + 1 GB pmem disk]
How to: Run reverse/replacement/script-ae.sh
Description: Runs experiments which depict Optane
buffers’ replacement policy.

(E4): [Reverse Engineering Wearlevelling Policy] [15
compute-seconds + 1 GB pmem disk]
How to: Run reverse/wear-level/script-ae.sh
Description: Runs experiments which depict Optane’s
wear-levelling behaviour.

(E5): [Reverse Engineering Read-Write Contention] [1
compute-minute + 1 GB pmem disk]
How to: Run reverse/read_write_cont/script-ae.sh
Description: Runs experiments which depict read-
write contention in Optane.

(E6): [Local Covert Channel] [45 compute-minutes + 2 GB
pmem disk]
How to: Run local_covert/script-ae.sh
Description: Runs 2 processes (a sender and receiver)
on the same machine, and facilitates covert communica-
tion, and measures the achievable bandwidth and accu-
racy.

(E7): [Keystroke Side Channel] [1 compute-hour + 1 GB
pmem disk]
How to: Run keystroke/script-ae.sh
Description: Runs the keystroke attack as follows:

• Run a kv_server + prober on server A.
• Then, a client connects to server A from server B

and sends keystrokes.
• These keystrokes can be detected via the prober on

server A.
(E8): [Remote Covert Channel] [35 compute-seconds + 2

GB pmem disk]
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How to: Run remote_covert/script-ae.sh
Description: Runs 2 processes (a sender and receiver)
on machines connected across the network, and measures
achievable accuracy and bandwidth.

(E9): [Noteboard Attack] [1 compute-hour + 1 GB pmem
disk]
How to: Run noteboard/script-ae.sh
Description: Runs the noteboard attack as follows:

• Run a kv_server server A.
• Then, a client connects to server A from server B

and encodes a message in wear-levelling metadata.
• Then another client connects to server A and re-

trieves this encoded message.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

This artifact contains the source code for ICSPatch, a hot-

patching tool for control application binaries on Codesys

runtime-compatible Programmable Logic Controllers (PLCs).

It can detect and patch out-of-bounds write/read, improper

input sanitization, and os command injection vulnerabilities

in control applications. It can patch these vulnerabilities via

an LKM-based (Loadable Kernel Module) patcher or through

JTAG.

Evaluating ICSPatch on a live setup requires a Codesys

Codesys runtime-compatible PLC with either a Linux OS or

JTAG connection. To facilitate a more straightforward evalu-

ation, we also allow hotpatching angr simulation instances

loaded with vulnerable memory snapshots of control applica-

tion binaries in case of missing physical devices. Furthermore,

we package ICSPatch in a Docker container to minimize the

initial setup steps, supporting multiple platforms. ICSPatch

is tested on Wago PFC 100, PFC200 for Linux-5.10.21, and

BeagleBone Black for Linux-4.19.82-ti-rt-r31.

A.2 Description & Requirements

A.2.1 How to access

All the documents and source code for ICSPatch is avail-

able on GitHub at https://github.com/momalab/

ICSPatch/tree/v1.0.

[Commit: 40803636849d24ab6a50e1c166d7522c7a1ceb6e]

A.2.2 Hardware dependencies

ICSPatch requires a 32 bit ARM architecture PLC supporting

Codesys-runtime. In addition, a readily accessible JTAG port

is also required for patching the control applications by using

JTAG. However, ICSPatch also supports LKM-based patching,

removing the need for an accessible JTAG port.

A.2.3 Software dependencies

ICSPatch is packaged in a Docker container. To run ICSPatch,

manually install Docker as explained on this https://

docs.docker.com/engine/install/ubuntu/.

In case of missing hardware requirements, utilize the

captured memory snapshots of control application binaries

(included in the repository) and evaluate ICSPatch by

hotpatching the angr simulation instance as explained

https://github.com/momalab/ICSPatch/

blob/v1.0/main/README.md.

A.2.4 Benchmarks

We create a synthetic dataset of vulnerable control appli-

cation binaries with their source code project files present

at https://github.com/momalab/ICSPatch/

tree/v1.0/experiments/iec_projects and

the corresponding memory snapshots for the WAGO

PFC 200 included in the repository at the location:

https://github.com/momalab/ICSPatch/

tree/v1.0/main/src/bin/internal. ICSPatch

can utilize the control application memory snapshots in the

evaluation mode.

A.3 Set-up

A.3.1 Installation

For installing and running ICSPatch on the Docker

container, build from the Dockerfile provided in the

repository. The steps are explained in the Instal-

lation section at https://github.com/momalab/

ICSPatch/blob/v1.0/main/README.md.

Run the following commands to build and run the docker

container.

cd ICSPatch/main

sudo docker build --pull --rm -f "Dockerfile" -

→֒ t icspatch:latest "."
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sudo docker images // List the images

sudo docker run -it icspatch:latest

To try ICSPatch on live PLCs, please build the LKM patcher

for the target Linux Kernel.

A.3.2 Basic Test

To test the successful installation of ICSPatch, run the com-

mand sudo docker run -it icspatch:latest. If IC-

SPatch executes successfully, the following prompt will be

displayed on stdout:

Select Vulnerability:

-------------------------

0. improper_input

1. oob_write

2. oob_read

3. os_command

4. exit

Choice:

A.4 Evaluation Workflow

Artifacts for ICSPatch have a detailed example for

evaluating out-of-bound write in a control appli-

cation binary for desalination plants, located at

https://github.com/momalab/ICSPatch/

blob/v1.0/main/README.md in the section ICSPatch

for Evaluation.

The overall steps are as follows:

1. Run the following command to execute ICSPatch in the

Docker container and select the vulnerability for evalua-

tion by entering the corresponding choice.

sudo docker run -it icspatch:latest

2. Next, select the appropriate mode of operation for IC-

SPatch. For evaluating ICSPatch without requiring a

physical PLC, select 0, as shown:

Select Experiment:

-------------------------

0. Evaluate

1. Live

Choice: 0

3. Next, select the test infrastructure when ICSPatch dis-

plays the following menu on stdout.

Select Infrastructure:

-------------------------

0. aircraft_control

1. anaerobic_reactor

2. chemical_plant

3. desalination_plant

4. smart_grid

Choice:

4. Some infrastructure might have multiple vulnerable con-

trol application binary examples. Please select the target

control application binary for evaluation when a menu

shows up similar to this:

Select Test Sample:

-------------------------

0. bin/internal/chemical_plant/oob_write/

→֒ code_1

1. bin/internal/chemical_plant/oob_write/

→֒ code_2

Choice:

5. After this, ICSPatch starts loading captured memory

snapshots of the selected control application binary with

a legitimate input (used to detect crashes that only im-

pact the control application stack). After which the stdout

displays the message.

- Press Enter to continue to capture

→֒ exploit input hexdump ...

6. Press Enter to continue loading control application

memory snapshot with exploit input, which results in

displaying an output as shown below:

***************************

RULE: OUT_OF_BOUNDS_WRITE_RULE

MESSAGE: OUT-OF-BOUNDS WRITE VULNERABILITY

→֒ DETECTED

***************************

----- BLOCK DISASSEMBLY -----

Instruction # in block: 8

0xb6bbf8a0: stmhs r3!, {r1, ip}

0xb6bbf8a4: subshs r2, r2, #8

0xb6bbf8a8: stmhs r3!, {r1, ip}

0xb6bbf8ac: subshs r2, r2, #8

0xb6bbf8b0: stmhs r3!, {r1, ip}

0xb6bbf8b4: subshs r2, r2, #8

0xb6bbf8b8: stmhs r3!, {r1, ip}

0xb6bbf8bc: bhs #0xb6bbf89c

------ DEBUG INFO ------

* Instruction Address: 0xb6bbf8a0

* Exploit Memory Address: 0xb617ad5c

* Length: None

* Expression: 0x0

[*] Angr execution time of the control

→֒ application: 5.889697313308716

* Found start node: 0x83f48d0 ...
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- Localization start address list:

→֒ [138365136] ...

----------0----------

[*] Starting exploit localization from

→֒ address 0x83f48d0 ...

[*] Start address: 0xb6193fb4 End Address:

→֒ 0xb6194018...

[*] Bounded by 0xb6193fb4 - 0xb6194018 ...

[*] Search successful for start node 0

→֒ x83f48d0 ...

[*] Detected exploit location: 0xb6193ff0:

→֒ str r6, [sp, #8]

[*] Detected exploit input: 0xb617aca0: [’0

→֒ x2’, ’0x0’, ’0x200’]

[*] Mermory value at exploit location: 0

→֒ xb617aca0: 0x00000200

----------0----------

[*] Time for localizing vulnerability:

→֒ 0.012766838073730469

* Selected vulnerability location is 0

→֒ xb6193ff0 ...

* Exploit memory location is 0xb617aca0 ...

- Press Enter to continue to patching ...

Here, RULE displays the name of the vulnerability iden-

tification rule triggered for the exploit input and the

corresponding message in MESSAGE. It also detects

the start node for DDG traversal for performing vul-

nerability localization. The start node in this example

is detected as 0x83f48d0. The traversal successfully

detects the exploit instruction location at 0xb6193ff0

and the memory location for the input (to be validated

by the patch) at 0xb617aca0.

7. Press Enter to continue patching the vulnerability, which

displays patch-related information such as the address

table base address and the memory location for an empty

location. Press Y when the prompt display:

[*] Saved patch information detected. Use

→֒ it? (Y/N):

This directs ICSPatch to use saved path information

rather than connecting to an active local patch server.

8. Finally, ICSPatch creates the patch, loads it in the angr

simulation, and verifies it. Loading the patch in the

angr simulation instance is similar to writing it into

the live PLC with the LKM patcher. So, this can success-

fully test the patch created by ICSPatch, and the overall

automated process.

9. Since the evaluation of ICSPatch does not require a con-

nected PLC, once Enter is pressed on the prompt:

- Press Enter to continue to patching live

→֒ PLC ...

ICSPatch exits after 10 seconds when failing to connect

to a local patch server deployed on a live PLC.

Instructions on GitHub also elaborate on how to use IC-

SPatch with a live PLC.

A.5 Evaluation and Expected Results

While running the experiments, as explained in Subsection

A.4, ICSPatch displays the timings (in seconds) corresponding

to every operation on the stdout. For instance,

[*] Time for localizing vulnerability:

→֒ 0.012766838073730469

It should be noted that only the vulnerability localization time

is representative of the live PLC scenario. All the other tim-

ings will change when tested with a live PLC. Furthermore,

the LKM patcher captures the timing for the critical oper-

ation of redirecting execution flow by overwriting the ldr

instruction, as explained in the paper.
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USENIX’23 Artifact Appendix: ARGUS: A Framework for Staged Static
Taint Analysis of GitHub Workflows and Actions

Siddharth Muralee‡*, Igibek Koishybayev†*, Aleksandr Nahapetyan†, Greg Tystahl†,
Brad Reaves†, Antonio Bianchi‡, William Enck†, Alexandros Kapravelos†, Aravind Machiry‡

‡ Purdue University, {smuralee, antoniob, amachiry}@purdue.edu
† North Carolina State University, {ikoishy, anahape, gttystah, bgreaves, whenck, akaprav}@ncsu.edu

A Artifact Appendix

A.1 Abstract
ARGUS’s artifact contains the source code and corresponding
infrastructure to run our taint tracking tool. This is a modified
version of the tool presented in the paper, which can generate
all the taint summaries mentioned in the paper on the fly
(rather than generating offline summaries). Also provides the
datasets required to validate the tool and the claims made in
the paper.

This document describes how to set-up our prototype, gives
an overview of the requirements to replicate some of the ex-
periments conducted in our evaluation, along with instructions
to run them.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There exist no risks associated with executing ARGUS on
any system. ARGUS is encapsulated as a Docker image, in-
corporating all the requisite dependencies necessary for con-
ducting evaluations. It fetches files into Docker’s isolated
filesystem, thereby obviating any interaction with the host
system’s filesystem.

ARGUS doesn’t directly interact with the repository apart
from cloning it, so it is safe to run on any GitHub repository.
However, a few of the vulnerabilities described in this docu-
ment might still not be fixed, it is recommended to test these
vulnerabilities using private forks of these repositories, so that
an exploitable fork is not public.

A.2.2 How to access

Given that our paper is presently subject to an embargo, we
will be provisionally providing all relevant code and datasets
in the form of encrypted zip archives. These archives can
be accessed at https://github.com/purs3lab/Argus_
artifacts, under the commit hash c8a2086.

*Both authors made equal contributions to this work

The decryption password for the ARGUS.zip archive
is d7e21ecf50fd0116a76957f285fda57f6426423af446b.
The VWBench.zip archive, however, is unencrypted.

A.2.3 Hardware dependencies

None

A.2.4 Software dependencies

The ARGUS is encapsulated as a Linux Docker image. Any
system equipped with the capability to execute Linux Docker
containers should suffice for the deployment of the tool for
evaluation purposes.

The tool also can be executed outside docker, however,
requires a Python version 3.8 and CodeQL installed. All the
required Python packages can be installed via the Poetry
Python package manager.

A.2.5 Benchmarks

The ARGUS was evaluated using two benchmarks:

• VWbench: This comprises a collection of vulnerable
workflows, curated from security advisories previously
reported and published. The VWbench encompasses 24
workflows, stored in the vwbench.zip archive, specifi-
cally within the .github/workflows directory.

• Realworld Dataset: This represents a collection of 2.8
million workflows, upon which our tool was assessed. A
selection of representative workflows was chosen from
this set to serve as sample PoCs, and added in the paper
as listings.

A.3 Set-up
A.3.1 Installation

Given that the tool is packaged as a Docker container, the in-
stallation procedure merely entails the setup and construction
of the container.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium    421

https://github.com/purs3lab/Argus_artifacts
https://github.com/purs3lab/Argus_artifacts


1. Install Docker and Docker Compose via the command:
apt-get -y install docker.io docker-compose

2. Extract the contents of ARGUS.zip, which should contain
a directory named Argus

3. Navigate to the newly created folder and initiate the build
process with the command: docker-compose build

A successful build, devoid of any complications, signifies
that the tool is prepared for utilization.

A.3.2 Basic Test

To validate the proper functioning of the tool, we have retained
the SARIF files corresponding to the actions/checkout action
within the directory titled saved_results, nested inside the
Argus folder.

These results can be regenerated by executing the following
commands: ./run_check.sh

The resultant SARIF file should be located in the results
directory. The SARIF files should be consistent with
SARIF file starting with actions#checkout inside the
saved_results folder.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): ARGUS possesses the capability to identify all vulner-
able workflows within the VWBench benchmark. This
claim is substantiated by the results of Experiment E1.

(C2): ARGUS has been deployed to discover new bugs, a
claim which is corroborated by Experiment E2.

A.4.2 Experiments

(E1): [VWBench] [30 human-minutes + 2 compute-hours +
5GB disk]: This experiment reproduces the VWBench
benchmark for the vulnerabilities identified by ARGUS.
Procedure: Ensure that ARGUS generates alerts for
each workflow in VWBench. The results will be located
in the results directory.
Preparation: Extract the contents of VWBench.zip and
upload it into a private GitHub repository. The work-
flows should be situated in the .github/workflows/
directory of the repository. Generate a GitHub token to
facilitate the tool’s cloning of the GitHub repository. (We
neither retain nor collect the GitHub tokens.)
Execution: Deploy the Docker con-
tainer using the following command:
docker-compose run argus -mode repo -url
<username>:<GHToken>@<url_to_git_repo>
Results: The execution results should be found in the
results directory. Each workflow should have an ac-
companying SARIF file containing the results. The

SARIF format resembles JSON and can be viewed using
online viewers such as as well as the SARIF viewer
plugin on Visual Studio Code.

(E2): [RWDataset] [2 human-hour + 2 compute-hours +
5GB disk]: This experiment reproduces several of the
0day vulnerabilities found by ARGUS, specifically the
ones listed in the paper.
How to: The list of vulnerable workflows and actions
presented in the paper, is added to the file rwvulns.md
in the Argus folder. The experiment requires running
argus on these repositories and verifying that ARGUS
can identify these vulnerabilities.
Preparation: None
Execution: To test the workflows run :
./run_test_docker.sh
Results: The SARIF file present in the results direc-
tory can be used to identify the security vulnerabilities
in these workflows and actions.

A.5 Notes on Reusability
For the large-scale evaluation delineated in our paper, we
cached all reports corresponding to each version of each
JavaScript and Composite action, as well as reusable work-
flows, within a MongoDB database. This procedure can be
readily replicated by implementing minor modifications to
the infrastructure responsible for report generation within our
codebase, specifically within argus_components/report.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
Our Artifact submission encapsulates the version of our tool,
McFIL, which was used in the evaluation of the work. We
provide the source code in a dedicated GitHub repository
along with archived relevant dependencies. As configured,
this artifact is prepared to reproduce our evaluation results
in an offline setting rather than evaluate any online secure
protocols. Interested parties are welcomed to independently
install our software and evaluate it at their leisure, and to sub-
mit feedback, issues, and/or pull requests to the open source
project.

A.2 Description & Requirements
Our software tool is intended to perform an iterative analysis
of a target functionality. At each iteration, the tool gathers
available information (constraints within a SAT solver), gener-
ates new constraint systems based on a randomized sampling
algorithm, solves these SAT problems, and discovers an ap-
proximately greedy-optimal result. It then tests this result
against an “Oracle,” configured by default to be an offline in-
stantiation of the target functionality as a test harness stand-in
for an online secure protocol. Our test harness generates a
secret at the beginning of the loop (withholding it from the
main algorithm), and then iteratively discovers (partially or
completely) this secret by generating and executing queries
to the Oracle.

We evaluated McFIL on an Intel Xeon CPU E5-2695 v4 at
2.10GHz (72 threads) with 500 GB memory. Our evaluation
targeted relatively smaller benchmarks to enable randomized
repetition, and therefore did not stress this system to its limits.
Our evaluation used the following software dependencies:

• CryptoMinisat 5.8.0 https://github.com/msoos/
cryptominisat/releases/tag/5.8.0

• ApproxMC 4.0.1 https://github.com/meelgroup/
approxmc/releases/tag/4.0.1

• Z3 4.8.15 https://github.com/Z3Prover/z3/
releases/tag/z3-4.8.15

• louvain-community@8cc5382d https://github.
com/meelgroup/louvain-community

• arjun@407ea7f5 https://github.com/meelgroup/
arjun

• Python 3.8

A.2.1 Security, privacy, and ethical concerns

None directly, as our artifact is configured to evaluate func-
tionalities in an offline setting by default, requiring the user
to configure their target functionality. McFIL can be used
in an “online” setting to directly evaluate real-world secure
protocols and attempt to maximize leakage. We acknowledge
that this could potentially be used to exploit target protocols,
however, as a community we move forward and publish these
tools to improve understanding and defense with the assump-
tion that attackers will independently arrive at optimal attacks
in secret.

A.2.2 How to access

The source code can be accessed at our GitHub release URL:
https://github.com/maxzinkus/McFIL-Release/
releases/tag/release

A.2.3 Hardware dependencies

Please refer to Description & Requirements above. We be-
lieve that the artifact can be run on a lower-specification ma-
chine sufficiently well to observe functionality and perform
limited experiments (listed in Experiments) which indicate
our broader results without requiring them to be fully re-run
(which would take many compute-hours).

A.2.4 Software dependencies

Please refer to Description & Requirements above. We have
bundled these dependencies within a Docker image for easier
evaluation.
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A.2.5 Benchmarks

This largely does not apply to our work. However,
the included target_funcs folder contains example tar-
get functionalities which we evaluate against in our pa-
per, and so these could be considered benchmarks in a
sense. These are automatically discovered and used when
their names are passed as command-line arguments to
our tool such as python3 main.py millionaires for
target_funcs/millionaires.py.

A.3 Set-up
Generally, in order to prepare a system for use with our tool,
two groups of dependencies must be installed. First, the ex-
ternal package dependencies listed in Description & Require-
ments, and second the python3 pip dependencies in the soft-
ware’s requirements.txt.

A.3.1 Installation

[Mandatory] Instructions to download and install dependen-
cies as well as the main artifact. After these steps the evalua-
tor should be able to run a simple functionality test.

1. Install the dependencies

• python 3.8: sudo apt install python3

• sudo apt install build-essential cmake
zlib1g-dev libboost-program-options-dev
libsqlite3-dev libgmp3-dev

• louvain-community: clone the repository and fol-
low build instructions

(a) cd louvain-community ; mkdir build
; cd build ; cmake .. ; make ; sudo
make install

• z3: clone the repository and follow build instruc-
tions

(a) cd z3 ; python scripts/mk_make.py
−−python ; cd build ; make ;
sudo make install ; pip install
z3-solver

• cryptominisat: clone the repository and follow
build instructions

(a) cd cryptominisat ; mkdir build ; cd
build ; cmake .. ; make ; sudo make
install ; sudo ldconfig

• arjun: clone the repository and follow build instruc-
tions

(a) cd arjun ; mkdir build ; cd build ;
cmake .. ; make ; sudo make install

• approxmc: clone the repository and follow build
instructions

(a) cd approxmc ; mkdir build ; cd
build ; cmake .. ; make ; sudo make
install

2. Fetch the software and install python dependencies

(a) clone or otherwise fetch the source of McFIL

(b) create a virtual environment python3 -m venv
venv

(c) install python dependencies source
venv/bin/activate ; pip install -r
requirements.txt

A.3.2 Basic Test

In order to determine if the dependencies are installed and
the environment configured, the following commands should
work without error with the virtual environment active:

• cryptominisat </dev/null

• approxmc </dev/null

• python3 -c ’import z3 ; z3.SolverFor’

Then, McFIL can be used to evaluate functionalities in the
target_funcs directory such as:

• python3 main.py millionaires

• python3 main.py sugarbeets

A.4 Notes on Reusability
McFIL is designed for use with functionalities of the user’s
choosing. A critical step in analyzing a novel functionality is
accurately encoding it in the input format that McFIL expects.
We recommend that users of our software use the existing
target_funcs given target functionality examples as a basis
(e.g. by copy-pasting them) to work from when defining new
targets. McFIL requires that the target be implemented both
“in the clear” (i.e. a correct python implementation of the
function under test) and in a format the solver can understand.
We provide solver.py, a support library which we hope
makes encoding easier. All existing examples use this library
and can be referred to for aid in its use.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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Attacking Operating Systems via Site Isolation in the Browser
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A Artifact Appendix

A.1 Abstract
Site Isolation, a security feature recently introduced to major
browsers enables attacks on modern operating systems. To
demonstrate the impact of Site Isolation attacks on web users
we implemented a Site Isolation fork-bomb and a DNS Cache
Poisoning Attack: DNS Poisoning by Exhaustive Misappro-
priation of Network Sockets (DEMONS). Setup instructions,
configurations, and the implementation of both attacks are part
of our publicly available research artifacts. While DEMONS
was assigned CVE-2020-6557 and patched by the Chromium
Team,1 the fork-bomb is still a threat to current browsers. We
describe a way to mitigate the Site Isolation fork-bomb in
Chromium-based browsers without measurable performance
penalty and include both the patch and our performance mea-
surement results in our artifacts.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

All artifacts provided should be evaluated in a strictly isolated,
physical or virtual lab environment. In case reviewers decide
to evaluate attacks using public internet infrastructure they
must employ measures to prevent any traffic from flowing
between systems that are part of their evaluation setup and
other systems.

A.2.2 How to access

The artifact repository is available at https://git.noc.rub.
de/gierlmds/isolated-and-exhausted/-/tree/use
nix23_ae_summer. Additionally we provide a mirror-copy2

via Zenodo.

A.2.3 Hardware dependencies

Our experiments can be conducted either in a VM-based lab
environment on a single x86 machine (VM setup) or alter-
natively on a set of physical hosts (hardware setup). In both

1 https://chromereleases.googleblog.com/2020/10/stable-channel-update-
for-desktop.html

2 DOI: 10.5281/zenodo.7356538

cases, the setup consists of four distinct hosts (physical or
virtual). For the VM setup an x86 desktop system with at
least 4 cores/8 threads, virtualization support3, at least 20 GiB
RAM and more than 400 GiB of free disk space is required.

DEMONS VM Setup We recommend using Virtual Box 64

for virtualization and Kubuntu Linux 22.04 LTS as host OS.

DEMONS Hardware Setup For our hardware setup we
used three desktop computers5 to run the victim, the benign
DNS server and the router. A ThinkPad T480s6 was used to
run the attacker infrastructure (webserver and spoofer).

Fork-Bomb Hardware Setup The fork bomb was evalu-
ated on a Dell Latitude 5280, Intel Core i5 7200U, 8 GiB
RAM, 240 GiB M.2 SATA SSD running Kubuntu Linux
18.04.5 LTS (Kernel 5.4.0-62).

A.2.4 Software dependencies

In addition to our artifacts additional software (binaries/in-
stallers) are required. This section lists the exact software
versions used in testing our artifacts, their use is strongly rec-
ommended. While we did not verify that other versions than
those listed below produce the same results, we believe that
our artifacts will work with any version of Windows 10 and
any release of Chrome with Site Isolation Support prior to ver-
sion 86.0.4240.75, which introduces a fix for CVE-2020-6557.
Using newer versions of Python 3 and the Python Websocket
Client are unlikely to impact the experiments. Using differ-
ent Virtual Box versions or other Hypervisors should also be
possible but potentially affects performance and may require
manual timing adjustments in the code.

• Windows 10 (1909 Build 18363.815)
• Ubuntu Linux 20.04.5 LTS Server
• Kubuntu Linux 18.04.5 LTS (Kernel 5.4.0-62)
• Kubuntu Linux 20.04.5 LTS
• Kubuntu Linux 22.04.1 LTS
• Chrome 83.0.4103.106 (Windows)

3 Intel VT-x or AMD-V
4 6.1.38-dfsg-3 ubuntu1.22.04.1 amd64
5 Intel Core2Quad Q9400, 4 GiB RAM, Intel 82567LM-3 Gigabit NIC
6 Intel i7-8550U, 40 GiB RAM, Intel Ethernet I219-V
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• Firefox Nightly 86.01a (Windows, Linux)
• Chromium 83.0.4103.0 (Linux)
• Caddyserver 1.0.47 (Linux)
• Python 3.8.2 (Windows)
• Python Websocket Client for Python 3.8.2 (Windows)
• Virtual Box 64 (Linux)

It is recommended to download all binary dependencies
except Caddyserver7 before starting the setup procedure
and transfer them via shared folders in case of a VM setup
or via USB stick in case of a setup with physical hosts.
This way the required software can be installed without
internet connection. This also prevents unsolicited automatic
browser/OS updates.

In addition to our artifacts the following software source
code is required:

• Chromium 101.0.4951.647 (Linux)

A.2.5 Benchmarks

To benchmark the performance impact of our Site Isolation
mitigation we used the performance profiler8 integrated into
the Chrome developer tools. The profiler can be accessed via
the Performance-tab.

A.3 Set-up
A.3.1 Installation

The lab environment for the Site Isolation fork-bomb and
DEMONS consists of four hosts, the victim, a router, a benign
DNS server, and the attacker’s server. This section contains
detailed instructions on how to set up those hosts as virtual
machines using Virtual Box. The instructions are also suitable
for installation on native hardware. In this case, Virtual Box-
specific steps should be omitted.

Base System The base image serves as a common base
installation for the router, the benign DNS and the attacker
server. To prepare the base image, perform the following
steps:

1. Install Oracle VirtualBox.9

2. Create a new 64-bit Ubuntu Linux VM with 2 cores and
2 GiB RAM and 15 GiB hard disk.

3. Enable the following acceleration settings: VT-x/AMD-V,
Nested Paging, PAE/NX, KVM Paravirtualization

4. Install the Ubuntu 20.04 LTS server base image. This
guide and the derivative guides assume that during the

7 Will be obtained during setup (cf. subsection A.3)
8 https://developer.chrome.com/docs/devtools/evaluate-per
formance/

9 https://www.virtualbox.org/

installation process user was chosen as username and
si-base was chosen as the hostname.

5. Update the OS and install additional packages:

1 sudo apt update && sudo apt dist-upgrade && sudo
↪→ apt autoremove --purge

2 sudo apt install build-essential curl git iptables
↪→ -persistent

6. Insert the VirtualBox guest additions ".iso" into the vir-
tual CD-ROM drive of your machine.

7. Install the VirtualBox guest additions.

1 sudo mount /dev/sr0 /media
2 cd /media
3 sudo ./VBoxLinuxAdditions.run

8. Add user to the vboxsf group

1 sudo usermod -a -G vboxsf user

9. Set an environment variable referring to the arti-
fact repository base folder. It should be located at:
/home/user/isolated-and-exhausted

1 export ARTIFACTS_REPO="/home/user/isolated-and-
↪→ exhausted/"

2 sudo bash -c "echo ARTIFACTS_REPO=${ARTIFACTS_REPO
↪→ } >> /etc/environment"

10. Clone the Isolated and Exhausted artifacts repository:

1 git clone https://git.noc.ruhr-uni-bochum.de/
↪→ gierlmds/isolated-and-exhausted
↪→ $ARTIFACTS_REPO

11. Shut down the system.

1 sudo systemctl poweroff

Attacker Server The attacker server runs the attacker’s web
server and the spoofer. Both the web server and the spoofer
are containerized using Docker. To set up the attacker server
perform the following steps on top of a Base System (cf.
section A.3.1 Base System):

1. Clone the base system to a new virtual or physical host.
2. Name the cloned VM Isolated and Exhausted

Attacker.
3. Boot the system and change the hostname to

si-attacker:

1 sudo bash -c "echo si-attacker > /etc/hostname"

4. Install docker.

1 curl -fsSL https://download.docker.com/linux/
↪→ ubuntu/gpg | sudo apt-key add -

2 sudo add-apt-repository "deb [arch=amd64] https://
↪→ download.docker.com/linux/ubuntu $(
↪→ lsb_release -cs) stable"

3 sudo apt update
4 sudo apt install docker-ce docker-ce-cli

↪→ containerd.io docker-compose
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5. Add user to the docker group.

1 sudo usermod -a -G docker $USER

6. Get the ubuntu base image from Docker Hub.

1 sudo docker pull ubuntu:bionic-20200311

7. Copy the attacker host configuration10

1 sudo rm -f /etc/netplan/*
2 sudo cp -R $ARTIFACTS_REPO/hosts/attacker/rootfs/*

↪→ /

8. Download a copy of the caddy web server into the repos-
itory. For our evaluation caddy version 1.0.4 was used.
Newer caddy versions should work but may require mod-
ifications to Caddyfiles.

1 cd $ARTIFACTS_REPO/hosts/attacker/webserver/
2 curl -JLO ’https://github.com/caddyserver/caddy/

↪→ releases/download/v1.0.4/caddy_v1.0.4
↪→ _linux_amd64.tar.gz’

9. Replace /etc/resolve.conf with a sym-link:

1 sudo ln -sf /var/run/systemd/resolve/resolv.conf /
↪→ etc/resolv.conf

10. Add the base folder for docker volumes.

1 sudo mkdir -p /srv/docker/data/demons/attacker/
↪→ spoofer/logs /srv/docker/data/demons/
↪→ attacker/spoofer/results

2 sudo chown -R root:docker /srv/docker
3 sudo chmod -R 775 /srv/docker

11. Enable IPv6 forwarding and redirect all traffic on the
attacker’s subnet 2001:db8::/113 to the web server
running on 2001:db8::1.

1 sudo sysctl -w net.ipv6.conf.all.forwarding=1
2 sudo ip6tables -t nat -A PREROUTING -d 2001:db8

↪→ ::/113 -j DNAT --to-destination 2001:db8
↪→ ::1

12. Spoof the spoofers’ source IP address.

1 sudo ip6tables -t nat -A POSTROUTING -s 2001:db8
↪→ ::8001 -p udp -j SNAT --to-source 2001:db8
↪→ ::8000:1

13. Make iptables rules persistent after reboot.

1 sudo netfilter-persistent save

14. Shut down the system.

1 sudo poweroff

15. Change the VM network settings

• Right-click the Attacker VM in the VirtualBox
Manager

10 Using real hardware the network interface names may differ from the
ones preconfigured in /etc/netplan/00-installer-config.yaml and
must be manually adjusted.

• Select the option Settings from the drop-down
menu.

• Make sure that Adapter 1 and Adapter 2 are en-
abled and that all other adapters are disabled

• Attach Adapter 1 to an Internal Network
named attacker_provider. Set the adapter type
to Paravirtualized Network (virtio-net)

• For Adapter 2 set the network type to NAT

16. Boot the system.
17. Create docker containers containing the attacker web

server and spoofer.

1 cd $ARTIFACTS_REPO/hosts/attacker/
2 docker-compose up -d --build

18. Shut down the system.

1 sudo systemctl poweroff

19. Disable Adapter 2 in the network settings.

Router

1. Clone the base VM image.
2. Name the cloned VM Isolated and Exhausted

Router.
3. Change the VM properties to use 2 CPU cores, 1 GiB

RAM.
4. Add three Internal Network adapters to the VM and

assign the following network names:

• Adapter1: victim_provider
• Adapter2: attacker_provider
• Adapter3: dns_provider

5. Boot the system and enable IPv6 forwarding

1 sudo sysctl -w net.ipv6.conf.all.forwarding=1

6. Change the hostname to si-router.

1 sudo bash -c "echo si-router > /etc/hostname"

7. Copy the configuration to the router VM10

1 sudo rm -f /etc/netplan/*
2 sudo cp -r $ARTIFACTS_REPO/hosts/router/rootfs/* /

8. Reboot.

1 sudo systemctl reboot

9. Enable and start the traffic shaping service.

1 sudo systemctl enable traffic-shaping.service
2 sudo systemctl start traffic-shaping.service

10. Check the MAC addresses of the interfaces enp0s3
(victim_provider), enp0s8 (attacker_provider)
and enp0s9 (dns_provider) and ensure that they are
assigned to the corresponding VirtualBox adapters.

11. Shut down the system.

1 sudo poweroff
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DNS Server

1. Clone the base VM image.
2. Name the cloned VM Isolated and Exhausted DNS.
3. Change the VM properties to use 2 cores, and 1 GiB

RAM.
4. Boot the system and change the hostname to si-dns:

1 sudo bash -c "echo si-dns > /etc/hostname"

5. Install bind9.

1 sudo apt install bind9

6. Copy the configuration to the router VM10

1 sudo rm -f /etc/netplan/*
2 sudo cp -r $ARTIFACTS_REPO/hosts/dns/rootfs/* /

7. Disable systemd-resolved.

1 sudo systemctl disable systemd-resolved

8. Power off the system.

1 sudo systemctl poweroff

9. Change the VM network settings

• Right-click the DNS VM in the VirtualBox Man-
ager.

• Select the option Settings from the drop-down
menu.

• Make sure that Adapter 1 is enabled and that all
other adapters are disabled.

• For Adapter 1 set the network type to Internal
Network named dns_provider.

Victim VM Create a Virtual Box VM with 4 CPU cores
and 8 GiB RAM and a 50 GiB hard disk or use an equiva-
lent physical host. Note: Windows, Chrome and Firefox may
perform fully automatic updates without prompting the user
when an internet connection is available. Performing the vic-
tim installation offline solves this problem. The dependencies
listed in subsubsection A.2.4 can be transferred to the victim
VM via a shared folder, or via USB stick in case dedicated
physical machines are used for the experiment.

1. Change the VM network settings.

• Right-click the Victim VM in the VirtualBox Man-
ager

• Select the option Settings from the drop-down
menu.

• Make sure that Adapter 1 is enabled and that all
other adapters are disabled

• Attach Adapter 1 to an Internal Network named
victim_provider.

• Set the adapter type to Intel PRO/1000 MT
Desktop (82540EM).

2. Install Windows 10.
3. Install Chrome 83.0.4103.106 and Firefox Nightly

86.01a. Note: chrome.exe is expected to be located
at C:\ProgramFiles(x86)\Google\Chrome\A
pplication\chrome.exe. If chrome is installed
elsewhere, the content of the variable ATTACK_CMD in
attack_simulator.py, line 14 must be adjusted to
point to chrome.exe.

4. Install the CA certificate from the artifact repository in
Chrome:

• Open Chrome and navigate to chrome://settin
gs/privacy.

• In the Privacy and security box click on
More.

• Click Manage Certificates.
• Once the Certificate Import Wizard opened

click Next.
• Select the CA certificate from isolated-and-e
xhausted/hosts/attacker/webserver/root
fs/srv/ca/ca.crt.pem and proceed by clicking
Next.

• In the Certificate Store dialog click
Browse... and change the Certificate Store to
Trusted Root Certification Authorities

• Proceed by clicking Next and the finish the import
by clicking Finish.

5. Install the CA certificate from the artifact repository in
FireFox Nightly:

• Open Firefox and navigate to about:preference
s#privacy.

• Scroll down to the option group labeled Security.
• Click on View Certificates
• In the Certificate Manager Dialog select the
Autorities tab and click Import.

• Select the CA certificate from isolated-and-e
xhausted/hosts/attacker/webserver/root
fs/srv/ca/ca.crt.pem and proceed by clicking
Open.

• In the Downloading Certificate Dialog check
Trust this CA to identify websites. and
click OK.

6. Install Python 3.8.2
7. Install the Python Websocket Client (cf. subsubsec-

tion A.2.4)
8. Copy websocket_client-1.3.2-py3-none-any.whl

to C:\Users\user\Downloads.
9. Open cmd.exe and execute the following commands to

install the Python Websocket Client:

1 c:
2 cd \Users\user\Downloads
3 pip install websocket_client-1.3.2-py3-none-any.

↪→ whl
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10. Open the Windows Network Connections dialog via
Startmenu → Settings → Network & Internet
→ Ethernet → Change adapter options.

11. Right-click the network connection (e.g. Ethernet).
12. Select Properties from the drop-down menu.
13. In the Ethernet Properties dialog select Internet

Protocol Version 6 (TCP/IPv6)
14. Click Properties.
15. Adjust the Windows network adapter settings:

• IPv6 Address: 2001:db8::4000:1
• Subnet prefix length: 98
• Default gateway: 2001:db8::7fff:ffff
• DNS server: 2001:db8::8000:1

16. Confirm the changes by clicking OK.
17. Copy the artifact repository folder isolated-and-

exhausted to C:\Users\user\Documents.

Chrome Build Environment This paragraph describes how
to set up a build environment for Chromium and is mostly
based on the official Chromium Build Instructions.11

1. Install Kubuntu 20.04 LTS on a host with at least 16 GiB
of RAM and at least 300 GiB of free hard disk space.

2. Insert the VirtualBox guest additions ".iso" into the vir-
tual CD-ROM drive of your machine.

3. Install the VirtualBox guest additions.

1 sudo mount /dev/sr0 /media
2 cd /media
3 sudo ./VBoxLinuxAdditions.run

4. Add user to the vboxsf group

1 sudo usermod -a -G vboxsf user

5. Install additional required packages.

1 sudo apt install git build-essential

6. Reboot the system.

1 sudo reboot

7. Clone the Chromium depot tools and add their path to
the PATH environment variable:

1 git clone https://chromium.googlesource.com/
↪→ chromium/tools/depot_tools.git

2 export PATH="$PATH:/home/user/depot_tools"
3 echo export PATH=\"\$PATH:/home/user/depot_tools\"

↪→ >> ~/.bash_profile

8. Get the Chromium source code (this may take a while).

1 mkdir ~/chromium && cd ~/chromium
2 fetch --nohooks chromium
3 cd src
4 ./build/install-build-deps.sh
5 git fetch --tags
6 git checkout tags/101.0.4951.64

11 https://chromium.googlesource.com/chromium/src/+/main/do
cs/linux/build_instructions.md

Figure 1: Network configuration of the Isolated and Exhausted
evaluation lab.

9. Prepare the build. The command gn args ... automat-
ically opens a file in the default text editor. Replace
the contents of this file with the contents of the file
~/isolated-and-exhausted/site_isolation_
patch/gn.args from the artifacts repository.

1 gclient sync -D --with_branch_heads
2 gclient runhooks
3 gn args out/release

10. Finalize build preparations.

1 gn gen out/release

11. Build an unmodified Chrome (this may take a while).

1 nice -n 19 autoninja -C out/release

12. Build a version of Chrome patched with our proof-of-
concept mitigation against the Site Isolation fork-bomb
(this may take a while). Pass the contents of ~/isolated
-and-exhausted/site_isolation_patch/gn.args
as arguments when invoking gn args.

1 git apply ~/isolated-and-exhausted/
↪→ site_isolation_patch/si_patch.diff

2 gn args out/patched
3 gn gen out/patched
4 nice -n 19 autoninja -C out/patched

A.3.2 Basic Test

Testing Connectivity After successfully performing the
setup (cf. subsection A.3) the lab network should be config-
ured as shown in Figure 1. To verify the setup make sure that
all hosts can communicate with each other by issuing ping
commands. Note that Windows 10 will not respond to incom-
ing ICMP echo requests but should be able to receive ICMP
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echo responses from all other hosts in reaction to requests sent
from the victim system. If mutual communication between
all hosts works, ensure that DNS resolution works on the vic-
tim system. Open the windows command prompt (cmd.exe)
and issue the command nslookup evil.com. You should
receive a response resolving the domain to the IP address
2001:db8::1.

Testing the Attacker Website To test the attacker web
server, open a browser on the victim host and navigate to
http://evil.com. You should see the website shown in Fig-
ure 2. If you properly installed the root CA certificate from
the Isolated and Exhausted repository you should also be able
to access the same website via HTTPS on port 443 without
receiving a self-signed certificate warning message.

Figure 2: A website to test Site Isolation exploits. The website
can be used to allocate UDP ports using WebRTC and to
execute a Site Isolation fork-bomb.

Testing the Automated DEMONS Experiment Open an
instance of the Task Manager, select the performance tab and
focus the CPU graph. Next, open the windows command
line (cmd.exe) and change your working directory to the
victim host folder inside the Isolated and Exhausted artifact
repository and execute the attack_simulator.py script.

1 c:
2 cd \Users\user\Documents\isolated-and-exhausted\hosts\

↪→ victim
3 python attack_simulator.py

Once the attack_simulator.py script is running, an in-
stance of the configured browser (or the malware attacker)
should be started. In the Task Manager, you should be able to
observe the CPU load spiking for a couple of seconds at the
same time, the number of open handles will rise to a value
around 130000 but little to no network traffic is observable
during the DEMONS setup phase. Once the setup phase com-
pletes, CPU load will drop significantly. At the same time
spoofed DNS responses sent by the poisoner consume a mod-
erate amount of downstream bandwidth.

S

S

P

P

Figure 3: During the DEMONS Setup Phase (S) the CPU load
and number of handles increase significantly, the Poisoning
Phase (P) causes moderate CPU and network load.

Testing the Custom Chromium Build. Boot the
Chromium Build Environment, open a console and change
your working directory to the subfolder src inside the
chromium repository. Then run both the unpatched and the
patched version of Chromium. In both cases, you should be
presented with a Chromium browser window. Make sure that
you can access the Chromium developer tools.

1 cd ~/chromium/src
2 out/release/chrome
3 out/patched/chrome

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The Site Isolation fork-bomb can be used to implement
DoS attacks against the operating system or the web
browser.

(C2): Currently none of the tested browsers mitigates the
Site Isolation fork-bomb. We propose an effective miti-
gation and implemented a proof-of-concept patch based
on Chromium 101.0.4951.64. Our patch is efficient and
does not measurably affect the browser’s performance.

(C3): The impact of Site Isolation attacks goes beyond
DoS. DNS-Poisoning by Exhaustive Misappropriation
of Network Sockets (DEMONS), a DNS Cache Poison-
ing attack uses Site Isolation to poison the DNS cache
of the Windows operating system, in the web attacker
model.

A.4.2 Experiments

(E1): [Site Isolation Fork-Bomb (ad C1)] [1 human-hour]
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1 START;END;RESULT;BURSTS;DURATION;CACHE_CONTENT
2 2022-09-19 11:52:20.508692;2022-09-19 12:02:23.901948;SUCCESS;5779;603;2001:db8::1|2001:db8::1
3 2022-09-19 12:02:33.976641;2022-09-19 12:36:50.096716;SUCCESS;20146;2056;2001:db8::1|2001:db8::1
4 2022-09-19 12:37:00.154377;2022-09-19 12:40:34.654990;SUCCESS;1998;214;2001:db8::1|2001:db8::1
5 2022-09-19 12:40:44.747582;2022-09-19 13:25:14.253180;ABORT;25000;2669;None
6 ...

Listing 1: Example excerpt of the DEMONS result log on the attacker server. Each line represents an iteration of the DEMONS
experiment against the victim host and contains the following values in order from left to right: start date of the experiment end
date of the experiment, outcome, duration of the experiment in seconds, the IP address found in the victim’s cache for the target
domain.

Preparation:

1. Boot the router, the benign DNS, the attacker server
and the victim host.

2. Log into the victim system.
3. Start the Windows TaskManager and monitor the

browser processes on the "Processes" tab.

Execution: Open Chrome 83.0.4103.106 and perform
the following steps:

1. Visit the attacker web site in the lab http://evil
.com:80 (see Figure 2).

2. Note the number of browser processes running
3. Make sure the checkbox Isolate Sites is

unchecked.
4. Click the button labeled iframes (Fork-Bomb)
5. Note that the number of browser processes has not

changed significantly.
6. Make sure the checkbox Isolate Sites is

checked.
7. Click the button labeled iframes (Fork-Bomb)
8. Observe the number of browser processes increase

significantly until it stalls after some time.
9. If necessary kill the browser process or reset the

victim system.

Results: Once the victim system is no longer able to
create new browser processes the browser may crash
and/or the victim OS becomes unusable. For a detailed
description of effects we observed during our evaluation
please refer to Table 5 in Appendix C of our work.
The number of processes created depends on the hard-
ware, host OS, browser, browser version, and swap con-
figuration. Even using identical hard- and software, the
number of processes varies between runs. Table 2 of in
our work lists the median of five measurements.

(E2): [Site Isolation Fork-Bomb mitigation (ad C2)] [1
human-hour]

Preparation: Start the Chrome Build Environment (cf. sec-
tion A.3.1 Chrome Build Environment)

Execution: To verify that the changes introduced by our
patch do not measurably impact the browser’s per-
formance, record the page load times of the Tranco-
Top 5 websites using the profiling tools integrated into

Website Page load time in ms
Chromium 101.0.4951.64

unpatched patched

google.com 752.1 ms 766.4 ms
youtube.com 5366.4 ms 5265.5 ms
facebook.com 643.3 ms 629.5 ms
netflix.com 1107.3 ms 1039.6 ms
microsoft.com 1305 ms 1243.3 ms

Table 1: The average page load time (in ms) of the Tranco-
Top-5 websites shows no significant difference between an
unpatched Chromium 101.0.4951.64 and the same browser
version patched with our mitigation against the Site Isolation
fork-bomb.

Chromium12 (see Table 1).
Create at least one series of measurements for each
Chromium and Chromium-Site Isolation-patched13 by
performing the following steps:

• Start the browser.
• Open the performance tab of the integrated devel-

oper tools.
• Open the website.
• Run the profiler and discard the initial result to

avoid any caching effects.
• Run the profiler and calculate tload = ttotal − tidle,

where ttotal is the total time recorded by the profile
and tidle is the time the browser was idle during
loading.

• Repeat the previous step four more times.

Results: Table 1 shows the average loading times for the
Tranco-Top-5 websites using Chromium and Chromium
Site Isolation-patched. There is no significant difference
in performance between both browser versions (see is
olated-and-exhausted/site_isolation_patch/
si_patch_performance_t_test.ods). Since we only
need two additional global constants, and one additional

12 https://developer.chrome.com/docs/devtools/evaluate-per
formance/?utm_source=devtools

13 To determine the page load time we recorded two series of measurements
on two different days, to reduce the impact of server and network load.
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local limit per tab/window, the effect of our patch on
browser memory consumption is negligible.

(E3): [DNS Poisoning by Exhaustive Misappropriation of
Network Sockets (DEMONS) (ad C3)] [5 human min-
utes + 12 compute hours]
A victim visits the attacker web site and becomes sub-
ject to the DEMONS (attack), if successful poisons the
victim’s DNS cache. A script automatically repeats the
experiment until it is stopped manually.
Preparation:

1. Boot the router, benign DNS, attacker server and
the victim host.

2. Log into a shell on the attacker server.
3. Start live monitoring of DEMONS experiment re-

sults (cf. Listing 1).

1 cd /srv/docker/data/demons/attacker/spoofer/
↪→ results/

2 tail -f $(ls -1r | head -n1)

Execution:
1. Open cmd.exe on the victim system.
2. Change your working directory to the victim host

sub folder in the artifacts repository and run the
experiment:

1 c:
2 cd \Users\user\Documents\isolated-and-

↪→ exhausted\hosts\victim
3 python attack_simulator.py

Results: DEMONS is probabilistic because the attacker
must correctly guess a random 16-bit transaction ID.
Given a large enough sample set, the attacker can poison
the victim’s DNS cache with a success probability of
36% or better. Each DEMONS experiment may have one
of three results SUCCESS in case the attacker successfully
poisoned the victim’s DNS cache, FAILURE - a DNS
response from the benign DNS server was cached by the
victim or ABORT if neither the attacker nor the benign
DNS served a valid record within a preset burst limit.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220912. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenix%20sec2
023/.
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Abstract
We identify class of covert channels in browsers that are

not mitigated by current defenses, which we call “pool-party”
attacks. Pool-party attacks allow sites to create covert chan-
nels by manipulating limited-but-unpartitioned resource pools.
This class of attacks have been known to exist; in this work we
show that they are more prevalent, more practical for exploita-
tion, and allow exploitation in more ways, than previously
identified. These covert channels have sufficient bandwidth to
pass cookies and identifiers across site boundaries under prac-
tical and real-world conditions. We identify pool-party attacks
in all popular browsers, and show they are practical cross-site
tracking techniques (i.e., attacks take 0.6s in Chrome and
Edge, and 7s in Firefox and Tor Browser).

In this paper we make the following contributions: first, we
describe pool-party covert channel attacks that exploit limits
in application-layer resource pools in browsers. Second, we
demonstrate that pool-party attacks are practical, and can be
used to track users in all popular browsers; we also share open
source implementations of the attack. Third, we show that
in Gecko based-browsers (including the Tor Browser) pool-
party attacks can also be used for cross-profile tracking (e.g.,
linking user behavior across normal and private browsing
sessions). Finally, we discuss possible defenses.

1 Introduction

Browser vendors are increasingly developing and deploying
new features to protect privacy on the Web. These new privacy
features address the most common ways users are tracked
on the Web: partitioning DOM storage to prevent tracking
from third-party state, randomization or entropy reduction to
combat browser fingerprinting, network state partitioning to
prevent cache-based tracking, etc.

However, research has documented other ways Web users
can be tracked, though in ways that may be difficult to con-
duct under realistic browsing conditions. Significantly among
these are covert-channels that can be constructed through

timing signals, or other side channels. These covert-channels
allow sites to communicate with each other—or even other
applications—in ways not intended by browsers. Such covert-
channels can be used to reintroduce the kinds of cross-site
tracking attacks the above-discussed browser protections were
designed to prevent.

Browser vendors have responded to covert-channels in
a variety of ways. Some covert-channels (e.g. timing sig-
nals from abusing HTTP cache state) have been addressed
through platform wide improvements like network state par-
titioning. Other covert-channels have been addressed—or
at least mitigated—through other protections, like isolating
sites in their own OS processes. Others attacks have been
left unaddressed, because browser vendors judge them to be
impractical to execute in realistic browsing scenarios.

In this work we demonstrate that current browser pro-
tections are insufficient to prevent sites from using covert-
channels to circumvent anti-tracking protections in browsers,
including the protections deployed by the most privacy-
focused browsers. We demonstrate this by defining a new
category of techniques for constructing covert-channels, by ex-
ploiting the state of limited-but-unpartitioned resource pools
in the browser. Because such covert-channels are exploited
by two parties colluding in the same resource pool, we call
this category of covert-channel “pool-party” attacks.

“Pool-party” attacks create covert-channels out of browser-
imposed limits on pools of resources. When resource pools
are limited (i.e. the browser only allows pages to access re-
sources up to some hard limit, after which requests for more
resources fail) and unpartitioned (i.e. different sites consume
resources from a shared pool), sites can consume and release
resources to leak information across security boundaries. Ex-
amples of such boundaries include site boundaries (e.g. the
browser intends to prevent site A from communicating di-
rectly with site B) and profile boundaries (e.g. the browser
intends sites visited in a “standard” browsing session to not be
able to learn about sites visited in an “incognito” browsing ses-
sion). More generally, attackers can use these covert-channels
to conduct the kinds of cross-site tracking that the recent
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browser features were intended to prevent.

We identify practical “pool-party” attacks in all popular
browsers, both in browsers’ default configurations, and non-
standard, hardened configurations. We demonstrate “pool-
party” attacks through three resource pools: WebSockets,
Server-Sent Events, and Web Workers, and find that all
browsers were vulnerable to at least one form of attack. We
further identify other limited-but-unpartitioned resource pools
in browsers that could be leveraged for “pool-party” attacks.
Examples of such pools include certain kinds of resource
handle (e.g. Web Speech API), or limits on how many net-
work requests (distinct from network connections) can be in
flight at once (e.g. DNS resolution), among others. Finally,
we demonstrate that “pool-party” attacks are not just theoret-
ical threats to user privacy, but practical threats that can be
used to track users across sites. We show that in Gecko-based
browsers (including the Tor Browser), “pool-party” attacks
can create covert-channels across profiles, allowing sites to
link behaviors in “private browsing” modes with standard,
long term browser identities.

These findings are important for the development of
browser partitioning. All browser engines support some forms
of partitioning: WebKit partitions DOM storage and some
kinds of network state, Gecko partitions DOM storage and
network state, and Chromium partitions network state1. Brave
has extended Chromium to also partition DOM storage.

1.1 Contributions

This work makes the following contributions:

• We define a new category of technique for creating
covert-channels in browsers. We call this category of
covert-channel “pool-party” attacks, and describe how
the approach differs from the kinds of privacy attacks
browsers currently aim to defend against;

• We evaluate deployed browsers, and find all popular
browsers and browser engines are vulnerable “pool-
party” attacks;

• We provide three open-source, proof-of-concept imple-
mentations of our attack that work in all browsers2;

• We perform a performance measurements to evaluate
the bandwidth and practicality of “pool-party” attacks,
and find that “pool-party” attacks are a practical basis
carrying out cross-site tracking attacks;

• We discuss potential mitigation strategies for how
browsers could defend against “pool-party” attacks.

1At time of writing, network state partitioning is deployed for a portion
of Chrome and Edge users, as part of the “NetworkIsolationKey” feature

2https://github.com/brave-experiments/pool-party-
artifact/blob/master/static/inner.js

1.2 Responsible Disclosure
We have presented our findings to the following browser ven-
dors (in alphabetical order): Apple, Brave, Google, Microsoft,
Mozilla, Opera, Tor Project. All reports were made over 90
days in advance of this submission.

Microsoft and Opera responded that since the discussed
vulnerabilities were in Chromium, they would wait for Google
to address the problem. The Tor Project similarly said they
would rely on Mozilla to address the vulnerabilities3.

Some vendors have shipped fixes for the vulnerabilities
identified in this work. Safari fixed the SSE event vulnera-
bility in version 15.24, and Brave has released fixes for the
WebSocket5 and SSE6 vulnerabilities.

Google7 and Mozilla8 also plan to address these vulnera-
bilities, though have not done so yet. These organizations are
focusing on a mixture of browser-wide fixes (i.e. comprehen-
sively partitioning all resource pools, not only the resource
pools discussed in this work) and updates to Web standards
(e.g. defining limits and the scope of connection pools).

2 “Pool-party”: Definition and Background

This section provides context for how “pool-party” attacks
relate to other Web tracking techniques, and how browser
vendors’ privacy models and goals have changed. This section
also describes why existing browser protections fail to protect
users against “pool-party” attacks.

This section first defines “Web tracking”, followed by dis-
cussing how privacy models in Web browsers have improved,
and why “pool-party” attacks allow trackers to violate in-
tended privacy boundaries in all popular browsers. Next,
we describe how “pool-party” attacks relate to both i) other
covert-channels in browsers, and ii) conventional Web track-
ing techniques. We then explain why existing browser protec-
tions do not protect users against “pool-party” attacks, and
conclude by describing how this work relates to a category of
attack previously known to be possible, but not thought to be
practical.

2.1 Web Tracking and Cross-Site Tracking
This sub-section gives a working definition of Web tracking.
Our goal is not to provide a formal, unambiguous definition
(the phrase “Web tracking” is used too broadly to likely allow
for one), but instead to give a practical definition to build on
through the rest of this work.

3https://gitlab.torproject.org/tpo/applications/tor-
browser/-/issues/41381

4https://support.apple.com/en-us/HT212982
5https://github.com/brave/brave-core/pull/11609
6https://github.com/brave/brave-core/pull/16882
7https://bugs.chromium.org/p/chromium/issues/detail?id=

1249658
8https://bugzilla.mozilla.org/show_bug.cgi?id=1730797
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We use “Web tracking” to refer to a user being re-identified
across conceptual contexts, without the user’s expectation or
consent. We use “context” to refer to a grouping of activities
that the user expects to be separate from, and not accessible to,
other similar contexts. This definition is similar to the W3C’s
proposed privacy principals9.

Contexts might be divided by time (e.g. a site re-identifying
a user revisiting the same site a week after first visiting, de-
spite the user clearing browsing data), application (e.g. a site
re-identifying a user visiting a site in Safari as the same user
who previously visited the site in Chrome), profile (e.g. a site
identifying that the visiting in an private/incognito browser
session is the same user visiting the site in a standard browser
session), or site (e.g. two sites colluding to learn that browser
sessions occurring on each site belong to the person). The
commonality is the users’ reasonable expectation that things
that happen in one context are not readily known and available
to other contexts.

2.2 First-Party Site as Privacy Boundary

Browser vendors are converging on the first-party site as
the Web’s privacy boundary. All browsers include features
intended to prevent sites from communicating across first-
party site boundaries. Some browsers enforce this boundary
by default; others only do so with opt-in “privacy” modes, but
all browsers include such features.

Using the first-party site as a privacy boundary means that a
third-party embedded under two different first-parties should
not be able to confidently know it was the same person visiting
each site, unless the user intentionally re-identifies themselves
to the third-party.

The rest of this subsection documents that, and in what con-
figurations, each browser uses the first-party site as their pri-
vacy boundary. In all the discussed configurations, browsers
intended to communication across first-party site boundaries,
and in all cases attackers can circumvent the intended privacy
boundary through “pool-party” attacks.

Gecko Browsers. Both Firefox (as of version 103) and Tor
Browser enforce the first-party site as the privacy bound-
ary by default. In Tor Browser, the protection is sometimes
called “first-party isolation” or “cross-origin identifier un-
linkability”10. In Firefox, the feature is called “Total Cookie
Protection”11.

WebKit Browsers. Safari uses the first-party site as the pri-
vacy boundary by default. The WebKit documentation makes
this privacy boundary explicit in their documentation, which

9https://w3ctag.github.io/privacy-principles/
10https://2019.www.torproject.org/projects/torbrowser/

design/#identifier-linkability
11https://blog.mozilla.org/security/2021/02/23/total-

cookie-protection/

mentions that they intended to protect against cross-site com-
munication through covert-channels12.

Chromium Browsers. Chromium does not enforce the
first-party site as a privacy boundary by default. However,
Chromium allows for configurations that do, by a combi-
nation of i) disabling third-party cookies (to prevent DOM
storage communication across site boundaries) and ii) en-
abling Chromium’s “NetworkIsolationKey” (NIK)13 fea-
tures (which partition caches and other network state by first-
party).

Neither Chrome or Edge disable third-party storage by de-
fault, but both do enable NIK features for most users. We note
though that even when Chrome and Edge are configured to
use the first-party site as the privacy boundary, those browsers
are vulnerable to “pool-party” attacks.

The Brave Browser uses a modified version of Chromium
that, by default uses the first-party site as a privacy boundary.
It does this by partitioning third-party DOM storage by first-
party14, and by enabling (and extending) Chromium’s NIK
system for all users15.

2.3 Description of “Pool-party” Attack

“Pool-party” attacks manipulating pools of browser resources
which are limited (i.e. the browser restricts how many of
the resource can be used at one time) and unpartitioned (i.e.
different contexts consume resources from the same pool).
While the examples focused on in this work utilize either
limited-but-unpartitioned pools of i) network connections or
ii) thread handles, browsers include many other limited-but-
unpartitioned resource pools that could be similarly exploited,
such as pools of file handles, subprocesses, or other resource
handles.

A “pool-party” attack occurs when parties operating in
distinct contexts (contexts the user expects to be distinct and
blinded from each other) intentionally consume and query
the availability of the limited resources in a resource pool, to
create a cross-context communication channel. Each context
can then use the communication channel to pass an identifier,
allowing each party to link the user’s behavior across the
two contexts. We note again that most commonly the two
contexts considered here are two different websites running
in the same browser profile, but could also be the same (or
different) websites running in different browser profiles.

Algorithm 1 presents a simple-though-limited technique
for conducting a “pool-party” attack, where sites can trivially
transform this optimization choice into a cross-site tracking
mechanism.

12https://webkit.org/tracking-prevention-policy/
13https://github.com/shivanigithub/http-cache-

partitioning#choosing-the-partitioning-key
14https://brave.com/privacy-updates/7-ephemeral-storage/
15https://brave.com/privacy-updates/14-partitioning-

network-state/
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Algorithm 1 Toy example of a “pool-party” attack.
Site A: Ia← random N bits
Site B: Ib← empty string
while i← Ia do

Site A: Stop any playing videos
if Ia[i] = 1 then

Site A: Play a video
end if
Wait 5 seconds
if Site B is able to play a video then

Site B: Ib[i] = 1
else

Site B: Ib[i] = 0
end if

end while

For this toy example, assume a browser vendor wants to
improve performance by only allowing one video element
to be loaded at a time, across all sites. If a video is currently
playing on any page, the site will receive an error if it tries to
play a new video. An attacker use this implementation choice
to “send” a bite across site-boundaries by playing (or not)
a video on one site, and checking on another site whether
there is a video playing. An arbitrarily large message can be
sent by repeating this process. A more realistic and efficient
technique is presented in Section 3.

2.4 Relationship to Other Covert-Channels

“Pool-party” attacks differ from other covert-channel attacks
by targeting intentional, application-imposed limits. This dif-
fers from many other covert-channel attacks in two ways, both
of which increase the practicality of “pool-party” attacks.

First, “pool-party” attacks target application-level re-
sources, while many other covert-channels target parts of the
system below, or at least distinct from, the application (e.g.
hardware restrictions like CPU caches, OS details like inter-
rupt schedules or memory management, or language runtime
features like garbage collection). This is significant because,
the lower in the stack the attacker targets, the more likely the
resource is (all other things being equal) to be shared with
other actors on the system. This means that lower-level covert-
channels are more likely to be noisy, and so more difficult to
communicate over.

Second, related but distinct, “pool-party” attacks target
browser-managed resources, resources that are, in most cases,
intentionally shielded from other applications on the system.
This again reduces the chance that colluding parties will have
to contend with a noisy, unpredictable covert-channel.

2.5 Relationship to Other Tracking Methods

“Pool-party” attacks do not fall neatly into the categories usu-
ally used to describe browser tracking techniques. This sub-

Browser DOM Storage Network State

Brave ⊕ ⊕
Chrome × 	
Edge × 	
Firefox ⊕ ⊕
Safari ⊕ ⊕
Tor Browser ⊕ ⊕

Table 1: State partitioning features in popular browsers (in
alphabetical order). ⊕, 	 and × indicate the feature being
available by default for all, some, or no users, respectively.

section briefly describes the rough-taxonomy used in online-
tracking research, and why “pool-party” does not cleanly fall
into existing categories.

Stateful Tracking. “Stateful tracking” most commonly
refers to websites using explicit storage APIs in the Web
API (e.g. cookies, localStorage, indexedDB) to assign identi-
fiers to browser users, and then read those identifiers back in
a different context, to link the identity (or, browser behavior)
across those contexts.

Stateful-tracking also describes other ways websites can set
and read identifiers, by using APIs and browser capabilities
not intended for such purposes. Examples of such techniques
include exploiting the browser HTTP cache, DNS cache or
other ways of setting long term state (e.g. HSTS instruc-
tions [37], favicon caches [35], or, ironically, storage intended
to prevent tracking [13]).

Browsers increasingly protect users from stateful track-
ing by partitioning storage by context, mostly commonly be
the effective-top level domain (i.e. eTLD+1) of the website.
Giving each context a unique storage area prevents trackers
from reading the same identifier across multiple contexts, and
so prevents the tracker from linking browsing behaviors in
different contexts. Partitioning explicit storage APIs is of-
ten referred to as DOM Storage partitioning. Partitioning
caches and other “incidental” ways sites can store values is
often called network state partitioning. Table 1 provides a
summary of state partitioning in popular browsers.

Browser state partitioning strategies fail to defend against
“pool-party” attacks because “pool-party” attacks do not rely
on setting or retrieving browser state (at least not in the way
state is generally discussed in this context, meaning the ways
that sites can write state to the users profile). “Pool-party” at-
tacks instead rely on implementation details of browser archi-
tecture, where device resources are limited-but-unpartitioned.
While partitioning strategies could also be used to defend
against “pool-party” attacks, as discussed in Section 5, certain
aspects of these attacks make partitioning approaches difficult
in practice.

Stateless Tracking. “Stateless tracking,” (also often called
“browser fingerprinting”) refers to the category of Web track-
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Browser Coordination Stability Uniqueness

Brave ⊕ ⊕ ⊕
Chrome × × ×
Edge × × ×
Firefox ⊕ × 	
Safari × × ⊕
Tor Browser × × ⊕

Table 2: Stateless tracking protections in popular browsers (in
alphabetical order). ⊕, 	 and × indicate the defense is avail-
able by default, off by default, or not available, respectively.

ing techniques whereby the attacker constructs a unique
identifier for the user by combining a large number of semi-
distinguishing browser and environmental attributes into a sta-
ble, unique identifier. Examples of such semi-distinguishing
features include the operating system the browser is running
on, the browser version, the names and the number of plu-
gins or hardware devices available, and the details around
the graphics and audio hardware present, among many oth-
ers [19].

In contrast to “stateful” tracking techniques, “stateless”
techniques do not require sites to be able to set and read
identifiers across context boundaries, and so are robust to stor-
age partitioning defenses. Stateless attacks instead rely on
three conditions to be successful:

• Coordination: code running in different contexts must
know to query the same (or at least sufficiently large
intersection of) browser attributes.

• Stability: the browser must present the same values for
the same semi-distinguishing attributes across contexts
(otherwise the browser will yield different fingerprints in
different contexts, preventing the attacker from matching
the two fingerprints).

• Uniqueness: the browser must present enough semi-
distinguishing attributes to allow the site to accurately
differentiate between users (otherwise the attack will
confuse two different users as the same person)

Browsers defend against “stateless” trackers by attacking any
of these three requirements. A browser might prevent coor-
dination by blocking fingerprinting code on sites, or prevent
stability by making the browser present different attributes
to different sites (such as in [18, 25]), or prevent uniqueness
by reducing the entropy provided by each attribute. Table
2 provides a summary of deployed “stateless” defenses in
popular browsers.

Browser defenses against “stateless” tracking techniques
fail to defend against “pool-party” attacks because of differ-
ences in the nature of the attack. “Stateless” techniques target
stable semi-distinguishing browser characteristics which are
set by a page’s execution environment. “Pool-party” attacks,
in contrast, are enabled by sites consuming and reading the
availability of limited resources in the browser across execu-

tion contexts. Therefore, unsurprisingly, browser defenses
against “stateless” tracking provide no protection against
“pool-party” attacks.

XS (Cross-Site) Leaks. “Pool-party” attacks are most sim-
ilar to a category of attack loosely called “XSLeaks”16, a
broad collection of ways sites can send signals to each other
in ways generally unintended by browser vendors. However,
we note that in contrast to “stateful”, “stateless,” “pool-party”
attacks, XSLeaks do not have a common cause or remedy;
instead, XSLeaks can be largely thought of as a catchall for
cross-site (or cross-context) techniques that do not not fit
in another category. Examples of XSLeaks include timing
channels stemming from a variety of causes, unintended side
effects of experimental browser features17, or misuse of other
browser APIs18.

The lack of a common cause of XSLeaks makes it im-
possible to generalize about defensive strategies or deployed
browser defenses. Recent work in this area has identified
ways sites can leak information across browser-imposed
boundaries, including through unintended side effects in how
browsers handle errors, implement cross-origin opener-policy
(COOP), cross-origin resource policy (CORP), and cross-
origin read blocking (CORB) policies, or limit the length
of redirection chains, among many other signals [16].

We note though that “pool-party” attacks are most common
to the “connection pool” attacks identified by the XSLeaks
project19. This work makes the following contributions be-
yond the issues documented by the XSLeaks project, and the
related work done by Kinttel et al. [16].

1. This work defines a larger category of attack than
XSLeaks, where any limited-but-unpartitioned resource
pool can be transformed into a covert-channel. The at-
tack documented by the XSLeaks project is a subset
of the larger category of attack discussed in this work.
Network connection pools can be abused to conduct
“pool-party” attacks, but other kinds of resource pool
can too. For example, the Web Workers pool in Firefox
thecan be exploited to conduct “pool-party” attacks. Sec-
tion 5.3 identifies additionalm non-network-connection
pools that can be exploited.

2. We demonstrate that attacks of this type are not just the-
oretically possible, but are practical, and are real-world
threats to Web privacy.

3. The “connection pool” attack identified by the XSLeaks
project relies on abusing the connection pool to create
timing channels, while “pool-party” attacks utilize the

16https://xsleaks.dev/
17e.g. https://xsleaks.dev/docs/attacks/experiments/scroll-

to-text-fragment/
18e.g. https://xsleaks.dev/docs/attacks/window-references/
19https://xsleaks.dev/docs/attacks/timing-attacks/

connection-pool/
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number of available resources in the pool to create the
communication channel. This small difference is signifi-
cant. Using the amount of available of resources in the
pool as the communication channel makes the attack
more robust to noise introduced from other sites, and
mitigations against one form of the attack may not apply
to the other.

3 Generic “Pool-party” Attack Algorithm

In the previous section we presented the category of “pool-
party” attack in the abstract, explained why “pool-party” at-
tacks are different from other attacks discussed previously in
the literature, and why current browser defenses fail to pro-
tect against “pool-party” attacks. In this section we present a
generic algorithm for conducting “pool-party” attacks, which
can then be applied to any resource pool in a browser where
the following conditions are met.

1. The resource pool is limited, meaning that sites can
request resources from the pool until a global limit is
hit, after which sites are prevented from accessing more
resources, in a manner the site can detect.

2. The resource pool is unpartitioned, meaning that dif-
ferent contexts (e.g. sites, profiles, etc.) all draw from
the same global resource pool. Put differently, the attack
will fail if each context gets a distinct resource pool.

3. Sites can consume resources from the pool without re-
strictions, as long as the pool is not already exhausted.

4. After consuming resources, sites can release any number
of those resources back into the pool.

Any resource pool where the above four criteria are met can
be transformed into a covert communication channel between
any two parties sharing the resource pool.

We have identified resource pools matching the above crite-
ria in current versions of all popular browsers, even browsers
that particularly emphasize their privacy features (e.g. Brave
Browser, Tor Browser), and even when browsers are “hard-
ened” by the enabling of non-default, privacy-focused features
(as discussed in Section 2.5).

3.1 “Pool-party” Algorithm
We present a generic protocol for conducting a “pool-party”
attack over limited-but-unpartitioned resource pools in all
browsers. This protocol is presented as Algorithm 2, and pro-
vides a generic way a site can use a limited-but-unpartitioned
resource pool to track users.

Protocol Inputs. The algorithm takes several inputs. First,
the algorithm takes which resource pool will be exploited to
conduct the attack, which also determines the size of the pool.

Algorithm 2 General algorithm for a “pool-party” attack.
Inputs.
POOL_SIZE← size of resource pool
PKT_SIZE← blog(POOL_SIZE)c
MSG← binary string to transmit
NEGOTIATE_INTERVAL←
time to choose sender and receiver roles
PULSE_INTERVAL← time to transmit one chunk of data

1. Setup.
CHUNKS←MSG split into packets of size PKT_SIZE
RECV_MSG← empty string
START_TIME← d NEGOTIATE_INTERVAL+
len(CHUNKS)∗PULSE_INTERVAL e

2. Determining Initial Sender and Receiver.
Both sites: sleep until START_TIME
Both sites: consume resources until pool is exhausted
if “Site A” is able consume over > 50% of pool then

SENDER← “Site A”
RECEIVER← “Site B”

else
SENDER← “Site B”
RECEIVER← “Site A”

end if
Sender: consumes 100% of pool resources
Receiver: releases all pool resources
Both sites: sleep until
START_TIME+NEGOTIATE_INTERVAL

3. Sending Data.
for i← 0..len(CHUNKS) do

Sleep until START_TIME+NEGOTIATE_INTERVAL+ i∗
PULSE_INTERVAL

if SELF == SENDER then
SEND_INT← binaryToDecimal(CHUNK[i])
Consume all unheld resources in pool
Release SEND_INT resources in the pool

else if SELF == RECEIVER then
Sleep for 0.5∗PULSE_INTERVAL
Consume all unheld resources in pool
RECV_INT← number of consumed resources
Release all held pool resources
RECV_STR ← decimalToBinary(RECV_INT)
RECV_MSG‖= RECV_STR

end if
end for
Release all held pool resources

Attackers can precompute the largest pool available for each
browser. The size of the resource pool (i.e. the number of
resources in the pool available) is stored as POOL_SIZE.

The second input is the message being sent over the chan-
nel, which is a binary string of arbitrary length. The binary
string to be transmitted is stored as MSG.

Third, the algorithm takes two time intervals, stored as
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NEGOTIATE_INTERVAL and PULSE_INTERVAL. These inter-
vals could be fixed across all attack methods, and trade faster
transmission time (smaller values) against higher reliability
(lower values).

Step One: Setup. To begin, the sender splits MSG into
PKT_SIZE sized chunks, yielding a vector of bit-strings each
of size PKT_SIZE, and the receiver constructs an empty
buffer, RECV_MSG, to accumulate the received message into
one packet at a time. The sending and receiving sites must
choose the same time to start communication: the shared
START_TIME is set to the next integer ECMAScript epoch
time (in seconds) that is greater than a multiple of the full
negotiation and message transmission time.

Step Two: Determining Initial Sender and Receiver. Both
parties synchronize by sleeping until the START_TIME, and
then determine which site will be the initial sender and which
the receiver. This negotiation is needed because, neither site
initially knows what other colluding site(s) may be open and
available to communicate with, and thus no way of assigning
roles in the protocol.

Sites determine sender and receiver by racing to exhaust
the resource pool. The site that is able to consume more
than 50% of resource in the pool assigns itself the role of
initial sender; the site that is prevented from requesting
the 50%+1 resource assigns itself as the initial receiver.

The receiver then releases the resources it holds, and the
sender keeps consuming resources until the pool is exhausted.

Step Three: Sending Data. The third step of the protocol
is where passing data across context (i.e. site) boundaries
occurs. The sender and the receiver participate in this step of
the protocol as follows.

The sender manipulates the state of the resource pool as fol-
lows for each c in their CHUNKS vector (recall that CHUNKS is a
vector of binary strings, each of length PKT_SIZE). For each
c, the sender first interprets the binary as positive integer rep-
resentation (e.g. 0010010 becomes 18, etc), which is stored as
SEND_INT. The sender then releases SEND_INT+1 resources
from the pool and waits for a fixed period, PULSE_INTERVAL,
to ensure that the the receiver has had time to read from the
channel. Once the sender has finished sending their message,
the sender releases all resources in the pool and proceeds to
the next step in the protocol. Otherwise, the sender consumes
all resources in the pool and repeats the current stage in the
protocol to send the next c value.

Simultaneously, the receiver begins this stage of the pro-
tocol by waiting for PULSE_INTERVAL/2. Once that time has
elapsed, the receiver tries to consume as many resources
as possible, which will match the SEND_INT number of re-
sources released by the sender, and stores this value (minus 1)
as RECV_INT20 Next, the receiver encodes RECV_INT in the

20Recall that, by construction, the sender is not able to obtain more than
2PKT _SIZE resources, and so the receiver can be certain that values greater
than the limit, or equal to zero, are not data the sender is attempting to

inverse manner the sender used (e.g. 18 becomes 0010010),
and concatenates the result onto the receiver’s RECV_MSG. The
receiver then releases all resources it holds, waits for the end
of the pulse, and repeats the above process.

Step Four: Exchanging Roles. Finally, if desired, the two
parties can exchange roles to pass data in the receiver to
sender. This is trivially accomplished by each party assuming
the opposite role, and continuing again from step 3. Otherwise,
if there is no more data to transmit, both parties can abort
the protocol. Note that the protocol itself does not provide a
mechanism for the parties to indicate whether they wish to
continue or end the protocol, though parties could easily signal
such through the contents of the messages being passed.

4 Evaluation in Popular Browsers

In the previous section we presented a generic algorithm for
turning limited-but-unpartitioned resource pools into cross-
context communication channels, which in turn can be used to
cookie-sync and track users across the Web. In this section we
demonstrate three examples of such limited-but-unpartitioned
resource pools in popular browsers, and measure how ex-
ploitable and practical they are for cross-site tracking.

Specifically, we show that practical forms of “pool-party”
attacks can be carried out in popular browsers. We imple-
mented three examples of “pool-party” attacks, using the
WebSockets, Server Sent Events (SSE), and Web Workers
APIs. Before this work, all Chromium browsers were vulner-
able to the WebSockets and SSE attacks, Firefox was vul-
nerable to the Web Sockets and Web Workers attacks, Tor
Browser was vulnerable to the WebSockets attack, and Safari
was vulnerable to the SSE attack.

We assess the practicality of each of implemented “pool-
party” attack through four measurements: Availability, the
size of the relevant resource pool, and the kind of context-
linking possible, bandwidth, or how long it takes to send
a 35-bit identifier through the channel, consistency, or how
often the identifier is sent correctly, and background noise,
or how often sites on the Web use resources in each resource
pool.

Finally, for all measurements of Chromium browsers,
we configured each browser to enable all site-as-privacy-
boundary features enabled (i.e. we enabled all browser fea-
tures designed to allow communication across sites or site-
partitions). Specifically, we disabled third-party cookies, and
enabled all “Network Isolation Key” features to enforce cache
and network-state partitioning (see Section 2.5 for more infor-
mation on these “hardened” Chromium configurations see).
We note the exception here was Brave, which partitions DOM
storage and network state by default.

transmit. If so, the receiver will exit the protocol.
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4.1 Attack Availability

Methodology. We first checked the availability (and so, ex-
ploitability) of each example “pool-party” attack by experi-
menting with browsers and examining the source code of each
browser engine to identify limited-but-unpartitioned resource
pools in those browsers.

Specifically, we considered Web APIs that might hypothet-
ically represent a finite pool of resources (network connec-
tions, threads, etc.). We then used the developer console in
each browser to manually test whether each Web API would
leak and whether that resource pool could be predictably ex-
hausted. We conducted these tests as follows:

1. We opened a new tab,. visited a blank page, and checked
if instantiating the candidate Web API repeatedly in a
loop in the developer console caused errors after a finite
and predictable number of calls.

2. Once that pool was exhausted, we then opened a second
tab to a different site. Did we find that no more resources
were available under the second site?

3. If we released a resource under the first tab, could a
single resource now be consumed without error under
the second tab?

4. Were we able to find logic in the corresponding browser
engine code that was imposing this resource pool limit?

If the answer to all four of these questions was yes, then we
concluded this Web API was vulnerable to the pool party at-
tack for the tested browser. We thus proceeded to implement
attacks against each vulnerable browser based on the algo-
rithm presented in Section 3, implemented in JavaScript21.
We then examined whether we could use the relevant resource
pool to create a covert-channel and communicate across site
boundaries, across profile boundaries, or both. Importantly,
we tested whether the attack technique can be used to com-
municate between a standard-browsing profile, and a “private
browsing mode” profile22.

Results. Our availability measurements yielded several sig-
nificant findings, summarized in Table 3.

First, we were able to identify exploitable limited-but-
unpartitioned resource pools in all major browsers, which
we were successfully able to exploit through “pool-party” at-
tacks (though Safari and Brave both fixed some vulnerabilities
during the “responsible disclosure” process). As noted, the re-
source pools targeted in each browser engine differ. We were
able to use the relatively large WebSockets connection pool

21https://github.com/brave-experiments/pool-party-
artifact/blob/master/static/inner.js

22This feature goes by different names in different browsers, but gener-
ically refers to the ability to run the browser in a way where stored values
only last the lifetime of the browsing session.

in Chromium- and Gecko-based browsers to conduct “pool-
party” attacks. Safari’s WebSockets implementation was not
exploitable, since WebKit does not restrict how many Web-
Socket connections can be opened simultaneously. Safari’s
implementation of the SSE API, though, was previously ex-
ploitable before they fixed it. (Gecko’s implementation of the
SSE API was not exploitable).

Firefox alone was vulnerable to the Web Workers form of
the attack (a surprising finding given that Tor Browser uses
the same Gecko engine).

Second, we found that Gecko-based browsers (i.e. Firefox
and Tor Browser) were vulnerable to “pool-party” attacks in
a way more concerning than other browser engines. While
“pool-party” attacks can be used for cross-site tracking in all
browsers, in Gecko-based browsers “pool-party” attacks
can be used to track users across profiles. Significantly,
this means that, in Gecko-based browsers, sites can conduct
“pool-party” attacks between private browsing sessions and
standard browsing sessions. More concretely, a site running
in a private browsing window can collude with a site running
in a standard browsing window, and identify both sessions as
belonging to the same person. This is particularly concerning
since it violates the core promise of a private browsing ses-
sion; that behaviors conducted using a private browsing are
“ephemeral”, and cannot be linked other accounts or behaviors
a user maintains. Additionally, this vulnerability undermines
the work and research that has been done to strengthen private
browsing modes in browsers (for example, [4, 8, 21]).

4.2 Attack Bandwidth

Methodology. We measured the bandwidth of each attack by
measuring how long each implemented “pool-party” attack
took to transmit a 35-bit string across the site (or in the case
of Firefox’s WebSockets implementation, profile) boundaries.

We selected a 35-bit string for two reasons. First, because it
is over 33-bits, or what is needed to uniquely identify the ap-
proximately 7.9 billion people on the planet, and two, because
it aligns cleanly with the 5-bit packet size used in WebSocket
and Web Worker experiments.

We conduct each measurement as follows. First, we manu-
ally open two tabs on a browser to two pages on two different
sites we controlled. Each page includes an implementation
of the relevant “pool-party” attack (Websockets and SSE in
Chromium-based browsers, WebSockets and Web Workers
in Gecko-based browsers, and SSE in Safari), implemented
through JavaScript included in the page. We then experimen-
tally varied the negotiation time and pulse time until we found
the minimum times necessary to ensure that messages were
passed accurately with a high success rate. We then conduct
this measurement 100 times, using a clean browser profile for
each measurement, and report the average.
Results. We report the results of our bandwidth measure-
ments in Table 4. Times are reported in seconds, and the
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Browser Engine Version WebSockets Web Workers Server-Sent Events

Brave Chromium 1.44.101 ∗ 255 - 1,350
Chrome Chromium 105.0.5195.125 255 - 1,350
Edge Chromium 106.0.1370.42 255 - 1,350
Firefox Gecko 105.0.1 † 200 512 -
Safari WebKit 15.2 - - ∗ 6
Tor Browser Gecko 11.5.2 200 - -

Table 3: Attack Availability: Size of each resource pool used to conduct each instance of a “pool-party” attack. “-” denotes that
the browser was not vulnerable. “∗” indicates that the vulnerability was fixed before this work was submitted. “†” denotes that
the resource-pool can be exploited to conduct cross-profile attacks (in addition to cross-site).

Browser Method Setup Send Total Success

Brave SSE 3.0 5.0 8.0 100%
Chrome SSE 2.0 5.0 7.0 100%
Edge SSE 2.0 5.0 7.0 100%

Chrome WS 0.1 0.5 0.6 100%
Edge WS 0.1 0.5 0.6 100%
Firefox WS 2.0 5.0 7.0 71%
Tor Browser WS 2.0 5.0 7.0 73%

Firefox WW 1.5 7.5 9.0 95%

Table 4: Attack Bandwidth: Number of seconds to transmit
a 35-bit string). Times are reported in seconds; all values are
reported over 100 runs.

transmission success rate (discussed in the next subsection)
is reported as a percentage.

We find that our example “pool-party” attacks are practical.
Even the slowest forms of the attack complete in under ten
seconds (far below the average page dwell time of slightly
under a minute [23]). Each attack could further be carried
out between pages that are left open for a moderate amount
of time, either because they get lost in a browser users ever-
growing collection of tabs, or because the site is intended to
stay open for a long time (e.g. sites that function and email
clients, instant messaging applications, video streaming sites,
etc). Our example “pool-party” attacks are fast enough that
the could be conducted multiple times during an average page
view (again, assuming an average page dwell time of slightly
under one minute), as a simple error handling technique to
account for noisy channels.

The “Setup” column in Table 4 corresponds to the “Deter-
mining Initial Sender and Receiver” section of Algorithm 2;
the “Send” column measures the “Sending Data” steps.

4.3 Attack Consistency

Methodology. We also evaluated how consistently each
“pool-party” attack example completed successfully, in the ab-

% page % of URLs % of URLS
Web API Loads Desktop Mobile

Web Worker 12.34% 12.29% 11.9%
WebSocket 9.55% 4.33% 3.72%
Server-Sent Events 0.79% 0.8% 0.06%

Table 5: Attack background noise: Web API metrics re-
ported by the Chrome Platform Status service, as of August
9, 2022. Numbers reflect the % of page loads and % of URLs
observed across all channels and platforms.

sence of other sites running on the browser. This measurement
provides an upper bound on how practical the attack could be,
as having other sites running in parallel in the browser will in
some cases further reduce the success rate.

We measured the consistency of each attack using the same
methodology described in Section 4.2. We again ran the at-
tack 100 times, on two different pages in a single instance of
the browser, each time in a clean profile. We then report the
percentage of times the 35-bit string was received correctly.

Results. The results of our consistency measurement is also
reported in Table 4. We find that most forms of the attack
are either perfectly consistent (i.e. all 100 evaluations exe-
cuted correctly), or consistent enough to be practical (i.e. the
Web Worker attack on Firefox). The WebSocket attack was
less consistently successful in the Gecko browsers. We in-
vestigated the root cause and found that the pool size was
not consistently enforced; Firefox occasionally allowed addi-
tional sockets to be created, resulting in a corrupted message.

4.4 Attack Background Noise

Methodology. Finally, we evaluated how noisy the commu-
nication channels used in our demonstrative “pool-party” at-
tacks are in practice. We build on the intuition that resource
pools that are infrequently used by sites “in the wild” for being
purposes ) are easier to convert into practical side-channels.
Put differently, if sites are already consuming and releasing
resources in a resource pool for benign purposes, then other
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sites intending to use it as a covert communication channel
have to contend with more noise and uncertainty, and thus
communication will be more difficult.

We estimate an upper bound on the presence of background
noise per tab that could interfere with our “pool-party” attacks
by using HTML & JavaScript usage metrics reported by the
Chrome Platform Status website 23 to look at how often Web
sites use WebSocket, Web Worker, and/or SSE capabilities.

We note that we initially measured background use on the
Web through an automated, Web-scale crawl, using browsers
instrumented to count how often the Web Workers, WebSock-
ets and Server-Sent Events APIs were used. However, we
abandoned this approach on realizing that an automated crawl
would potentially under report background noise, since in
some cases sites would only use these “advanced” browser
capabilities on user interaction. This realization lead us to
instead look for measurements of browsers under real-world
use, and thus to Chrome telemetry.

Results. We report how often the relevant browser APIs are
used during real-world browser use (as reported by “Chrome
Platform Status”) in Table 5. Reported numbers are of August
9, 2022. As noted, no browser feature is used on most web-
sites; one reported feature, SSE, is used on less than 1% of
websites, and less than 1% of page loads. Put differently, the
vast majority of sites do not use any of these browser features,
meaning that in the common case sites could use the resource
pool without any interference from other pages.

Notes and qualifications. In practice, sites colluding in a
“pool-party” attack would need to contend with the union of
all open sites accessing resources from the relevant resource
pool. Browser with large numbers of tabs open are therefore
more likely to present interference to the two attacking tabs.
The numbers resulting from our methodology are a lower
bound on how noisy the given resource pool would be, and
attackers might need to implement ways of communicating
over noisy channels.

Additionally, we note that resources used by a site during
the duration of a “pool-party” attack will not effect correct-
ness, only bandwidth. Held resources merely reduce the total
limit on a resource pool, but our algorithm can still proceed
to send messages. Only resources that go from unconsumed
to consumed by a site (or vise versa) during the attack will
affect correctness.

Further, we note that the faster an attack completes, the less
susceptible the attack is to errors introduced by background
noise. This is for two reasons. First, attacks that finish quickly
are less likely to be interrupted with benign background re-
source use (simply because there is less opportunities for
background resource use). And second, attacks that finish
quickly can engage in simple error correcting techniques to
account for possible background noise (for example, conduct-
ing the attack multiple times and taking the majority result).

23https://chromestatus.com/metrics/feature/popularity

Nonetheless, some percentage of sites are likely to be call-
ing the Web APIs in a more dynamic manner, so it’s useful to
understand how often these features are used in the wild.

5 Discussion

5.1 Implementation Challenges
We have shown that, a limited-but-unpartitioned resource pool
whose resources can be consumed and released by scripts in
web pages are sufficient to allow cross-site communication.
A few additional anomalies arose, however, in the implemen-
tation of our algorithm that would be necessary to consider
for the development of a robust message-passing script.

5.2 Drifting Resource Pool Limit
Because the global limit on a resource pool is not a cen-
tral feature of web browsers, it is possible that developers
may overlook certain behaviors of the resource pool. For
example, we found that the Firefox global WebSocket pool
limit was not strictly fixed. While our script continuously cre-
ated and destroyed WebSockets to manipulate the number of
unheld WebSocket vacancies in the pool, we observed that
occasionally the total number of WebSockets that could be cre-
ated increased. That is: while the initial limit on WebSockets
was 512, after a few cycles of the algorithm, the total number
of resources that could be held was observed to be 513. That
number continued to increase over time. We attribute this
behavior to a likely race condition that meant the limit on
the total number of allow WebSockets was not consistently
enforced, but occasionally a WebSocket slipped through and
was not counted.

If the limit changed during a message cycle, then at least
one value passed from sender to receiver in our implemen-
tation would be incorrect. That would result in an incorrect
35-bit message being recorded by the receiver. To minimize
the effects of this anomaly, we ensured that the sender repeat-
edly attempted to consume more resources than the expected
limit, so that even if the limit silently increased during one
cycle, the the algorithm would correctly pass the message in
subsequent cycles.

Delayed feedback. A second anomaly we observed in the
browser-JavaScript implementation of our algorithm was an
inconsistent delay in feedback from the resource pool when
the pool limit was hit. If a site tries to consume an n-th
resource when only n− 1 resources were available, the at-
tack script must receive an indication that the limit has been
reached for the algorithm to succeed.

For example, to consume a resource in the WebSocket pool,
it is necessary for the script to call new WebSocket(...). In
all cases, whether or not a limit on the WebSocket pool has
already been reached, the call returns a WebSocket object. To
determine whether the limit has been reached, it’s necessary
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to find out whether the WebSocket object is in a valid state
or not. The state can be ascertained by using the onerror
callback property on the WebSocket object; however this
callback is not fired after a consistent time interval. Instead
the time interval varied by as much as tens of milliseconds
in some cases. Therefore, it is necessary to introduce a delay
before checking for the presence of an error state.

In order to avoid introducing too much delay when attempt-
ing to consume n resources, we first create all n resource
objects in a tight loop, and then wait for success or failure for
all of the resources in parallel.

5.3 Additional Attack Vectors
In this work we demonstrated that “pool-party” attacks are
possible and practical in all popular browsers, by exploit-
ing the limited-but-unpartitioned implementations of Web-
Sockets, Web Workers, and Server-Sent Events. However,
there are many other “pool-party” attack opportunities in
current browsers. This section details some additional APIs
and browser capabilities that can be converted into covert-
channels though “pool-party” attacks. We do not intend this
to be a comprehensive list; we expect that there are many
more “pool-party” attack vectors in browsers. We identified
the below browser capabilities and APIs as likely exploitable
by “pool-party” attacks based on their implementations in
Gecko, WebKit and / or Chromium, though we did not build
attacks to test the exploit-ability of all listed APIs.

Chromium. Chromium’s DNS resolver has a global, unpar-
titioned limit of 64 simultaneous requests, which could be
exploited by an attacker that could control the response time
of DNS queries. Second, when Chromium browsers are con-
figured to use an HTTP proxy, they impose a global limit
of 32 simultaneous network requests. Third, several APIs in
Chromium are thin-wrappers around OS-provided systems,
and maintain a single global handle to the system process,
effectively creating limited-but-unpartitioned pool of size one
(e.g. the Web Speech API).

Gecko. Browsers built on Gecko have many of the same
additional attack vectors as Chromium based browsers; Gecko
has a global limit on the number of DNS requests that can be
in the air at the same time, and a lower limit on the number
of requests that can be open when using a HTTP(S) proxy.

WebKit. We identified far fewer additional limited-but-
unpartitioned resource pools in WebKit than in other browser
engines. We did not identify additional attack vectors in Safari
(the most popular WebKit browser) beyond SSEs. However,
other, less popular browsers also use WebKit, and some of
these introduce additional limited-but-unpartitioned resource
pools. For example, the GTK-based version of WebKit24 uses
a DNS resolver with a limit of 8 requests at a time, and a
pre-fetch cache with a limit of 64 hosts.

24https://trac.webkit.org/wiki/WebKitGTK

5.4 Defenses and Constraints

Defending against “pool-party” attacks in browsers is diffi-
cult since, at root, systems will always have limited resources,
and thus some underlying limited-but-unpartitioned pool that
can be exploited by a sufficiently motivated party. Currently
browser resource limitations are mostly explicit and inten-
tional, but even if browsers removed such limits (e.g. limits
on WebSocket connections), the underlying system would
necessarily have a global limit, either explicitly (e.g. OS im-
posed limitations on open network sockets) or implicitly (e.g.
systems have a finite amount of memory, and so unavoidably
can only maintain a finite number of network sockets).

However, even if “pool-party” attacks will fundamentally
always be possible, browsers can still take steps to limit how
practical such attacks might be.

One approach is to lift browser-imposed limits on resource
pools where applicable, and require attackers to contend with
much larger system-maintained resource pools. This approach
would make attacks much more obvious to the user, who
would notice their system slowing down or other applications
on the system impacted while the attack was being carried
out. Such detectability might deter attackers, at least in the
common case. Relying on the OS or system level limits would
also make attacks more difficult to carry out. For example, the
system network connection pool will be much “noisier” than
the browser’s WebSocket pool, making it much more difficult
to use the resource pool as a reliable covert channel.

Second, browsers could take the opposite approach, and
instead of dramatically widening the size of resource pools,
browsers could maintain existing resource caps but partition
resource pools the same way browsers increasingly partition
DOM storage and network state (see Section 2.5). If resource
pools were partitioned by site, a site would not learn anything
by exhausting its resource pool; the resource pools for other
sites would be unaffected. A determined attacker could regain
the ability to conduct a “pool-party” attack by controlling a
large number of sites, and using them to collectively drain
the resource pool. Nevertheless, partitioning resource pools
by site would make “pool-party” attacks significantly more
difficult for an attacker to carry out.

Third, browsers could combine these two approaches, and
simultaneously remove global limits on the size of resource
pools, but limit the number of resources each site or context
and use. Such a hybrid approach would achieve some of the
benefits of both of the above approaches.

5.5 Applicability to Mobile

As part of this work, we checked whether mobile versions of
each of browser were also vulnerable to “pool-party” attacks.
To do so, we checked that the availability of the WebSockets
and SSE attacks on mobile versions of each browser matched
the availability of each attack on the desktop version. We
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found that the availability of each attack was the same; attacks
that worked on the desktop version of a browser also worked
on the browser’s mobile browser, and attacks that did not
work on the desktop version also did not work on mobile.

We did not measure the bandwidth or stability of the identi-
fied “pool-party” attack on mobile, both because i. of limited
resources, and ii. it being somewhat more difficult to conduct
automated measurements on mobile browsers (e.g. most au-
tomation tools target desktop versions of browsers, or rely
on imperfect simulations of mobile environments). Assessing
the practicality of “pool-party” attacks on mobile browsers is
an important area for future work.

Identifying Resource Pools. The vulnerabilities discussed
in this work were identified through a combination of domain
expertise, source code review, and manually interaction with
each API in each browser.

We began by generating a list of candidate APIs, based on
our experience in both browser and Wbb-app development.
Our list of candidate APIs focused on features that i. needed
to be handled in parallel (e.g. threads, I/O operations), ii. use
limited system resources (e.g. file handles) or iii. are exclusive
by nature (e.g. only one voice can speak at a time when using
the Web Speech API).

Next, once we had our set of candidate APIs, we examined
the source code for API’s implementation in each browser
engine. We looked for explicit limits on resources, both in the
source code and surrounding comments. Often (though not
always), limits were relatively easy to find, since they were
encoded in constants or runtime flags.

Finally, we manually evaluated whether we could use these
browser limits to conduct pool-party attacks by constructing
two different test pages on different sites and seeing if we
could detect on one site when the relevant resources were
being exhausted by the other site.

As noted, this process is entirely manual; it is likely-to-
certain that there are more vulnerable resource pools in
browsers. Developing a system for systematically or automat-
ing the detection of vulnerable resource pools would be a
valuable area for future work.

6 Related Work

Online tracking through feature misuse. Our work exists
alongside a large body of work on ways browser features can
be (mis)used by online trackers, to track their users in ways
unintended by the browser vendor.

The largest volume of work in this area is on browser fin-
gerprinting. We highlight significant work in the area, specifi-
cally those that identified new fingerprinting vulnerabilities
in browsers. Mowery et al. [24] famously demonstrated that
differences in how browsers executed drawing (i.e. canvas
and WebGL) operations could be used to identify individu-
als, and Acar et al. [1] showed that differences in what fonts

users have installed could be similarly misused. Englehardt
et al. [6], as part of a project to measure privacy violations
on the 1m most popular websites, show the WebAudio and
WebRTC APIs could be used to track users. Olejnik et al. [27]
showed the Battery Status API could be used for fingerprint-
ing, and Olejnik and Janc [28] demonstrated the Ambient
Light API could be similarly misused. Zhang et al. [42] found
that in mobile browsers, websites can use unpermissioned
access to motion sensors to identify users, and Starov and
Nikiforakis [36] demonstrated that what browser extensions
the user has installed can make users more identifiable. Eck-
ersley [5] documented that a screen resolution and display
size were practical fingerprinting vectors, and Nikiforakis
et al. [26] showed that other display details contributed to
identifiability. Laperdrix et al. [20] found that, ironically, the
presence of a content blocker could help fingerprinters distin-
guish users. Iqbal et al. [12] identified dditional browser APIs
that fingerprinting methods misuse (e.g. proximity sensor
APIs, media capabilities, the Presentation API) by examining
the JavaScript source code of known fingerprinting scripts
and identifying the additional APIs those scripts abuse.

Distinct from browser fingerprinting, researchers have
found other ways of misusing browser features to construct u
user identifiers. Solomos et al. [35] transformed the browser’s
“favicon” cache into a persistent tracking mechanism, Janc et
al. [13] showed that Safari’s “Intelligent Tracking Preven-
tion”25 features could be abused to re-identify users, and
Syverson and Traudt [37] showed how the browsers “HTTP
Strict-Transport-Security” system could be re-purposed to
construct and assign unique identifiers.

A parallel body of work attempts to prevent browser finger-
printing. Nikiforakis et al. [25] found browsers could resist
fingerprinting by manipulating the values common Web APIs
return. Laperdrix et al. [18] extended this approach by in-
troducing small amounts of noise into the Web Audio and
Canvas APIs, changes large enough to cause fingerprinters
to misidentify users, but small enough that benign uses of
features would not be impacted. Snyder et al. [34] suggested
disabling Web APIs whose cost to the users (including addi-
tional identifiability) was higher than the benefit to them (in
terms of desirable page behaviors), based on prior work find-
ing that most browser APIs are rarely used at all [33]. Smith
et al. [32] suggest a strategy for rewriting malicious code to
prevent fingerprinting scripts from accessing the underlying,
identifying values. Other works aim to prevent attackers from
abusing features for tracking purposes by removing the en-
tropy added by OS or hardware differences. Wu et al. [41]
presents a method for removing hardware-induced differences
in WebGL operations, and though not targeting fingerprint-
ing attacks, Andrysco et al. [2] proposed a similar “improve
privacy by making dissimilar systems execute similarly” ap-
proach for floating-point based channels in browsers.

25https://webkit.org/blog/7675/intelligent-tracking-
prevention/
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Attacks on browser partitioning and sandboxing. Our
work also builds on, and exists along side, a large body of
work documenting ways browser partitioning efforts can be
circumvented, whether those partitions are enforced directly
by the application, through OS-based process isolation, or
otherwise. Again, the breath of work in this area makes a
comprehensive discussion here impossible, so we discuss
papers that are particularly significant, novel and/or recent.

Using timing methods to circumvent browser partitioning
(in this case the same-origin-policy) dates back at least as far
as 2000, when Felten et al. [7] presented a way sites could
determine what other sites the user had visited by probing
the HTTP cache and measuring timing differences. Bortz et
al. [3] published similar foundational work on how sites could
exploit timing differences in how, and how quickly, cross-site
requests and resources were loaded to to learn about users’
state on other sites. Since then, researchers have demonstrated
many ways sites can circumvent browser imposed restrictions
on what sites can learn about user behavior on other sites, and
how sites can communicate with each other.

Schwartz et al. [30] document ways sites can create high
resolution timers, with descriptions for how such timers can
form covert channels across application boundaries. Smith et
al. [31] show that sites can circumvent browsers attempts
to partition a users browsing history by exploiting cache
state and side effects in painting behaviors. Kohlbrenner and
Shacham [17] presented a way of creating a covert channel
across site boundaries by exploiting floating-point related tim-
ing channels in how browsers render SVGs. Gruss et al. [10]
extended the Rowhammer [15] attack, previously used to leak
information across OS process boundaries, to be exploitable
be through site-included JavaScript code, to violate browser
imposed process isolation. Jin et al. [14] show how security-
focused protections like isolating sites in their own OS pro-
cesses can be exploited to learn what sites the user is, or
has recently, visited. Lipp et al. [22] demonstrated how sites
could puncture site isolation protections and infer what the
user was typing on a different site (or different application)
by observing timing patterns in JavaScript execution, caused
by the OS responding to key presses issued to other contexts.
Vila et al. [40] presented a related attack, where a site could
transform contention in the browser’s main event loop (dis-
tinct from the event loop presented to an executing JavaScript
context) into a cross-context side channel. van Goethem et
al. [39] showed how other browser capabilities like service
workers and the (now deprecated) application cache can be
transformed into timer-based covert channels as well. As part
of a larger project of creating an automated system for detect-
ing cross-site information leaks, Knittel et al. [16] identified
how many other browser features that had side effects that
could be detected across site boundaries.

The cross-profile tracking attack against Gecko-based
browsers described in this work build on other cross-profile at-
tacks such as van Goethem and Joosen [38], which found that

application efforts to isolate “incognito” browsing sessions
from standard browsing sessions could be circumvented by us-
ing contention for disk and memory resources as a covert chan-
nel. Oren et al. [29] showed that contention in the CPU cache
could be exploited by unprivileged, malicious JavaScript code
to learn what sites a user was visiting in an “incognito” mode
session. with JavaScript running on other sites, in other pro-
cesses, or applications outside the browser. Gruss et al. [9]
present a similar attack, though instead targeting timing chan-
nels stemming from memory deduplication.

Finally, Asankah [11] defines“ephemeral fingerprinting”,
where sites observe infrequent global events identify a user
across contexts.

7 Conclusions

In this work we define a new category of practical privacy
attack in popular Web browsers we call “pool-party” attacks.
“pool-party” attacks allow sites to break out of the “contextual
sandboxes” that browsers try to enforce, and so allow sites to
circumvent privacy protections in even the most aggressively
privacy-focused browsers. More alarming still, we find that
“pool-party” techniques can be used to track users beyond
cross-site tracking (specifically, that in Gecko-based browsers
“pool-party” attacks can track users across profiles).

While some attacks in this category have been known to
be theoretically possible, this work demonstrates that such
attacks are practical, and must be dealt with as a real-world
threat to the Web users’ privacy. Further, we show that “pool-
party” attacks can be carried out using a wider range of
browser capabilities than previously documented, further em-
phasizing the severity of the risk to user privacy.

Web privacy has moved in two very different directions
over the last two decades. Privacy attacks have moved in a
dispiriting direction, with privacy violations becoming com-
mon place. This disappointing trend is reinforced by a combi-
nation of conflicting incentives from (some) browser vendors,
backwards compatibility concerns, and user-harming financial
incentives. Privacy defenses in browsers, though, have been
recently moving in an encouraging direction. This is due to
(in part) a combination of regulatory pressure, increasing user
awareness, the tireless efforts of privacy-focused researchers
and developers, and a virtuous competition between (some)
browsers to own the “most private browser” title. We hope
that this work helps the latter, to the determent of the former.
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A Artifact Appendix

A.1 Abstract
We provide the artifact of USLH in a GitHub repository. The
artifact includes the PoC of leaking secrets from resolving
branch conditions and variable-time instructions. The artifact
includes a real word example of how LLVM-SLH fails to
protect the OpenSSL library. Besides the demonstration of
vulnerabilities, the artifact also includes a fix to SLH and a
gadget searching tool implemented in LLVM.

A.2 Description & Requirements
A.2.1 Security, Privacy, and Ethical Concerns

Running artifact does not need a root privilege. All data fed to
the program are randomly generated. The provided code does
not access files other than those described in the README.
The artifact evaluation involves compiling the Clang and
OpenSSL source code. Please follow the instructions and
do not install these software; otherwise they may disturb the
system wide configuration of Clang and OpenSSL.

A.2.2 How to Access

The artifact and documentation are available on GitHub: ht
tps://github.com/0xADE1A1DE/USLH/tree/e23d4292
723b11fa56efb9c237b6db201be97bfa.

The source code for the USLH implementation of SLH is
available at https://doi.org/10.5281/zenodo.77046
37.

A.2.3 Hardware Dependencies

A machine with an Intel processor (8th Gen, 9th Gen, 10th
Gen) running Ubuntu (not virtual machine) is necessary. The
artifact has been tested on processor i7-10710U, running

Ubuntu 20.04. To build the customized compiler, your ma-
chine has to have at least 8GB RAM.

A.2.4 Software Dependencies

The artifacts requires a GCC compiler to compile Clang.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

You will need to download and compile LLVM, but you do
not need to install it. Instructions on building Clang is avail-
able at https://clang.llvm.org/get_started.html.
Note that building Clang with Release version is sufficient
for the artifact evaluation. You can find more instructions at
README under the folder USLH/LLVM_FIX.

You will need to download and compile OpenSSL-1.1.1q,
which is available at https://www.openssl.org/sour
ce/old/1.1.1/. Instructions on compiling OpenSSL with
customized compiler and flags are available at the README
in the folder USLH/PoC/openssl_leakage.

A.3.2 Basic Test

To evaluate the fix to LLVM-SLH, having a working cus-
tomized Clang is necessary. After compiling the Clang, you
should check if Clang is properly compiled by compiling a
program with clang under $path_to_folder/build/bin/.
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A.4 Evaluation Workflow

A.4.1 Major Claims

(C1): Resolving branch conditions leaks secret if the secret
resides in branch operands (E1, E4).

(C2): USLH prevents leakages from resolving branches by
hardening branch conditions (E1, E4).

(C3): Variable-timing instructions leak secret by checking
the cache status of a secret-independent memory. Specif-
ically, when a sequence of floating point instructions is
fed with a slow value, the secret-independent memory
access may not be scheduled to execute (E2, E3).

(C4): USLH mitigates the vulnerability of variable-timing in-
structions by hardening the operands of variable-timing
instructions. (E3)

(C5): We provide a LLVM backend pass to find potential
gadgets (E5).

A.4.2 Experiments

(E1): [1/60 human-minutes, 1/3600 cpu-hour]: Leak secret
from resolving the branch condition and fix it. A detailed
instruction is available in README under the folder
USLH/PoC/condition.
Preparation: You need to have the USLH compiled to
mitigate the vulnerability. Please refer to README in
the folder USLH/LLVM_FIX for more instructions.
Execution: You need to modify the folder in com-
pile.bash to compile the program with and without fix
to LLVM-SLH. You then run the executable file with a
parameter, which is either 1 or 0.
Results: When executing leak, if the fed value is 1, the
program should return a measurement with cache miss
penalty. If the fed value is 0, the program should return a
measurement with cache hit in most cases. When execut-
ing fix, no matter what value fed is, the program should
always return a measurement with cache miss penalty.

(E2): [1 human-minutes 1/60 cpu-hour] Blocking reserva-
tion station under speculation. The code is available at
USLH/PoC/test_rs_limit. README contains detailed
instructions.
Preparation: None.
Execution: Run the command python3 test.py $max
$min to test how many pairs of sqrtsd, mulsd can block
the RS during the speculation. You need to change val
in run.bash to test fast value ot slow value.
Results: For slow value, with fewer pairs of floating-
point operations, the secret-independent memory will not
be accessed during the speculation. The actual number
of pairs is various from processors. On 11th and 12th
Gen Intel processors, you may not see the effect as they
have larger ROB and RS.

(E3): [1/60 human-minutes, 1/3600 cpu-hour] Leak secret
from variable-timing instructions. The code is avail-

able at USLH/PoC/variable_time. README contains
detailed instructions.
Preparation: You need to complete the last experiment
and adjust the number of floating-point instructions man-
ually. Note that you may want to reduce the number of
pairs in this experiment as the vulnerable function is
slightly different from the one in E2.
Execution: Execute the program with or without miti-
gation with attack.bash or mitigate.bash.
Results: The program processes a secret value bit-
by-bit. It returns the eight measurements of accessing
the secret-independent memory, the guessed secret and
whether the guess is correct or not.

(E4): [1/60 human-minutes, 1/3600 cpu-hour] Leak secret
from BN_mul_word in OpenSSL. The code is available
at USLH/PoC/openssl_leakage. README contains de-
tailed instructions.
Preparation: You need to install the OpenSSL with the
customized Clang. Please refer to the README file for
more instructions on how to compile OpenSSL with a
customized compiler and flags.
Execution: Execute the program with ./crun $val where
val is either 1 or 0.
Results: When val is 0, the measurement should be
cache hit; otherwise it should return a cache miss penalty.
By fixing the OpenSSL with USLH, no matter what val
is, it should always return cache miss penalty.

(E5): [Heavily dependent on processors and targets] Find
gadgets. The code is available at USLH/LLVM_FIX.
README contains detailed instructions.
Preparation: You need to have a compiled USLH.
Execution: Compile the program that you have interest
with command $path_to_binary/clang file -mllvm -x86-
mir-analyze
Results: If there is a gadget, the terminal prints Found
it –> function_name. Then you need to refer the source
code to review the code.

A.5 Notes on Reusability
USLH improves the LLVM-SLH by hardening more vulner-
able operands or instructions. You can use the customized
compiler to build safer programs. To play with different func-
tionalities of USLH, you can enable features with command
‘-mllvm -x86-slh-xxx‘. The LLVM backend pass performs
static analysis on machine IR. You can use it to find potential
leakages. To use it, you need to compile the program with
command -mllvm -x86-mir-analyze.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
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https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix:
Speculation at Fault: Modeling and Testing

Microarchitectural Leakage of CPU Exceptions

A Artifact Appendix

A.1 Abstract

The goal of this artifact is to validate the microarchitectural
leakage of CPU exceptions against the formal leakage mod-
els we proposed in the paper (named contracts). Concretely,
this means reproducing a representative subset of the results
described in Table 1 of the paper using our tool Revizor. The
exceptions we tested form the rows of this table and the con-
tracts are given as the columns. The contracts are ordered
according to permissiveness, i.e., CT-SEQ does not allow any
transient leakage, whereas CT-VS-All allows arbitrary specu-
lative values.

Revizor is a random testing tool, i.e., all test cases are
generated randomly. While we observed stable results during
our experiments, we therefore cannot 100% guarantee that all
results are reproduced within the indicated time frame.

The artifact of this paper includes the source code of Revi-
zor, a set of scripts to run the experiments, and a description
of how to run them.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Revizor includes a kernel module that disables the hardware
prefetcher and initializes the performance counters. The tool
also overwrites the OS-defined IDT to suppress the handling
of exceptions on the running core. This may affect other jobs
running on your system.

Revizor executes randomly generated programs in kernel
space. These programs that are intended to throw exceptions.
Even though the executor provides a stable and isolated envi-
ronment, it may adversely affect the stability of your system.

A.2.2 How to access

The artifact is available on GitHub at https:
//github.com/vusec/SpeculationAtFault-AE/tree/
cf2fa27ff5145a2dedfa8d4302a16d6e32aa5581

A.2.3 Hardware dependencies

Evaluating this artifact requires at least one physical machine
with root access. Ideally, the reviewer has access to both one
machine with Intel (KabyLake or CoffeeLake) and AMD
(Zen+ or Zen3) CPU. If only one such machine is available,
the experiments can still be reproduced for just that machine.
For AMD Zen2, we expect to obtain the same results as for
Zen3. Remote access to some of our machines may be granted
upon request. To obtain stable results, the machine(s) should
not be actively used by other software.

A.2.4 Software dependencies

• Linux v5.1+ and Kernel Headers

• python 3.9+, python3.9-venv, and pip

A.2.5 Benchmarks

None

A.3 Set-up
In this section, we provide a short version of the installation
and configuration steps required to prepare the environment
and run Revizor. Please refer to the README file of the
repository for detailed installation steps.

A.3.1 Installation

1. Clone the repository.

2. Install software requirements:
# on Ubuntu

> sudo apt install linux-headers-$(uname -r)

> sudo apt install python3.9 python3.9-venv

3. Install Revizor python package: In the base directory:
# on Ubuntu

> cd revizor

> python3 -m venv ∼/venv-revizor

> source ∼/venv-revizor/bin/activate
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> pip install revizor_fuzzer-1.2.3-py3-none-any.whl

> cd -

4. Check installation:
> rvzr # Should print the following:

# usage: rvzr {fuzz,analyse,reproduce,minimize,

generate,download_spec} ...

# rvzr: error: the following arguments are

required: subparser_name

5. Install the executor:
> cd revizor/executor

> make uninstall

> make clean

> make

> make install

> cd -

6. Download the ISA spec:
> rvzr download_spec -a x86-64 -extensions BASE

SSE SSE2 CLFLUSHOPT CLFSH MPX -outfile base.json

A.3.2 Basic Test

From the base directory, on Intel CPU, cd into intel/. On
AMD CPU, cd into amd/.

Run the basic test:
> rvzr fuzz -s ../base.json -c basic/seq-BP.yaml -i

10 -n 100

This command will start a small fuzzing campaign testing
the Breakpoint exception with 100 test cases, each tested with
10 inputs. The command is expected to terminate without
reporting a violation.

A.4 Evaluation workflow
The main results are summarized in Table 1 of the original
paper. The evaluation workflow is designed to validate our
leakage models. The list of experiments needed to do so
depends on the CPU microarchitecture.

A.4.1 Major Claims

For each combination of exception and architecture, the fol-
lowing are the least permissive of our contracts that model
the transient leakage induced by that exception.
C1 #PF complies with CT-VS-All on Intel Kaby Lake, with

CT-VS-NI on Intel CoffeeLake, and with CT-DH on
AMD.

C2 #GP complies with CT-VS-CI on AMD. On Intel, #GP does
not satisfy any contract.

C3 (Intel only) #BR complies with CT-DH. (E5)

C4 ucode-assists comply with CT-SEQ on AMD, with CT-
VS-All on Intel Kaby Lake, and with CT-VS-NI on Cof-
feeLake.

C5 #DE complies with CT-VS-Ops on Intel and AMD Zen3,
and with CT-VS-All on AMD Zen+.

C6 #UD, #DB, and #BP comply with CT-SEQ on all machines.

A.4.2 Experiments

Our experiments serve two purposes: (1) validating our claims
regarding which contract satisfies which exception on which
machine, and (2) confirming Revizor’s effectiveness in gener-
ating counterexamples. For each combination of CPU archi-
tecture and exception, we therefore propose one experiment
that validates the correct contract and one experiment that
finds a counterexample for the next more restrictive contract
(if one exists).

In the interest of time, we run each experiment for 12h or
until a violation is found. The timeout can be increased with
the timeout option we included in the scripts. For our paper,
each experiment ran for 24h. Remember though that Revizor
is based on random testing, it is thus possible that a violation
is not found within 12h. If this is the case, we suggest to
repeat the experiment and increase the timeout.

How-to. We split our experiments according to the type of
machine under test. Scripts for the experiments are grouped
into a directory for Intel and one for AMD. For exam-
ple, the scripts to reproduce Intel E1 are stored inside
./intel/experiment_1/. Inside each directory, there is one
run.sh script to start the experiment. An optional timeout
(given in seconds) can be set with the - -timeout option (e.g.,
./run.sh - -timeout=86400 for a 24h timeout).

Running the script will create a subdirectory results in-
side the experiment directory, where logs are stored. When
the script terminates, you can inspect the log to determine
whether Revizor detected a violation. Violations (if any) are
stored in subdirectories inside results/violations/. Each
violation directory will contain the program, the inputs, and
the configuration file.

Intel. On Intel, our claims can be confirmed with the follow-
ing experiments.
E1: C1 - page faults - violation [1/2 machine hours]: Test

each page fault class (invalid, read-only, SMAP) against
CT-DH.
Result: violation (for all classes)

E2: C1 - page faults - correct [36 machine hours]: Test
each page fault class (invalid, read-only, SMAP) against
CT-VS-NI on CoffeeLake (and newer), resp. against CT-
VS-All (on KabyLake and older).
Result: no violation

E3: C2 - non-canonical accesses - violation [12 machine
hours]: Test non-canonical accesses against CT-VS-All.
Result: violation. Due to the complexity of the contract,
finding a violation may take several hours (it was 11h

454    Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association



when we ran the experiment). Please increase the timeout
if no violation is found within 12h.

E4: C3 - Mpx - correct [12 machine hours]: Test MPX
against CT-DH.
Result: no violation

E5: C4 - ucode-assists - violation [1/6 machine hours]: Test
both variants of ucode-assists (Access bit and Dirty bit)
against CT-DH.
Result: violation (for both variants)

E6: C4 - ucode-assists - correct [24 machine hours] Test
both variants against CT-VS-NI on CoffeeLake (and
newer), resp. against CT-VS-All (on KabyLake and
older).
Result: no violation

E7: C5 - division - violation [2 machine hours] Test both
types of division errors (divide-by-zero and division over-
flow) against CT-VS-NI.
Result: violation (for both variants)

E8: C5 - division - correct [24 machine hours] Test both
types of division errors (divide-by-zero and division
overflow) against CT-VS-Ops.
Result: no violation

E9: C6 - others - correct [36 machine hours] Test #UD, #DB
and #BP against CT-SEQ.
Result: no violation

AMD. On AMD, our claims can be confirmed with the fol-
lowing experiments.
E1: C1 - page faults - violation [1/6 machine hours]: Test

each page fault class (invalid, read-only, SMAP) against
CT-SEQ.
Result: violation (for all classes)

E2: C1 - page faults - correct [36 machine hours]: Test
each page fault class (invalid, read-only, SMAP) against
CT-DH.
Result: no violation

E3: C2 - non-canonical accesses - violation [1/12 machine
hours]: Test non-canonical accesses against CT-DH.
Result: violation

E4: C2 - non-canonical accesses - correct [12 machine
hours]: Test non-canonical accesses against CT-VS-CI.
Result: no violation

E5: C4 - ucode-assists - correct [24 machine hours] Fuzz
both variants (Access bit and Dirty bit) against CT-SEQ.
Result: no violation

E6: C5 - division - violation [2 machine hours] Test both
type of division errors (divide-by-zero and division over-
flow) against CT-VS-NI.
Result: violation (for both variants)

E7: C5 - division by zero - correct [12 machine hours] Test
division-by-zero errors against CT-VS-Ops on Zen3 (or
newer), resp. against CT-VS-All on Zen+ (or older). For
Zen2 (which was not part of our setup), we expect CT-
VS-Ops to hold as well.
Result: no violation

E8: C5 - division overflow - correct [12 machine hours]
Test division overflows against CT-VS-Ops.
Result: no violation

E9: C6 - others - correct [36 machine hours] Test #UD, #DB
and #BP against CT-SEQ.
Result: no violation

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix:
PROSPECT: Provably Secure Speculation for the Constant-Time Policy

Lesly-Ann Daniel, Marton Bognar, Job Noorman, Sébastien Bardin, Tamara Rezk, Frank Piessens

A Artifact Appendix

A.1 Abstract
The artifact contains the source code of the base Proteus pro-
cessor extended with PROSPECT, alongside the benchmarks
and security tests from our paper. All materials (except for the
tool required for hardware cost measurements) are bundled
into a Docker container and distributed on GitHub.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None, our artifact is contained in a Docker container, it does
not perform any attacks against the host system and it does
not use user data.

A.2.2 How to access

The artifact is available on GitHub at the following
URL: https://github.com/proteus-core/prospect/
tree/usenix_artifact.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

Our artifact uses the following two tools, which are available
for both Windows and Linux.

• Docker and 7 GB of disk space for the container (https:
//docs.docker.com/engine/install/).

• Xilinx Vivado 2022.2 Standard Edition, requir-
ing approximately 55 GB of disk space (https:
//www.xilinx.com/products/design-tools/
vivado/vivado-ml.html).

A.2.5 Benchmarks

Our evaluation uses modified benchmarks from the Spectre-
Guard paper, which are included in our artifact.

A.3 Set-up

A.3.1 Installation

1. Install the two dependencies (Docker and Vivado). Our
repository contains detailed instructions on setting up
Vivado to minimize the required disk space.

2. Clone our GitHub repository or download the Dock-
erfile from the root directory (https://github.com/
proteus-core/prospect/tree/usenix_artifact).

3. Build the Docker container by following the instructions
in the README.md of the repository (building takes ap-
proximately 2 hours on a mid-range desktop).

A.3.2 Basic Test

The security evaluation can be run from the Docker container
using the following commands:

// first, launch the container
$ docker run -i -t prospect

// inside the container, run the tests
# cd /prospect/tests/spectre-tests/
# ./eval.py /proteus-base/sim/build/base \

/prospect/sim/build/prospect
TEST secret-before-branch
SECURE VARIANT: Secret did not leak!
INSECURE VARIANT: Secret leaked!
[...]

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): PROSPECT prevents the leakage of secrets from well-
annotated programs via Spectre attacks. This is shown by
experiment (E1) described in Section 6.2, which executes
programs vulnerable to Spectre on the baseline and the
extended secure implementation.

(C2): PROSPECT incurs no overhead on precisely annotated
constant-time code. This is shown by experiment (E2),
described in Section 6.2 (Runtime overhead) and Table 1.
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(C3): PROSPECT only incurs a small overhead in terms of
hardware cost. This is shown by experiment (E3), de-
scribed in Section 6.2 (Hardware cost).

A.4.2 Experiments

(E1): [Security tests, 5 human-minutes]:
How to: The experiment is performed in the container
by launching a script (identical to the basic test A.3.2).
Preparation: Launch the container with docker run
-i -t prospect and navigate to the experiment with
cd /prospect/tests/spectre-tests.
Execution: Run the following command:
./eval.py /proteus-base/sim/build/base \
/prospect/sim/build/prospect
This will run and evaluate the experiments with both
the baseline implementation (first argument) and the
PROSPECT-extended version (second argument).
Results: The results are displayed as text. The security
evaluation should fail with the baseline implementation
and succeed with the extension, validating claim (C1).

(E2): [Runtime overhead, 5 human-minutes + 9 compute-
hours]:
How to: The experiment is performed in the container
by launching a script.
Preparation: Launch the container with docker run
-i -t prospect and navigate to the experiment with
cd /prospect/tests/synthetic-benchmark.
Execution: Run the following command:
./eval.py \
/proteus-base/sim/build/base_nodump \
/prospect/sim/build/prospect_nodump
This will run and evaluate the experiments with both
the baseline implementation (first argument) and the
PROSPECT-extended version (second argument), using
the variants compiled with no waveform dumping to
save disk space.
Results: The results are displayed as text. The gener-
ated table should reflect Table 1 from the paper, validat-
ing claim (C2).

(E3): [Hardware cost, 1 human-hour + 2 compute-hours]:
How to: The experiment is performed in Vivado, using
generated Verilog files from the Docker container.
Preparation: Follow the instructions under the heading
Hardware overhead in README.md to obtain the Verilog
files used for the synthesis and to set up the Vivado
project (Creating the Vivado project).
Execution: Follow the instructions under the heading
Running the Vivado evaluation in README.md to (itera-
tively) obtain the hardware costs of both the baseline and
the PROSPECT-extended hardware design.
Results: The results of the synthesis should be inter-
preted according to the description under the heading
Interpreting the results in the README.md and compared

to the reported numbers in the paper under the heading
Hardware cost (Section 6.2).

A.5 Notes on Reusability
Using the newlib board support package included in this
repository and building on the scripts used for our bench-
marks, it is possible to run other benchmarks on Proteus and
PROSPECT, making additional benchmarking and security
tests possible. The source code of PROSPECT can also be
modified to investigate tradeoffs or to extend the offered se-
curity guarantees.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix: (M)WAIT for It: Bridging the Gap
between Microarchitectural and Architectural Side Channels

Ruiyi Zhang
CISPA Helmholtz Center
for Information Security

Taehyun Kim
Independent

Daniel Weber
CISPA Helmholtz Center
for Information Security

Michael Schwarz
CISPA Helmholtz Center for Information Security

A Abstract

As discussed in the paper, we reverse engineer undocumented
properties of the monitor- and mwait- instruction family
that help convert microarchitectural into architectural states.
In three case studies, we show the versatility of our primitive.
First, with Spectral, we present a way of enabling transient-
execution attacks to leak bits architecturally with up to 200
kbit/s without requiring any timer. Second, we show tradi-
tional side-channel attacks without relying on a timer. Finally,
we demonstrate that when augmented with a coarse-grained
timer, we can also mount interrupt-timing attacks, allowing
us to, e.g., detect which website a user opens. This artifact
contains the description of several experiments and proof-of-
concepts for the paper.

A.1 Description & Requirements

A.1.1 Security, privacy, and ethical concerns

In our experiments, we need to modify page table entries via
the PTEditor library1.

A.1.2 How to access

The source code for this paper is available on GitHub:
https://github.com/cispa/mwait/tree/ae.

A.1.3 Hardware dependencies

We exploit the unprivileged idle-loop optimization instruc-
tions umonitor and umwait introduced with the new Intel
microarchitectures (Tremont and Alder Lake). While the re-
verse engineering and analysis of all mwait- variants are
generic both on Intel and AMD processors.

1https://github.com/misc0110/PTEditor

A.1.4 Software dependencies

We recommend Ubuntu 18.04 or 20.04 and all our experi-
ments are tested on Ubuntu 20.04 LTS (Linux kernel 5.4).

A.1.5 Benchmarks

None.

A.2 Set-up
The individual proof-of-concept implementations are self-
contained and come with a Makefile and an individual de-
scription that explains how to build, run and interpret the
proof-of-concept. In order to run all the proof-of-concepts,
the following prerequisites need to be fulfilled:

A.2.1 Installation

• Build tools (gcc, make)

• Intel latest CPUs (Tremont and Alder Lake)

• PTEditor

• Stress

A.2.2 Basic Test

The folder Intel-umwait contains the basic experiment to
check whether umonitor and umwait work on the current
tested CPUs.

A.3 Evaluation workflow
A.3.1 Major Claims

(C1): We exploit the unprivileged idle-loop optimization in-
structions umonitor and umwait introduced with the
new Intel microarchitectures (Tremont and Alder Lake).
Although not documented, these instructions provide ar-
chitectural feedback about the transient usage of a speci-
fied memory region.
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(C2): We experimentally confirmed that the Intel’s undocu-
mented timed mwait feature can be enabled by setting
bit 31 in MSR (0xe2). We further reverse engineered
the feature and found that bit 1 of the ECX register of the
mwait instruction indicates that the timeout feature is
used. The maximum waiting time is an implicit 64-bit
timestamp-counter value stored in the EDX:EBX register
pair.

(C3): With Spectral, we present a way of enabling transient-
execution attacks to leak bits architecturally with up to
200/ without requiring any architectural timer.

(C4): We show traditional side-channel attacks without rely-
ing on an architectural timer.

(C5): We demonstrate that when augmented with a coarse-
grained timer, we can also mount interrupt-timing at-
tacks, allowing us to, detect which website a user opens.

A.3.2 Experiments

(E1): Intel-umwait
Preparation: Intel Tremont and Alder Lake CPUs
Results: Test if umonitor/umwait work on the current
processors

(E2): trigger-tester
How to: We analyzed different wake-up triggers for all
mwait- variants both on Intel and AMD machines, in-
cluding cache coherence functions. Moreover, we ana-
lyzed the memory type of the monitored address range
by modifying the page table via the library PTEditor.
Results: As shown in the Table 1-2 in the paper.

(E3): timed-mwait
How to: We reverse engineered the Intel’s undocu-
mented timed-mwait feature via a simple Linux kernel
module.
Results: As claimed in the C2.

(E4): comparison
How to: We constructed a benchmark detecting fully
asynchronous events with TWMand other conventional
side-channel attacks for reference.
Results: As shown in the Figure 1-2, Table 3 in the
paper.

(E5): covert-channel
How to: We created a timer-less covert channel with
umonitor and umwait.
Results: As shown in the Figure 4 in the paper.

(E6): spectral
How to: We used the timer-less covert channel for spec-
tre attacks.
Results: As shown in the Figure 5-6 in the paper.

(E7): aes-example
How to: We reproduced attacks on AES T-table imple-
mentation based on our Timer-less Timing Measure-
ment.
Preparation: The deprecated OpenSSL 1.0.1e.

Results: As shown in the Figure 3,7 in the paper.
(E8): website-fingerprinting

How to: We detected network interrupts while opening
a website.
Results: As shown in the Figure 8 in the paper.

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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USENIX’23 Artifact Appendix:
Collide+Power: Leaking Inaccessible Data with Software-based Power

Side Channels

Andreas Kogler1 Jonas Juffinger1 Lukas Giner1 Lukas Gerlach2

Martin Schwarzl1 Michael Schwarz2 Daniel Gruss1 Stefan Mangard1

1Graz University of Technology 2CISPA Helmholtz Center for Information Security

A Artifact Appendix

A.1 Abstract
We present Collide+Power, a technique that extends software-
based power side channels to exploit the mere co-location of
attacker-controlled data with victim data within CPU buffers,
e.g., CPU caches. Collide+Power exploits that the collision
of these values exposes the Hamming distance, i.e., the bit
difference between the values, in the power domain. Col-
lide+Power can be mounted purely from software with any
power-related signal, e.g., power consumption interfaces or
throttling-induced timing variations.

The artifacts demonstrate the fundamental leakage enabling
Collide+Power. First, we analyze the power leakage of the
caches and evaluate our differential measurement method.
Second, we compute the performance of the Correlation
Power Analysis (CPA) for the raw channel and show that
we leak precise victim data. Third, we analyze the effects
of untargeted victim data within the cache lines. Finally, we
demonstrate the attack PoCs for Collide+Power.

All the PoCs are tested on Intel, and some of the PoCs were
also validated on AMD CPUs. Therefore, we only recommend
Intel x86 CPUs to test the artifacts, for the best case, an Intel
Core i7-8700K, Intel Core i9-9980HK, or Intel Core i9-9900.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifacts do not perform any destructive steps, and the
worst risk for system security is a system freeze due to an
unavailable Model Specific Register (MSR) read in the kernel
module we provide. This should not happen if the system
is set up as described above. We verified on our machines
that the kernel module works as intended. If such a freeze
occurs, data loss of unsaved files could happen. Therefore,
we recommend saving all the work and doing a clean reboot
before conducting the experiments. The PoCs only target the
victim data of the provided programs. We do NOT target any

other data on the system, nor do we read the personal files
of the users. Furthermore, the power traces are saved locally
and are not shared with the authors, nor does the provided
framework send any information to us or any other server.

A.2.2 How to access

We provide the artifacts in a public GitHub repository. The
most recent version of the artifacts is provided here: https:
//github.com/iaik/collidepower . The stable version of
the artifacts with the included feedback from the artifact
evaluation is provided here: https://github.com/iaik/
collidepower/tree/ae .

A.2.3 Hardware dependencies

To reproduce the artifacts, we recommend a native bare-metal
Intel CPU. We strongly recommend an Intel Core i7-8700K,
Intel Core i9-9980HK, or Intel Core i9-9900 CPU, as these
CPUs showed the best leakage during our analysis (cf. Table
4 in the paper). For other CPUs not in the list, we designed
the PoCs for an 8-way L1 cache and a 4-way L2 cache design
with a pseudo-LRU replacement policy (cf. Section 4 in the
paper) which can be checked with the cpuid command. If the
cache uses a different number of ways, the PoCs need adap-
tion, or the leakage cannot be guaranteed. Finally, we require
an unfiltered Intel Running Average Power Limit (RAPL)
energy measurement interface, meaning that for CPUs that
support Intel Software Guard Extension (SGX), the Platypus
patches might be active and obfuscate the energy measure-
ments over the RAPL interface. Although we can exploit the
throttling-induced timing variations with SGX enabled, we
recommend disabling SGX in the bios to get unmitigated
RAPL readings and significantly increase the practicality of
the measurements.

A.2.4 Software dependencies

We require a Ubuntu 20.04 installation with Linux kernel
version 5.4. or 5.15. The best case would be a fresh installa-
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tion. The newer 5.19 kernel no longer supports the nosmap
kernel argument, which is required for the initial leakage anal-
ysis. We detail this requirement in the provided readmes of
the repository. Furthermore, we require access to the RAPL
interface, which implies that the experiments must run on a
bare metal machine and should not be a virtual machine as
hypervisors block access to this interface. We require root
privileges to insert a kernel module for the PoCs and to config-
ure the Linux kernel boot command line. To build the PoC we
require a built-essentials setup with gcc and make, which we
list in the repositories readmes. Furthermore, we require the
PTEditor to modify page tables. To post-process the recorded
power traces, we use python3 with additional packages to
provide installation steps in the readmes. Finally, the system
should not be used during the measurements, i.e., no other
user must be logged in, and no program should be executed.
We recommend using ssh to deploy and connect to the given
machine.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

The artifacts use two components: First, a C++ program with
a kernel module performs the experiments and records the
power traces. Second, a post-processing python framework
to analyze the recorded traces. Installation of the required
packages is performed using the apt install command.
The python packages are installed with pip3. Finally, we
adapt some kernel boot parameters to make the analysis more
straightforward. For the detailed apt and python3 packages,
please follow the provided readmes in the repository.

A.3.2 Basic Test

We provide the basic leakage analysis in the repository, which
evaluates if the system exposes the exploited leakage. This
is the smallest possible basic test we implemented since we
cannot identify if the leakage exists on the system with other
means. For detailed instructions, please follow the provided
readmes in the repository.

A.4 Evaluation workflow

A.4.1 Major Claims

We provide artifacts verifying the following claims:
(C1): Using attacker-controlled data and victim data within

the memory hierarchy exposes the combined Hamming
distance leakage of both values in the power domain. We

prove this claim with the initial leakage analysis exper-
iment (E1) described in Section 4, whose results are re-
ported in Table 2.

(C2): Using the differential measurement technique im-
proves the correlation coefficients and the factors for the
Hamming distance. We prove this claim with the same
data as the initial leakage analysis (E1) using a different
post-processing technique (E2). The differential measure-
ment technique is described in Section 5, and the results
are reported in Table 3.

(C3): We evaluate the raw channel leakage rates using our
CPA and demonstrate that we can leak single nibbles as
described in Section 7.2, where the results are shown in
Figure 9. We prove this claim in the raw channel evalua-
tion (E3).

(C4): We show that unmasked data does not influence the
CPA success probability due to the differential measure-
ment. This claim is described in Section 7.2, and the re-
sults are shown in Figure 10. We prove this claim in the
victim data fill experiment (E4).

(C5): We show that Collide+Power with MDS-Power leaks
data that is actively used on the hyperthread. This claim
is described in Sections 6.1 and 7.3, and the results are
shown in Figure 12a. We prove this claim in MDS-Power
experiment (E5).

(C6): We show that Collide+Power observes a signal with
Meltdown-Power for data that is only accessible within
the Linux kernel. This claim is described in Sections 6.2
and 7.5; the results are shown in Figure 12a. We prove
this claim in the MDS-Power experiment (E6).

A.4.2 Experiments

(E1): [30 human-minutes + 10 compute-hour + <5GB disk]:
How to: Follow the general setup guide. Build the pro-
vided PoC with a defined macro. Let the PoC record the
power traces. Use the provided post-processing script to
obtain the results.
Preparation: Reboot the machine and connect via SSH
to the test machine. Build the program and the kernel
module. Load the kernel module, stop all other programs,
and follow the overall system preparation.
Execution: Execute the c++ program and pipe the output
into a CSV file. Let the script run for at least the specified
compute hours. Please note that the compute hours are
estimates as the program only records samples for anal-
ysis. The more samples are recorded, the more accurate
the analysis will get.
Results: Run the provided analysis script on the CSV.

(E2): [30 human-minutes + 0 compute-hours + <5GB disk]:
How to: Reuse the data from E1, the data for E2 is al-
ready included in the csv of E1.
Preparation: The same steps as E1.
Execution: None

462    Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association



Results: The same steps as E1.
(E3): [10 human-minutes + 5 compute-hour + <5GB disk]:

How to: Follow the steps of E1 but with another macro.
(E4): [10 human-minutes + 5 compute-hour + <5GB disk]:

How to: Follow the steps of E1 but with another macro.
(E5): [10 human-minutes + 20 compute-hour + <5GB disk]:

How to: Follow the steps of E1 but with another macro.
(E6): [10 human-minutes + 50 compute-hour + <5GB disk]:

How to: Follow the steps of E1 but with another macro.

Important Notes: The execution times for the experiments
are estimates based on our CPUs that show a high correlation
for the used interface. The longer the experiments is run, the
more data is collected, resulting in a more accurate analysis.
Furthermore, the experiments are designed to be terminated
(CTRL+C) after the desired amount of data is collected. Finally,
the created CSV files should always be valid during the exper-
iments, which allows them to be copied to a different machine
and be analyzed without the experiment to be stopped.

A.5 Notes on Reusability
The framework to analyze the traces is a general framework
that can be reused for plotting and performing correlation
analysis beyond Collide+Power.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

Our paper introduces the new TTE class of transient execu-
tion attacks and presents an end-to-end exploit INCEPTION.
In particular, we make four major claims: 1) TTE allows ma-
nipulation of the BTB and RSB in transient execution, 2) a
PHANTOMCALL allows manipulation of the RSB from an ar-
bitrary instruction, 3) our end-to-end exploit INCEPTION leaks
arbitrary kernel memory, and 4) ibpb overhead is between
93.1% and 239.2%. To back up these claims, this artifact re-
produces experiments outlined in the paper, specifically those
described in Section 8, Section 7.1, Section 7.3 and Section 9.

All experiments should be run on an AMD Zen microar-
chitecture. Our end-to-end exploit INCEPTION requires an
Zen 1(+), Zen 2 or Zen 4 microarchitecture.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our exploit INCEPTION leaks kernel data from a user-
provided address. Potentially private data located at the pro-
vided address will be printed to stdout and stored in a file
(data.bin). An evaluator may choose to clear stdout and/or
remove the output file after running this experiment.

Other than this, our experiments do not impose any security,
privacy or ethical concerns.

A.2.2 How to access

The source code of INCEPTION is retrieved by cloning
https://github.com/comsec-group/inception.git.
The code for this artifact can be found under git tag
usenix-23-ae-final.

A.2.3 Hardware dependencies

All provided code should be run on an AMD Zen microar-
chitectures. The end-to-end exploit works only on Zen 1(+),
Zen 2 and Zen 4 microarchitectures.

A.2.4 Software dependencies

All experiments were ran on Ubuntu 22.04 LTS (Jammy
Jellyfish), with a Linux kernel 5.19.0-28-generic. The
following packages must be installed, available in the
Ubuntu apt repository. git build-essential clang
linux-{image,headers,modules,modules-extra}-
5.19.0-28-generic amd64-microcode=3.20191218
.1ubuntu2, python3.

A.2.5 Benchmarks

To evaluate ibpb as a mitigation, download UnixBench
from https://github.com/kdlucas/byte-unixbench
and place it under ./ibpb-eval.

A.3 Set-up
The experiments are designed to run on bare-metal, they will
not work inside a virtualized environment. You need an AMD
processor similar to the ones we used in the paper.

A.3.1 Installation

1. Install Ubuntu 22.04

2. Install necessary dependencies (c.f. §A.2.4).

3. Boot the newly installed kernel.

A.3.2 Basic Test

Navigate to the path of the repository and run ./check.sh.
This script should show three times PASS. If the first line
shows PASS, but the second or third line shows FAIL, all ex-
periment but E3 can be evaluated on your system.
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A.4 Evaluation workflow

A.4.1 Major Claims

(C1): TTE allows manipulation of the BTB and RSB with
code executed in transient execution.

(C2): We can manipulate the RSB from an arbitrary instruc-
tion using a PHANTOMCALL.

(C3): Our end-to-end exploit INCEPTION leaks arbitrary ker-
nel memory.

(C4): ibpb can be used as mitigation against INCEPTION on
Zen 1(+) and Zen 2, and has an overhead between 93.1%
and 239.2%.

A.4.2 Experiments

(E1.1): [TTE of BTB] [1 minute]: this experiment executes
a branch in transient execution and determines whether
the state of the BTB has been changed. The experiments
are described in Section 8 and depicted in Figure 9.
How to: These experiments should be carried out under
tte_btb/.
Preparation: Install the kernel module under
kmod_ibpb.
Execution: To build and run, run ./run_all.sh.
Results: The script runs number of TTE tests. Lines
starting with sig_* indicates a cache signal caused by
TTE. The number is further represented within the array
rb, where it should be significantly higher than the other
numbers. The other numbers serves as indication for
noise and should be low or 0.

(E1.2): [TTE of RSB] [10 minutes]: this experiment executes
a branch in transient execution and determines whether
the state of the RSB has been changed. The experiments
are described in Section 5.2 and Section 8, and depicted
in Figure 1 and Figure 9.
How to: Navigate to ./tte_rsb.
Preparation: Before running this experiment, make
sure the machine is quiescent. Find two sibling cores
CORE 1 and CORE 2 on the target machine.
Execution: Follow the instructions in the provided
README.md. Run ./tte_rsb.sh <CORE 1> <CORE 2>
<OUTPUT DIR> <OPTIONAL CLANG ARGS>.
Results: The output files in the OUTPUT DIR show the
hits in the reload buffer for each return executed (one col-
umn for each return). If the RSB is uneffected by TTE,
stdout should show a diagonal line. If this diagonal line
is disturbed, entries are corrupted. If the last row of the
output (Hijacked) shows hits, speculative return targets
were hijacked using TTE.
Output files *_16.txt are the result of transiently exe-
cuting 16 calls, and they should show a corrupted entries
(disturbed diagonal line) on all AMD Zen microarchi-
tectures. On Zen 3 and Zen 4, the output should show
hijacked returns (hits in row Hijacked). Output files

*_32.txt are the result of transiently executing 32 calls,
and they should show hijacked returns for all AMD Zen
microarchitectures. However, note that depending on the
microarchitectural state, the desired number of calls do
not always fit in the transient window. Therefore, output
may not always show hijacked returns.

(E2): [TTE of RSB using PHANTOMCALL] [10 minutes].
This experiment shows that AMD’s RSB can be manipu-
lated with a recursive PHANTOMCALL. The experiments
is described in Section 7.1 and depicted in Figure 5. The
results of this artifact should resemble those shown in
Figure 6. From the results produced by this experiment,
it should be possible to conclude that we can hijack re-
turn instructions on all Zen microarchitecture, and that
for Zen 1(+) and Zen 2 this only succeeds when a work-
load is running on the sibling hyperthread. However, the
exact (number of) entries corrupted (and potentially re-
turns hijacked) may differ slightly, since its dependent
on various circumstances, as pointed out in the paper.
How to: Navigate to ./phantomcall/zen_1_2
when running on Zen 1(+)/Zen 2, or navigate to
./inception/zen_3_4 when running on Zen 3/Zen 4.
Preparation: Before running this experiment, make
sure the machine is quiescent. Find two sibling cores
CORE 1 and CORE 2 on the target machine.
Execution: Follow the instructions in the provided
README.md. To start, run: ./recursive_pcall.sh
{ZEN/ZEN2/ZEN3/ZEN4} <CORE 1> <CORE 2>
<OUTPUT DIR> <OPTIONAL CLANG ARGS>. As an
example, if running on Zen 2, and if cores 1 and
9 are sibling hyperthreads, you may want to run:
./recursive_pcall.sh ZEN2 1 9 zen2_output.
Results: The experiment produces up to two output files
in the OUTPUT DIR:

1. no_ht.txt: this file contains the output of running
the experiment on CORE 1, while CORE 2 is dis-
abled.

2. ht.txt (only for Zen 1, Zen + and Zen 2): this file
contains the output of running the experiment on
CORE 1, while running a workload on CORE 2.

The output files show the hits in the reload buffer for each
return executed. The last row of the output (Hijacked)
indicates hijacked returns (e.g. the executed return trig-
gered the use of a transiently injected RSB entry). In case
the experiment is successfull, we expect the following
output:

• no_ht: For Zen 1(+) and Zen 2, this output should
show a diagonal line which stops at a certain point,
when it turns into a horizontal line. The last row
(Hijacked) should not show hits. For Zen 3 and
Zen 4, this experiment should show that we corrupt
enough entries to hijack return instructions: some
of the returns should show hits in the last row of the
matrix (Hijacked).
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• ht (only for Zen 1, Zen + and Zen 2): This output
should show hits in the last row (Hijacked) for
each column, indicating that the transient control
flow was hijacked for each return executed.

(E3): [Leaking kernel memory with INCEPTION] [10 min-
utes]: this experiment shows that we can leak abitrary
kernel memory using PHANTOMCALL, using the setup
described in Section 7.3 and depicted in Figure 7.
How to: Navigate to ./inception/zen_1_2
when running on Zen 1(+) or Zen 2. Navigate to
./inception/zen_4 when running on Zen 4.
Preparation: Before running this experiment, make
sure the machine is quiescent. Follow the instructions
in the provided README.md on how to compile the re-
quired code for this experiment. Install the provided
kernel module, which prints a kernel address containing
a secret to dmesg, as described in README.md. When
running on Zen 4, optionally enable AutoIBRS: sudo
wrmsr 0xC0000080 -a 0x200d01.
Execution: Run INCEPTION: ./inception <KERNEL
ADDRESS>, where KERNEL ADDRESS can be found in the
dmesg output.
Results: The leaked bytes are printed to stdout. The
secret contains of 1024 As, 1024 Bs, 1024 Cs, and finally
1024 Ds.

(E4): [INCEPTION vs. ibpb] [10 minutes; 10 hours com-
pute]: this experiment evaluates ibpb against INCEP-
TION.
How to: This experiment should be carried out under
./ibpb-eval.
Preparation: Clone UnixBench, git clone
https://github.com/kdlucas/byte-unixbench.
Execution: Run UnixBench (./Run) 5 times and
save the results into a folder called baseline. Then
reboot with the kernel parameter retbleed=ibpb
(note: Zen3/4 requires the new kernel 6.2 parameter
retbleed=ibpb,force) and run UnixBench 5 more
times. Save the results in a folder called ibpb.
Results: To print the results in the format pre-
sented in Section 9, run ./parse.py <path>. You
may test the parser on pre-recorded results: ./parse
./raw/ee-tik-cn118.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

We provide the artifact to demonstrate the power of Bunny-
Hop in reverse-engineering the Instruction Prefetcher and
Branch Target Buffer on Intel processors. The artifact further
contains code to demonstrate BunnyHop-Reload, BunnyHop-
Evict and BunnyHop-Probe in breaking KASLR and cache
colored AES as well as monitoring a BTB entry cross hyper-
threads.

A.2 Description & Requirements

A.2.1 Security, Privacy, and Ethical Concerns

The evaluation of the BunnyHop-Evict involves installing a
customized Linux kernel and a kernel module that does an
AES encryption. To install the kernel, you may experience
various warnings or errors. Please be careful when installing
the kernel, and the users are on their own risk.

The provided code is only for the purpose of artifact evalua-
tion. The authors are not responsible for any problems caused
by using the provided code for other purposes.

A.2.2 How to Access

The artifact is available in GitHub repository:
https://github.com/0xADE1A1DE/BunnyHop/tree/
87abca5ef855593e4dc8e40e4b162d9f01026391.

The source code for cache colored kernel is available at
https://doi.org/10.5281/zenodo.7704477.

A.2.3 Hardware Dependencies

To run the artifact, you need a machine with Intel processors
(6th, 8th, 9th, 10th Gen), running Ubuntu OS natively (not on
virtual machine). You need to enable hyper-threading.

To test the BunnyHop-Evict, a machine with Intel processor
(6th ∼ 10th Gen) having four physical cores is necessary.
Because the cache coloring we implement uses the last-level

cache hash function for four core machines, we tested the
BunnyHop-Evict on i7-6700 and i5-8265U.

A.2.4 Software Dependencies

You will need to install AssemblyLine and Mastik (Please
refer to the README) to allocate code at any locations and
use some side-channel technique APIs.

You will need essential packages to compile the customized
Linux kernel. Please refer to https://phoenixnap.com/
kb/build-linux-kernel for the full list of required pack-
ages.

A.2.5 Benchmarks

None

A.3 Set-up

A.3.1 Installation

Users need to install AssemblyLine and Mastik before
running any programs. You can find them under repos-
itory https://github.com/0xADE1A1DE/AssemblyLine
and https://github.com/0xADE1A1DE/Mastik respec-
tively.

Both AssemblyLine and Mastik are long term supported
tools. In this artifact we use AssemblyLine available
at https://github.com/0xADE1A1DE/AssemblyLine/
tree/9fb095da7b5be01a121be9262e476f7a5cf71697
and Mastik available at https://
github.com/0xADE1A1DE/Mastik/tree/
8c4e550e9347e8b2f287f16f83015cd9d60414bb.

A.3.2 Basic Test

To test if two aforementioned tools are properly installed, you
can run the experiment E1.
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A.4 Evaluation Workflow

A.4.1 Major Claims

(C1): The instruction prefetcher prefetches multiple memory
lines. (E1) proves this.

(C2): The instruction prefetcher follows trained branch. (E2)
proves this.

(C3): The instruction prefetcher is shared between hyper-
threads. (E3) proves this.

(C4): The branch target buffer stores branches as long and
short branches and different target bits are stored. (E4)
proves this.

(C5): The BunnyHop-Reload technique can be used to break
KASLR. (E5) proves this.

(C6): The BunnyHop-Evict technique can be used to bypass
cache coloring and table preloading. (E6) proves this.

(C7): The BunnyHop-Probe technique can be used to monitor
a branch status in BTB cross-threads. (E7) proves this.

A.4.2 Experiments

(E1): [1/12 human-minutes, 1/720 CPU-hour] Test prefetch-
ing depth. For more information, please refer to
README under BunnyHop/IP_RE/test_depth
Preparation: Have AssemblyLine and Mastik in-
stalled.
Execution: Execute the experiment.bash to automati-
cally run the test. The script tests for 20 memory blocks
following the invoked function.
Results: Table 1 summarizes the result collected from
different platforms. On 6th ∼ 10th Gen processors, you
should observe that the prefetch depth is 14.

(E2): [1/12 human-minutes, 1/720 CPU-hour] Test the ef-
fect of trained branches on the instruction prefetcher.
For more information, please refer to README under
BunnyHop/IP_RE/test_branch
Preparation: Have AssemblyLine and Mastik in-
stalled.
Execution: Execute the experiment.bash to automati-
cally run the test. The script tests for 60 memory blocks
following the invoked function.
Results: You should observe that an instruction
prefetcher follows the trained branches to prefetch mem-
ory blocks. Sample result is available under the folder.

(E3): [1/12 human-minutes, 1/720 CPU-hour] Test the be-
havior of the instruction prefetcher on hyper-threads. For
more information, please refer to README under Bun-
nyHop/IP_RE/test_ip_operation
Preparation: Have AssemblyLine and Mastik installed.
Set the processor governor to performance. You will
need to isolate two sibling cores at the boot time. (See
README)
Execution: Execute test_idle.bash to run the test when
the hyperthread is idle. Execute test_busy.bash to run the

test when the hyperthread is busy with fetching infinite
NOPS. You will need to change pinned cores (to two
sibling cores) according to your machine configuration.
Results: You should be able to plot Figure 2 on ma-
chines with 6th ∼ 10th Intel processors.

(E4): [1/12 human-minutes, 1/720 CPU-hour] Test the tar-
get bits stored for long branch and short branch. For
more information, please refer to README under Bun-
nyHop/BTB_RE/test_targetbits
Preparation: Have AssemblyLine and Mastik installed.
The core runs the test is isolated at the boot time.
Execution: You will need to compile the program with
the command gcc main.c -lassemblyline -o bh. Then
you execute the program with the command taskset -c
1 ./bh > result.txt. In the end, you plot the graph with
the command python3 plot.py. The graph is saved as
result.py.
Results: You should observe that the instruction
prefetcher follows the trained branches to prefetch mem-
ory blocks. The sample result is available under the
folder.

(E5): [1/3 human-minutes, 1/180 CPU-hour] Break KASLR
with the BunnyHop-Reload. For more information,
please refer to README under BunnyHop/bunnyhop_fr.
Preparation: You need to find the default physical ad-
dress of the target branch and branch targets. Please
follow the instructions on the README.
Execution: You need to compile the program with
make. The code we provide guesses 256 BTB tag values.
To run the code, execute bash test.bash.
Results: You will see the obtained BTB tag bits and a
computed physical address after the randomization.

(E6): [5 human-minutes, 1/12 CPU-hour] Break AES and
bypassing cache coloring and table preloading with the
BunnyHop-Evict. For more information, please refer to
README under BunnyHop/bunnyhop_evict.
Preparation: You need to compile and install a kernel
that supports cache coloring. You also need to install an
AES kernel module. Please follow the instructions on
README.
Execution: You need to first obtain the address of an
AES encryption and update the value (base) in test.bash
under the folder bunnyhop_evict/self-eviction/spy. To
compile and execute the code, run the command bash
test.bash
Results: The randomly generated plaintext and timing
result are saved in file result_0xff.txt. To plot Figure
5, you should run the command python3 relation.py.
It reads fewer samples and plots a Pearson correlation
graph. In a scenario that the measurement is noisy, you
could run python3 process.py to find 16 peaks.

(E7): [30 human-minutes, 1/2 CPU-hour] Test the accuracy
of the BunnyHop-Probe cross hyperthreads. For more
information, please refer to README under Bunny-
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Hop/bunnyhop_pp/hyperthread.
Preparation: You need to isolate two sibling cores at
the boot time. You need to update the experiment.bash
to pin the victim and spy on two sibling threads.
Execution: The experiment is similar to that of the
Flush+Reload, and it requires the attacker to find a proper
waiting cycles. The waiting cycles are determined by
processors and CPU frequencies. More instructions on
how to find proper waiting cycles are available at the
README file.
Results: The result is written to overall_result.txt which
indicates the bits that are correctly guessed. You can
get an overall success rate with the command python3
final_analyse.py

A.5 Notes on Reusability
We provide the template code to generate aliased branches
or NOPs in BunnyHop/src. They can be easily adapted for
different purposes. We will later integrate the BunnyHop into
Mastik.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
We provide source code of BTD and data used in
our experiments. Our artifact is publicly available at
https://github.com/monkbai/DNN-decompiler/tree/
b4f64783846b85cac4b0eb6c7a5595535cc858d3 with
detailed documents. In the evaluation, user is able to use BTD
to decompile 63 provided DNN executables into their original
DNN model specifications, including 1 DNN operators and
their topological connectivity, 2 dimensions of each DNN
operator, and 3 parameters of each DNN operator, such as
weights and biases, in json format.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our artifact does not rise any ethical concerns. The experi-
ments will not cause any risk for evaluators’ machines security
or data privacy.

A.2.2 How to access

The artifact is publicly available at https:
//github.com/monkbai/DNN-decompiler/tree/
b4f64783846b85cac4b0eb6c7a5595535cc858d3.

A.2.3 Hardware dependencies

We ran our evaluation experiments on a server equipped
with Intel Xeon CPU E5-2683, 256GB RAM, and an Nvidia
GeForce RTX 2080 GPU. Logging and filtering all traces
for all DNN executables in the evaluation takes more than a
week and consumes nearly 1TB disk storage. To ease the AE
committee to review, we omit the trace logging process and
provide the filtered traces in the docker image and evaluation

*Corresponding author.

data. The trace logger and filter are provided in MyPinTool
and the trace_filter.py script. Without logging and filtering,
the whole evaluation takes roughly 24 hours and requires less
than 120GB of disk space. Besides, the symbolic execution
may consume a lot of memory resources, so please make sure
that the machine on which the experiment is run has sufficient
memory.

A.2.4 Software dependencies

BTD relies on IDA Pro (version 7.5) for disassembly, and
because IDA is commercial software, we do not provide it in
this repo; instead, in order to reduce the workload of AE re-
viewers, we provide the disassembly results directly as input
for BTD. The scripts used to disassemble DNN executable
into assembly functions with IDA are presented in our ar-
tifact. IDA Pro is not indispensable; any other full-fledged
disassembly tool can be used to replace IDA.

A.2.5 Benchmarks

Table 1: Compilers evaluated in our study.
Tool Name Publication Developer Version (git commit)

TVM OSDI ’18 Amazon
v0.7.0
v0.8.0

v0.9.dev

Glow arXiv Facebook
2020 (07a82bd9fe97dfd)
2021 (97835cec670bd2f)
2022 (793fec7fb0269db)

NNFusion OSDI ’20 Microsoft v0.2
v0.3

Our evaluation covers above 7 models compiled with 9 dif-
ferent compiler options, including Glow-2020, Glow-2021,
Glow-2022, TVM-v0.7 (O0 and O3), TVM-v0.8 (O0 and O3),
TVM-v0.9.dev (O0 and O3), in total 63 DNN excutables.
NNFusion-emitted executables are easier to decompile since
they contain wrapper functions to invoke target operator im-
plementations in kernel libraries (see our paper for more de-
tailed discussion). Thus, in this evaluation we only focus on
decompiling executables compiled by TVM and Glow.
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Table 2: Statistics of DNN models and their compiled executables evaluated in our study.
Model #Parameters #Operators TVM -O0 TVM -O3 Glow -O3

Avg. #Inst. Avg. #Func. Avg. #Inst. Avg. #Func. Avg. #Inst. Avg. #Func.
Resnet18 11,703,912 69 49,762 281 61,002 204 11,108 39
VGG16 138,357,544 41 40,205 215 41,750 185 5,729 33
FastText 2,500,101 3 9,867 142 7,477 131 405 14
Inception 6,998,552 105 121,481 615 74,992 356 30,452 112
Shufflenet 2,294,784 152 56,147 407 34,637 228 33,537 59
Mobilenet 3,487,816 89 69,903 363 46,214 228 37,331 52
Efficientnet 12,966,032 216 89,772 546 49,285 244 13,749 67

A.3 Set-up

A.3.1 Installation

Download the packed docker image, then run the command
below to unpack the .tar file into a docker image.

cat BTD-artifact.tar | docker import - btd

Create a container with the docker image.

docker run -dit --name BTD-AE btd /bin/bash

Open a bash in the container:

docker exec -it BTD-AE /bin/bash
cd /home

BTD can also be installed from source code, the detailed
instructions are listed in our artifact.

A.3.2 Basic Test

To run the evaluation of operator inference:

cd DNN-decompiler
git pull
./op_infer_eval.sh

Inference results are written in the output directory.
The output would be in format: Compiler Option-Model-
Operator Name/Type Pred: output. For example, the out-
put below indicates that a libjit_fc_f (Fully-Connected,
FC) operator in the vgg16 model compiled with Glow_2021
is correctly inferred as matmul (Matrix Multiplication).

GLOW_2021-vgg16-libjit_fc_f Pred: matmul
GLOW_2021-vgg16-libjit_fc_f Label: matmul

To run the evaluation of decompilation and rebuild:

cd DNN-decompiler
git pull
./decompile_eval.sh

This experiment will decompile and rebuild all 63 DNN
executables. It takes 24 hours to finish all experiments. The
output of rebuilt models and original DNN executables will be
printed on screen (see example in Decompilation Correctness
below). Corresponding decompilation outputs will be stored
in the evaluation directory.

After executing decompile_eval.sh, for each direc-
tory in evaluation, a topo_list.json containing the
network topology ( 1 ), a new_meta_data.json con-
taining dimensions information ( 2 ), and a series of
func_id.weights/biases_id.json containing all parame-
ters of the decompiled DNN model ( 3 ) will be generated.

Each item in topo_list.json will be: [‘node id’,
‘func_id.txt’, ‘operator type’, [input addresses], ‘output ad-
dress’, [input node ids], occurrence index].

Each item in new_meta_data.json will be:
[‘<func_id>.txt’, [operator dimensions], ‘operator en-
try address (in executable)’, ‘operator type’, with_parameter,
stride (if exists), padding (if exists)].

Examples can be found in README.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): BTD is able to decompile all 63 DNN executables into
model specifications that are (near) identical with input
models. The decompiled model specifications can be
used to rebuild new models that have identical output
(with minor precision loss) as the output of original DNN
executables.

A.4.2 Experiments

After decompilation experiments, all DNN model are rebuild
with decompiled model structures and extracted parameters
(stored in .json format). decompile_eval.sh will run each
rebuilt model (implemented in pytorch) and the original DNN
executable with the example image in binary format as input.
The output would be like this:

- vgg16_tvm_v09_O3
- Rebuilt model output:
Result: 282
Confidence: 9.341153
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- DNN Executable output:
Result: 282
Confidence: 9.341150

In the above example, both rebuilt model and DNN exe-
cutable output result as 282 (see 1000 classes of ImageNet),
and the confidence scores are 9.341153 and 9.341150, re-
spectively. While the confidence scores (or max values) are
slightly inconsistent, we interpret that such inconsistency is
caused by the floating-point precision loss between pytorch
model and DNN executable, i.e., the decompilation is still
correct.
(E1): [Decompilation Correctness] [10 human-minutes + 24

compute-hour + 120GB disk]: as described above.
How to: As described in A.3.2 Basic Test.
Results: The predicted label output by the original
DNN executable and the rebuilt model should be identi-
cal.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract

In our paper “Every Signature is Broken: On the Insecurity
of Microsoft Office’s OOXML Signatures”, we present seven
attacks, divided into five attack classes, on signed OOXML
Word documents. The goal of each attack is to manipulate the
displayed document content without invalidating the signa-
ture.

The attack classes Content Injection Attack (CIA), Content
Masking Attack (CMA) and Legacy Wrapping Attack (LWA)
are based on specification flaws that allow the attacker to cor-
rectly reference subsequently added files within the OOXML
package. The root problem here consists of only partially
signed relationship files. The Universal Signature Forgery
(USF) and Malicious Repair Attack (MRA) attack classes
exploit implementation flaws in the corresponding OOXML
application. The reviewers can test the attacks under different
Microsoft Office and OnlyOffice desktop versions during the
evaluation. Since different versions of Microsoft Office can-
not be installed simultaneously under one operating system,
the applications must be installed individually. A bare-metal
solution with macOS Monterey is required for the macOS
versions of Microsoft Office and OnlyOffice Desktop.

We provide proof of concept (PoC) files for each attack to
the reviewers. Here, the document numbered 01 is the source
document, 02 is the first manipulation step (intermediate step),
and 03 is the ready-to-run exploit. There is one exception for
CIA, where the document 02 corresponds to the exploit.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The attacks are aimed at manipulating signed OOXML Word
documents. The documents do not contain any macro code
or similar that could influence the operating system. We have
reported all vulnerabilities found during our investigations to
Microsoft, OnlyOffice, as well as to the responsible standard-
ization committee ISO/IEC JTC 1/SC 34. The vulnerabilities

have been acknowledged by Microsoft. However, Microsoft
has decided that the vulnerabilities do not require immediate
attention. According to Microsoft, a potential fix in the future
is not excluded. OnlyOffice has announced they are working
on a fix.

A.2.2 How to access

• Stable URL: Link
• PoC files: Link
• To download Microsoft Office 2019, 2021 and 365, the

Office Deployment Tool must be used with the appropri-
ate configuration file:

– Office Deployment Tool: Link
– Configurations files: Link

• Microsoft Office 2016: Link
• Microsoft Office 2013: Link
• Microsoft Office for macOS 2019/2021/365: Link
• OnlyOffice Desktop: Link
• 7-Zip: Link
• Notepad++: Link

A.2.3 Hardware dependencies

A computer running Windows 10 and Ubuntu 22.04.1 or an
equivalent Virtual Machine (VM) is required.

An Apple hardware running macOS Monterey is required
to evaluate the attacks against Microsoft Office and OnlyOf-
fice for macOS.

A.2.4 Software dependencies

Possibility to install the office packages.

A.2.5 Benchmarks

None
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A.3 Set-up
A.3.1 Installation

The packages for OnlyOffice and Microsoft Office 2013, 2016,
as well as the macOS versions of Microsoft Office can be
downloaded and installed directly. For Microsoft Office 2019,
2021 and 365, the Office Deployment Tool must be installed.
After installation, setup.exe must be started from the console
and the configuration file must be passed as an argument:
setup.exe /configure config-file.xml

Since the certificate used to sign the PoC files was only
valid for three months and expired on September 5th, 2022,
the host system date must be set accordingly to a date between
June 7th and September 5th, 2022. If the date is not corrected
accordingly, a recoverable signature is displayed in Microsoft
Word instead of a valid document signature.

A.3.2 Basic Test

From the PoCs folder, open the file /5-
1_CIA/01_document_signed_by_trusted_entity.docx.
Microsoft Office will display a valid document signature on
opening the document if everything is set up correctly. If
a recoverable signature is displayed, the date was not reset
correctly or there is no internet connection available to verify
the certificate.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The attacker can manipulate a signed OOXML Word
document. Microsoft Office for Windows displays the
content selected by the attacker without invalidating the
signature. This is proven by experiment E1. Sections
5, 6, and 7 of our paper contain the description of the
attack technique, as well as our evaluation results. For
this experiment, the attack classes CIA, CMA, LWA,
USF, and MRA are relevant.

(C2): The attacker can manipulate a signed OOXML Word
document. Microsoft Office for macOS displays the con-
tent selected by the attacker. The status of the signed
document is displayed unchanged as a document pro-
tected by a digital signature. This is proven by experi-
ment E2. Section 3 of our paper contains our evaluation
results. Microsoft Office under macOS does not cryp-
tographically check the signature, so direct document
manipulation is possible. A dedicated attack technique
is not required.

(C3): The attacker can manipulate a signed OOXML Word
document. OnlyOffice Desktop for Windows, macOS,
and Linux displays the content selected by the attacker
without invalidating the signature. This is proven by

experiment E3. Sections 5, 6, and 7 of our paper contain
the description of the attack technique, as well as our
evaluation results. For this experiment, the attack classes
CIA, CMA, LWA, and MRA are relevant.

A.4.2 Experiments

Partial signatures:
Name of the signer   Date of signing

Valid signatures:
Name of the signer   Date of signing

Recoverable error:
Name of the signer   Date of signing

Invalid signatures:
Name of the signer   Date of signing

UI Layer 2
UI Layer 3

1.

2.

3.

a)

c)

d)

b)

UI Layer 1
1.
2.
3.

SIGNATURES   This document contains valid signatures.

SIGNATURES   This document contains invalid signatures.

SIGNATURES   This document contains recoverable signatures.

Signed Document
This document has been signed and marked as final. It should not 
be edited. If anyone tampers with this document, the signatures 
will become invalid.

Recoverable Signatures
One or more of the digital signatures in this document is 
recoverable or could not be verified. A recoverable signature may 
indicate that an error occurred when the document was signed.

Invalid Signatures
One or more of the digital signatures in this document is invalid or 
could not be verified. An invalid signature may indicate that the 
document has been modified since it was signed.

Figure 1: Representation of the different UI layers of Mi-
crosoft Office (Windows). A valid signature can combine the
three UI layers 1. a) or 1. b). 2. c) corresponds to a signature
with an unknown certificate state, e.g., if the certificate has ex-
pired, has been self-signed, or there is no Internet connection
to validate the chain of trust. 3. d) corresponds to an invalid
signature, e.g., because an attacker modified the signed con-
tent. OnlyOffice Desktop provides only one UI layer to show
the status of the document signature. This is essentially the
same as the UI layer 3 shown and can reflect the combination
a) or d).

(E1): [1 human-hour + 2 compute-hours + 10GB disk]: Ma-
nipulation of signed OOXML Word documents under
Microsoft Office for Windows.

Preparation: Download the provided PoC files to the
system and launch a Windows version of Microsoft Of-
fice. All versions of Microsoft Office for Windows are
equally vulnerable to the CIA, CMA, LWA, USF, and
MRA attack classes. Microsoft Office 2013 has a bug
that causes the UI layer 3 (Figure 1) to be left blank for
any signed OOXML Word documents. The MRA attacks
work on Microsoft Office 2019 and 2021 only if the of-
fice application has been activated/licensed. Set your
host system to a date between June 7th and September
5th, 2022. The host system needs an Internet connection
to validate the certificate trust chain.

Execution: One by one, open the files starting with 01
and 03 from the folders of the downloaded PoC files.
The files 01 correspond to the unmanipulated original
documents. Files 03 correspond to the documents signed
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by the trusted entity and manipulated by the attacker.
The CIA attack is an exception to this rule. Here, the
file starting with 02 corresponds to the document ma-
nipulated by the attacker. Microsoft Office prompts to
repair the documents when opening the files starting
with 03 of attack class MRA. This repair prompt is part
of the attack and must be confirmed. When closing, the
document must not be saved, as this removes the attack
vector.

Results: All documents starting with 01 show the con-
tent:

This document was created and validly signed
by a trusted entity.

All documents manipulated by the attacker contain the
content:

This document has been manipulated by the
attacker.
The content is chosen by the attacker.

The CMA attack in the 5-2_CMA_Font_Inj subfolder
is an exception. In the attacker document starting with
03, all numbers were replaced with 6, and the name was
changed to EVIL.

For all attacks the UI layer 1 shows a valid signature (see
Figure 2). Due to the use of test licenses of Microsoft
Office applications, it may happen that the UI layer 1
is only displayed before or, in some versions, after the
license query (to be canceled).

Figure 2: Valid signature under Microsoft Office’s UI layer 1.

UI layer 2 is displayed after clicking on File (top left).
The content of UI layer is the same as shown in Figure 3.

Figure 3: Valid signature under Microsoft Office’s UI layer 2.

From UI layer 2, UI layer 3 can be opened by click-
ing on View Signatures. Here, the original signer
trusted.person.ooxml@gmail.com is displayed as the
signer for each manipulated document, although the con-
tent differs from the original signed document. For the
CIA, CMA, LWA, MRA attack classes the signature type
is specified as Partial signature, while for the USF attack
class the signature type is specified as Valid signature
(see (a) and (b) in Figure 1).

(E2): [15 human-minutes + 10 compute-minutes + 5GB disk
(for software)]: Manipulation of signed OOXML Word
documents under Microsoft Office for macOS.

Preparation: Download the provided PoC files to the
system and launch a macOS version of Microsoft Office.

Execution: Open 01_docu-
ment_signed_by_trusted_entity.docx and 02_di-
rect_manipulation_by_attacker.docx files one by
one.

Results: The document starting with 01 shows the con-
tent:

This document was created and validly signed
by a trusted entity.

The document manipulated by the attacker (starting with
02) contains the content:

This document has been manipulated by the
attacker.
The content is chosen by the attacker.

Figure 4: Message about a document protected by a signature
in Microsoft Office for macOS.

Microsoft Office for macOS does not provide the UI
layer described for the Windows variants. Microsoft Of-
fice for macOS only issues a message about a document
protected by a signature (see Figure 4). This message
also appears for the document manipulated by the at-
tacker, although the included signature file (sig1.xml)
does not contain any signature-relevant information.
This shows that Microsoft Office does not perform any
cryptographic verification of the signature.

(E3): [30 human-minutes + 30 compute-minutes + 5GB
disk)]: Manipulation of signed OOXML Word documents
under OnlyOffice Desktop for Windows, macOS, and
Linux.

Preparation: Download the provided PoC files to the
system and launch a version of OnlyOffice Desktop. All
versions of OnlyOffice Desktop are equally vulnerable
to the CIA, LWA, and MRA attack classes, as well as
the style injection attack from the CMA attack class.

Execution: One by one, open the files starting with 01
and 03 from the folders of the downloaded PoC files.
The files 01 correspond to the unmanipulated original
documents. Files 03 correspond to the documents signed
by the trusted entity and manipulated by the attacker. The
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CIA attack is an exception to this. Here, the file starting
with 02 corresponds to the document manipulated by the
attacker.

Results: All documents starting with 01 show the con-
tent:

This document was created and validly signed
by a trusted entity.

All documents manipulated by the attacker contain the
content:

This document has been manipulated by the
attacker.
The content is chosen by the attacker.

The CMA attack in the 5-2_CMA_Style_Inj subfolder is
an exception. Since OnlyOffice has limited vulnerability
to this attack, attackers can only hide existing content,
but they cannot add new content. Thus, OnlyOffice dis-
plays the document manipulated by the attacker as an
empty document.

Figure 5: Valid signature under OnlyOffice’s UI layer.

OnlyOffice shows the signer and the signature sta-
tus on the right side after opening the signed doc-
uments. On Windows, macOS, and Linux, a valid
signature is displayed. Under Windows, the signer
trusted.person.ooxml@gmail.com is displayed directly,
as shown in Figure 5. On macOS and Linux, the issuer
of the certificate is displayed first. With a right-click on
the issuer, the certificate details can be shown. The same
signer (trusted.person.ooxml@gmail.com) is displayed
within the subject section (CN) of the certificate.

(E4): [1 human-hour)]: Reproducibility of the manipulation
of the displayed content of a signed OOXML document.

The following steps describe the procedure to repro-
duce that the displayed content is not protected by the
signature and thus remains arbitrarily manipulable. This

applies to the attack classes CIA, CMA, LWA, and MRA.
The USF attack requires that correct hash values are gen-
erated for the displayed content. The procedure required
for this is described in our paper. The manipulations
require 7-Zip and Notepad++.

CIA:

1. right click on 02_CIA_manipulated_by_attacker.
docx. In the subitem 7-Zip click on Open archive.

2. in the archive in the subfolder word/ extract the
people.xml".

3. now open people.xml with Notepad++.
4. between the first element <w:t></w:t> you will

find the displayed text. This text can be manipu-
lated arbitrarily.

5. now insert the manipulated people.xml back into
the archive in the subfolder word/ and overwrite
the old file.

6. When opening the document, the inserted content is
now displayed, while the signature status remains
valid.

CMA Font Inj.:

1. right-click on 03_CMA_Font_Inj_manipulated_
by_attacker.docx. In the subitem 7-Zip click on
Open archive.

2. extract the document.xml.rels in the archive in the
subfolder word/_rels/.

3. now open document.xml.rels with Notepad++.
4. delete the entry <Relationship Id="rId4"

Type="http://schemas.openxmlformats.org/office
Document/2006/relationships/fontTable" Tar-
get="fontTable.xml"/>. This will remove the link
to the malicious embedded fonts.

5. now add the manipulated document.xml.rels back
into the archive in the word/_rels/ subfolder and
overwrite the old file.

6. when opening the document, the content without
malicious fonts is now displayed, while the signa-
ture status remains valid.

CMA Style Inj.:

1. right-click on 03_CMA_Style_Inj_manipulated_by_
attacker.docx. In the subitem 7-Zip click on Open
archive.

2. in the archive in the subfolder word/_rels/ extract
the document.xml.rels.

3. now open document.xml.rels with Notepad++.
4. delete the entry <Relationship Id="rId1"

Type="http://schemas.openxmlformats.org/office
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Document/2006/relationships/styles" Tar-
get="styles.xml"/>. This will remove the link to
the malicious style elements.

5. Now add the manipulated document.xml.rels back
into the archive in the word/_rels/ subfolder and
overwrite the old file.

6. when opening the document, the content without
malicious style elements is now displayed, while
the signature status remains valid.

LWA:

1. right-click on 03_LWA_manipulated_by_attacker.
docx. In the subitem 7-Zip click on Open archive.

2. in the archive in the subfolder word/ extract the
document.xml.

3. now open document.xml with Notepad++.
4. between the first element <w:t></w:t> is the dis-

played text. This text can be manipulated arbitrar-
ily.

5. now insert the manipulated document.xml back into
the archive in the subfolder word/ and overwrite
the old file.

6. when opening the document, the inserted content is
now displayed, while the signature status remains
valid.

MRA DDA:

1. right click on 03_DDA_manipulated_by_attacker.
docx. In the subitem 7-Zip click on Open archive.

2. in the archive in the subfolder word/ extract the
document2.xml.

3. now open document2.xml with Notepad++.
4. between the first element <w:t></w:t> is the dis-

played text. This text can be manipulated arbitrar-
ily.

5. now insert the manipulated document2.xml back
into the archive in the subfolder word/ and over-
write the old file.

6. When opening the document, the inserted content is
now displayed, while the signature status remains
valid.

MRA ETA:

1. right click on 03_ETA_manipulated_by_attacker.
docx. In the subitem 7-Zip click on Open archive.

2. in the archive in the subfolder word/ extract the
document.xml.

3. now open document.xml with Notepad++.
4. between the first element <w:t></w:t> is the dis-

played text. This text can be manipulated arbitrar-
ily.

5. now insert the manipulated document.xml back into
the archive in the subfolder word/ and overwrite
the old file.

6. when opening the document, the inserted content is
now displayed, while the signature status remains
valid.

Direct manipulation under macOS:
1. create a signed Word document using Microsoft

Office for Windows.
2. right click on the document. In the subitem 7-Zip

click on Open archive.
3. in the archive in the subfolder word/ extract the

document.xml and in the subfolder _xmlsignatures/
extract the sig1.xml.

4. now open document.xml with Notepad++. between
the first element <w:t></w:t> is the displayed text.
This text can be manipulated arbitrarily.

5. now insert the manipulated document.xml again
into the archive in the subfolder word/ and over-
write the old file.

6. now open sig1.xml with Notepad++.
7. delete the entire content of sig1.xml.
8. insert the manipulated sig1.xml back into the

archive in the subfolder _xmlsignatures/ and over-
write the old file.

9. when opening the document, the inserted content
is now displayed, while the document is still dis-
played as a document protected by a signature.

A.5 Notes on Reusability
Since the certificate used to sign the PoC files was only valid
for three months and expired on September 5th, 2022, the
host system date must be set accordingly to a date between
June 7th and September 5th, 2022.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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A Artifact Appendix

A.1 Abstract
This artifact appendix is provided alongside our paper. In
this appendix, we describe the two phases of our attack on
MongoDB QE. The first phase is leakage extraction (Section
4), followed by the second phase inference attacks (Section
7). Due to the complications with QE, leakage extraction is
not feasible on a large-scale database, and we had to work
with simulated leakage in our experiments (see Appendix B).
Therefore, we provide two procedures for leakage extraction,
one for real leakage (E1), and the other for simulated leakage
(E2). The procedures for inference attacks exploiting leak-
age from queryLog and opLog can be found in E3 and E4,
respectively.

A.2 Description & Requirements

Requirements. Leakage simulation and inference attacks re-
quire resources 10 GB RAM, 16 GB disk, and ∼ 3.3 GHz
CPU on a single core (is recommend). For small-scale leak-
age extraction (e.g., 3K - 10K records), the same specification
is adequate. However, full-scale leakage extraction involv-
ing building a database containing 3M records, requires 50
GB RAM and 600 GB disk. The instructions in this artifact
only work for Linux/Unix systems. Ubuntu 22.04 is used for
evaluation.

A.2.1 Security, privacy, and ethical concerns

In our experiments, we use the anonymized American Com-
munity Survey (ACS) micro data on the person level from
2012 and 2013 and the corresponding codebook, publicly
available from https://www.census.gov/programs-surveys/acs/

microdata.html. Our inference attacks do not in any way at-
tempt to deanonymize this data.

A.2.2 How to access

URL. https://gitlab.com/mongodbqe/mongo/-/commit/

4e9fc09377f26e1760fb510a0b998f777fd9e0f4

README.md and FAQ. We provide a README.md in
our code repo for more comprehensive instructions. The
README.md also contains a FAQ section to address common
issues that you may encounter during evaluation.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

Our artifact is evaluated on MongoDB 6.0.7.

General. The links provided above direct you to the pack-
ages of the latest version only. To reproduce our results with
the specific versions of the packages we used in our artifact,
please refer to the following example. The instruction works
specifically for Ubuntu 22.04. We provide further instruction
for other operating systems later.

- mongod from Archive and crypt_shared (6.0.7):
https://www.mongodb.com/download-center/enterprise/

releases

- libmongocrypt (1.7.4): https://www.mongodb.com/docs/

manual/core/csfle/reference/libmongocrypt

- mongoexport (100.7.3): https://www.mongodb.com/docs/

database-tools/installation/installation/

- mongosh (1.10.1): https://www.mongodb.com/try/

download/shell

- Python 3.10 and the python package dependencies listed
in Section A.3.1.

Example for Ubuntu 22.04.

- mongod Archive (6.0.7): https://downloads.

mongodb.com/linux/mongodb-linux-x86_

64-enterprise-ubuntu2204-6.0.7.tgz

- crypt_shared (6.0.7): https://downloads.

mongodb.com/linux/mongo_crypt_shared_v1-linux-x86_

64-enterprise-ubuntu2204-6.0.7.tgz

- libmongocrypt (1.7.4): Please refer to README.md in
the code repository for the commands.
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- mongoexport (100.7.3): https://fastdl.mongodb.org/

tools/db/mongodb-database-tools-ubuntu2204-x86_64-100.

7.3.tgz

- mongosh (1.10.1): https://downloads.mongodb.com/

compass/mongodb-mongosh_1.10.1_amd64.deb

- Python 3.10 and the python package dependencies listed
in Section A.3.1.

Similarly, for other operating systems/architectures, you
can obtain the packages of specific versions by modifying
the operating system/architecture of the links above. See the
download links in "General" for examples.

A.2.5 Benchmarks

We use ACS 2012 as auxiliary data and ACS 2013 as recovery
target in our experiments.
ACS 2012 https://www2.census.gov/programs-surveys/acs/

data/pums/2012/1-Year/csv_pus.zip

ACS 2013 https://www2.census.gov/programs-surveys/acs/

data/pums/2013/1-Year/csv_pus.zip

A.3 Set-up
A.3.1 Installation

1. Download or git clone the repo mongo from the pro-
vided URL in Section A.2.2.

2. Download csv_pus.zip for ACS 2012, ACS 2013, re-
spectively listed in Section A.2.5. Unzip the files and get
ss12pusa.csv, ss12pusb.csv, ss13pusa.csv, and
ss13pusb.csv.

3. Place ss12pusa.csv and ss12pusb.csv in
mongo/acs_data/2012_person_records;
place ss13pusa.csv and ss13pusb.csv in
mongo/acs_data/2013_person_records.

4. Work in mongo/src/ and create a python virtual envi-
ronment and install the required packages:

• python3 -m pip install --user virtualenv
• python3 -m venv env
• source env/bin/activate
• pip3 install -r requirements.txt

5. Install mongod, crypt_shared, libmongocrypt,
mongoexport, mongosh; urls are listed in Section A.2.4.

6. Configure the library dependencies listed in 5 in
mongo/src/parameters.py, from line 53 to line 56.

7. Configure the default MongoDB database path at line 57
in mongo/src/parameters.py. Please specify a direc-
tory that does not require root access.

A.3.2 Basic Test

Working in mongo/src, run python3 check_config.py to
check whether the installation and configuration listed in Sec-
tion A.3.1 are complete.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Real leakage about the data encrypted by QE can be
extracted from opLog alone or from queryLog and en-
crypted document collection (Appendix B).

(C2): Leakage simulations for opLog and queryLog pass
the correctness check, respectively, matching the real
leakage (Appendix B).

(C3): The inference attack exploiting simulated query leak-
age (under uniform and Zipf distributions, with 100, 300,
500 queries per field) from queryLog achieve reasonable
recovery rates (Section 7.2).

(C4): The inference attack exploiting simulated compaction
leakage from opLog achieve reasonable recovery rates
(Section 7.2).

A.4.2 Experiments

We have repeated our experiments for statistical reasons. The
number of experiments can be adjusted based on time and
resource constraints. Please refer to README.md for details.
Note that E3 and E4 can be run concurrently to reduce
the waiting time.

Sample output. Sample output for E1-E4 is provided in
mongo repo. E.g., E1_sample_output.txt.
(E1): Leakage extraction (at a small scale). 5 human-minutes

+ 10 compute-minutes + 16 GB disk. The default number
of records for this artifact is 3K. You can adjust the
number of records using --limit argument. A full-scale
leakage extraction with 3M records may take 2-4 days.
Preparation: Working in mongo/src, run
python3 export_acs_data_sample.py to gen-
erate auxiliary information.
Execution: python3 main.py to collect queryLog
and opLog, extract leakage, check its correctness for the
sample dataset.
Results: Real leakage about the data can be extracted
from logs successfully.

(E2): Leakage simulation. 5 human-minutes + 40 compute-
minutes (depending on the number of experiments) + 16
GB disk:
Preparation: Make sure the setup stage in Section A.3
is complete. Work in mongo/src.
Execution: python3 export_acs_data_simulated.py
--start=0 --end=1 generates one instance of simu-
lated leakage.
Results: Leakage is simulated for opLog and queryLog
correctly.

(E3): Inference attack with simulated query leakage from
queryLog. 5 human-minutes + 3 compute-hours (or 2
minutes if using --fast) + 16 GB disk:
Preparation: Work in mongo/src_attack. (Optional)
Core attack parameters such as the number of it-
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erations can be set from line 12 to line 29 of
mongo/src_attack/attack.py.
Execution: If using simulated leakage
from queryLog generated in E2, then run:
python3 attack.py --uniform n for n queries
from uniform distribution, n in {100, 300, 500}.
Using --zipf n for Zipf distribution.
Results: The inference attack using the simulated query
leakage achieves a reasonable recovery rate (see C3).

(E4): Inference attack with simulated compaction leakage
from opLog. 5 human-minutes + 14 compute-hours (or
20 minutes if using --fast) + 16 GB disk:
Preparation: Same as in E3.
Execution: python3 attack.py --oplog
Results: The inference attack using simulated com-
paction leakage from opLog achieves a reasonable re-
covery rate (see C4).

A.5 Acknowledgement
We are grateful to the anonymous reviewers for their contribu-
tions in the artifact evaluation process. By incorporating their
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A Artifact Appendix

Adblocking relies on filter lists, which are manually curated
and maintained by a community of filter list authors. We in-
troduce AutoFR, a reinforcement learning (RL) framework
to fully automate the process of filter rule creation and eval-
uation for sites of interest. Examples of filter rules are in
Table 1. AutoFR is the first to balance the trade-off between
blocking ads vs. avoiding visual breakage. The user gives
AutoFR inputs (e.g., the website to generate rules for, and
breakage tolerance threshold w) to AutoFR. It will run our RL
algorithm based on multi-arm bandits and generate filter rules
that block ads while adhering to the given w threshold. This
appendix details how to access our artifact (implementation
of AutoFR and our dataset) and how to use and evaluate it.

A.1 Abstract

Our artifact includes the following. First, we open-source an
implementation of the AutoFR framework on GitHub. Second,
we provide our dataset of collected site snapshots on the Top–
5K sites, which can be utilized to reproduce the filter rules
we created or explore other algorithms to generate rules.

AutoFR’s implementation follows Algorithm 1 and is illus-
trated in Fig. 4. Notably, it uses site snapshots (Fig. 5 and Sec
4.1), which are graph representations of how a site is loaded.
We use them offline to run the reinforcement learning logic,
which removes the bottleneck of waiting for a site to load
during every visit. See Fig. 5 for more details.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

At its core, AutoFR visits websites automatically and cre-
ates filter rules that block ads with minimal visual breakage.
Thus, there may be security issues if the user gives AutoFR
a malicious site to visit. We advise testing AutoFR on sites
that the user trusts. In terms of privacy, if AutoFR is used
on a personal machine, websites may fingerprint or track the
utilization of AutoFR.

A.2.2 How to access

GitHub: The repository is listed at https:
//github.com/UCI-Networking-Group/AutoFR/tree/
artifact-review. It provides a detailed README.md on
how to use AutoFR. The rest of this appendix will refer to
https://github.com/UCI-Networking-Group/AutoFR/
tree/artifact-review.
Dataset: The dataset and its detailed description are avail-
able at https://athinagroup.eng.uci.edu/projects/
ats-on-the-web/autofr-dataset/. In summary, the
dataset contains 1042 zip files, one per-site. Each zip file
includes the raw collected data of outgoing HTTP requests,
AdGraphs, annotated site snapshots, the action space, fil-
ter rules, and more. This matches Table 2. This includes a

“Top5k_rules.csv” file that shows all the filter rules created
within each zip file. Users must sign a consent form (at the
bottom of the web page) before accessing the dataset. For
artifact reviewers, we provide the direct Google Drive link to
the dataset within a hotcrp comment.

A.2.3 Hardware dependencies

AutoFR was evaluated using Amazon EC2 instance
m5.2xlarge, which has 8 cores, 32 GiB of memory, 35 GiB
of storage, and up to 10 Gbps of network bandwidth. We
recommend something similar, going as low as 16 GiB of
memory with 20 GiB of storage. Our repository will provide
a Dockerfile for easy setup.
Limitations. Currently, we do not support the running of
AutoFR on M1 MacBooks (ongoing work to support it).

A.2.4 Software dependencies

AutoFR has been tested on a Debian 5.10 server (university)
and Ubuntu 18.04.6 LTS (AWS EC2). Implementing
the framework includes using several Python libraries,
browser extensions, and prior work. The majority of the
dependencies will be encapsulated in a Dockerfile. We list
the major ones below and refer to the README.md of
https://github.com/UCI-Networking-Group/AutoFR/
tree/artifact-review for details.
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Core Dependencies (Must Haves):

• Python 3.6+, git, pip3, virtualenv (or conda), docker

• If necessary, install with:

1. sudo apt-get install git python3 python3-dev
python3-pip

2. pip3 install virtualenv

3. We defer the docker installation to https://docs.
docker.com/engine/install/debian/.

Dependencies (within Dockerfile):

• Python 3.6+: tldextract, networkx, adblockparser, pan-
das, numpy, selenium

• NodeJS: Ad Highlighter, Adblock Plus (browser exten-
sions)

• C++: AdGraph (instrumented chromium)

A.2.5 Benchmarks

None

A.3 Set-up
For easy copy and paste of commands, we recommend
using the https://github.com/UCI-Networking-Group/
AutoFR/tree/artifact-review#setup.

A.3.1 Installation

1. Git clone our AutoFR repository (see Sec. A.2.2). The
rest of the instructions assume you are in the project
directory using a terminal window.

2. For artifact reviewers: “git checkout artifact-review”

3. git submodule update --init --recursive

4. Create a python virtual environment and activate it. We
recommend using “virtualenv”.

(a) virtualenv --python=python3 [/save-
path/autofrenv]

(b) source [/save-path/autofrenv]/bin/activate

5. Install AutoFR:

(a) pip3 install -e .

(b) Make sure to have the period at the end of the
command.

(c) mkdir temp_graphs; mkdir -p data/output/

6. Build the docker container that AutoFR leverages:

(a) docker build -t flg-ad-highlighter-adgraph
--build-arg USER_ID=$(id -u) --build-arg
GROUP_ID=$(id -g) -f framework-with-ad-
highlighter/DockerAdgraphfile .

(b) Make sure to have the period at the end of the
command. This should run without any errors.

7. Done: You are now ready to run AutoFR.

A.3.2 Basic Test

Ensure you are in the project directory with a terminal window
and your virtualenv activated as instructed in Sec. A.3.1.

1. Test whether your AutoFR environment has the neces-
sary dependencies:

(a) python scripts/autofr_controlled.py

(b) The above command should print out a help mes-
sage on how to use the script without errors.

2. View the docker image that you created:

(a) docker image ls | grep flg-ad-highlighter-adgraph

(b) The above command should print out the docker
image called “flg-ad-highlighter-adgraph” with ad-
ditional information such as its size.

A.4 Evaluation workflow

Disclaimer. As noted in our paper, the web changes naturally.
AutoFR is only as good as its components. Thus, if a site does
not serve ads that Ad Highlighter can detect or use obfuscation
techniques, then AutoFR may not be able to generate rules
for the given site. See Sec. 5.3.4 and 4.3. There may be other
factors, such as w being too high to generate rules for, etc...
Over time, AutoFR will improve as we maintain it, but we
cannot guarantee that it will work on every website.

A.4.1 Major Claims

(C1): Create Filter Rules: Given inputs such as a website
and hyper-parameters like the w threshold (breakage
tolerance), AutoFR will generate filter rules that block
ads with breakage that is within the w threshold. This is
proven by the experiment (E1). Our results for the Top–
5K sites are reported in Sec. 5.1, Table 2, Fig. 6(a-b),
and Table 3 column 2. The w threshold ranges from 0–1;
higher values mean the user wants to avoid breakage at
the expense of not finding any filter rules that meet that
criterion. In our paper, we use w = 0.9. See Sec. 3 and
particularly 3.2.2 for details about our formulation.

(C2): Reproducibililty: Researchers can reproduce our re-
sults (i.e., generate the same rules) by utilizing our col-
lected site snapshots (provided in our dataset). This as-
sumes the inputs to AutoFR are identical, and the same
changeset/version of AutoFR is utilized (Sec. A.2.2).
This is proven by the experiment (E2). Site snapshots
are described in Sec. 4.1, Fig. 5, and Table 2. See further
discussion in Sec. A.5.

488    Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://docs.docker.com/engine/install/debian/
https://docs.docker.com/engine/install/debian/
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#setup
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#setup


A.4.2 Experiments

(E1): Create Filter Rules: [10 human-minutes + compute-
minutes vary on server + storage varies on site] × per-
site. See (C1) for more information.
How to: Run AutoFR to generate rules for a few given
sites. Results will vary based on context, such as on the
site, location, and given inputs. Repeat the below for a
few sites. We recommend cricbuzz.com, yahoo.com, and
sohu.com.
Preparation: Follow the instructions in Sec. A.3.1.
Execution: 1. Follow the below:

2. python scripts/autofr_controlled.py --site_url
"https://cricbuzz.com" --chunk_threshold 6

3. The chunk size affects the number of docker in-
stances spawned to visit the given website. Based
on Sec. A.2.3, we recommend 6. If you have fewer
cores, then decrease the chunk_threshold.

Results: 1. Follow the below. Directories given are
relative to the project directory:

2. The terminal will display the rules that are out-
putted.

3. Go to directory “data/output/” to see the raw col-
lected data, such as the outgoing HTTP requests,
AdGraphs, and site snapshots.

4. Go to “temp_graphs” to see the outputted filter rules
and other information.

5. Full explanation of the output is ex-
plained in our README: https://
github.com/UCI-Networking-Group/
AutoFR/tree/artifact-review#
understanding-the-output.

Test the Rules In-the-Wild (optional): 1. Follow
the below if you want to try the rules in your
browser.

2. Install an adblocker, like Adblock Plus, into your
browser (instructions depend on your browser).

3. Turn the rules given by AutoFR into per-site
rules. For each rule, append the site it was created
for. For instance, if the rule is ||doubleclick.netˆ
for the site cricbuzz.com, then change it to
||doubleclick.netˆ$domain=cricbuzz.com.

4. Configure the extension by going to its set-
tings. Turn off all filter lists. Add in custom
rules from the previous step. See https://
help.adblockplus.org/hc/en-us/articles/
360062859913-Add-a-custom-filter.

5. Refresh the site to see if ads are blocked. Note if
there is any visual breakage.

6. Remember to undo the changes if you use the ad-
blocker personally.

(E2): Reproducibility: [5 human-minutes + 2 compute-
minutes + no storage] × per-site. See (C2) for more

information. This is completely offline.
How to: Run AutoFR with existing site snapshots to re-
produce the results. Repeat the below for a few sites. We
recommend cricbuzz.com, yahoo.com, and sohu.com.
Preparation: Download the “Top5K_rules.csv” file.
Open it and choose a zip file to download, described
in Sec. A.2.2. Here we assume you chose Aut-
oFRGEval_www.cricbuzz.com_ad3dce7b.zip. Unzip the
file. Then, follow the instructions in Sec. A.3.1.
Execution: 1. Follow the below:

2. python scripts/autofr_use_snapshots.py --site_url
"https://www.cricbuzz.com/" --snapshot_dir [zip
name]/[Snapshots directory]

3. A full example is provided at step 7: https:
//github.com/UCI-Networking-Group/
AutoFR/tree/artifact-review#
reuse-site-snapshots

4. The script uses identical hyper-parameters utilized
in our paper. Simply pass in the site URL (from the
CSV) and the snapshot directory. Make sure not to
change any of the directory structures or names.

5. We also provide a script that will auto-
matically check the reproducibility. See
the instructions in https://github.com/
UCI-Networking-Group/AutoFR/tree/
artifact-review#reuse-site-snapshots
confirm_reproducibility script part.

Results: 1. Follow the below:
2. The terminal will display the rules that are out-

putted.
3. Open up our “Top5K_rules.csv” (Sec. A.2.2) and

look for the corresponding row that matches the zip
file name. Then compare the filter rules generated
vs. the row information. They should match.

A.5 Notes on Reusability

By leveraging the site snapshots we collected in Sec. A.2.2,
users and researchers can explore other ways to generate filter
rules. This includes:

1. Be less conservative when dealing with site dynamics.
For any given site, there are dynamics upon different
visits to it. For instance, other images, text, and ads can
be served to the same user. We capture these dynamics in
our site snapshots by collecting multiple snapshots per-
site. Our algorithm randomly selects one site snapshot to
test a rule at a given time t step of our algorithm and puts
the rule to “sleep” (i.e., remove it from contention) if it
does not block any requests. Instead, one can modify the
algorithm so that it selects only site snapshots that will
cause the rule to block at least one request. We discuss
this in Sec. 5.2.2.
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2. Explore other RL algorithms. In our paper, we formulate
the problem of filter rule generation as a multi-arm ban-
dits problem. Future work can freely explore different
RL algorithms offline using site snapshots.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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