
A Declarative Query Language for Data Provenance
(Research Track)

Argyro Avgoustaki
ICS - FORTH

argiro@ics.forth.gr

Giorgos Flouris
ICS - FORTH

fgeo@ics.forth.gr

Dimitris Plexousakis
ICS - FORTH

dp@ics.forth.gr

Abstract
Provenance has been widely studied in several different con-
texts and with respect to different aspects and applications.
Although the problem of determining how provenance should
be recorded and represented has been thoroughly discussed,
the issue of querying data provenance has not yet been ade-
quately considered. In this paper, we introduce a novel high-
level structured query language, named ProvQL, which is
suitable for seeking information related to data provenance.
ProvQL treats provenance information as a first class citizen
and allows formulating queries about the sources that con-
tributed to data generation and the operations involved, about
data records with a specific provenance/origins (or with com-
mon provenance), and others. This makes ProvQL a useful
tool for tracking data provenance information and supporting
applications that need to assess data reliability, access control,
trustworthiness, or quality.

1 Introduction

Provenance is fundamental for assessing the quality, trustwor-
thiness, reliability and accountability of data. In recent years,
provenance has been widely studied in several different con-
texts, e.g., databases, workflows, distributed systems, Seman-
tic Web, etc., and with respect to different aspects and appli-
cations. These studies have resulted to several abstract prove-
nance models such as lineage [7], trio-lineage [2], why and
where [3], how [9,11,14], where-how [1], each with a different
level of complexity and detail (column, tuple/triple, graph),
regarding different operations (queries, updates) and associ-
ated with various data models (relational, RDF, etc.). These
provenance models have been used to fuel specific implemen-
tations of provenance-aware repositories [4,10,15,19,25,26],
based on different representation models, such as CIDOC
CRMdig [23], W3C PROV [18], or TripleProv [25].

Despite this progress, the issue of retrieving provenance
information through queries has received less attention, as, to
the best of our knowledge, there are only two query languages

for data provenance [22], namely ProQL [15] and PQL [19].
In fact, the typical approach used for retrieving provenance
information in most provenance-aware repositories is to use
a generic query language (e.g., SPARQL [12]) for querying
directly the underlying implementation [4, 10, 19, 25, 26] (see
Figure 1, bottom).

Although feasible, this approach creates an undesirable
bonding between the query formulation process and the im-
plementation details of the provenance-aware repository. This
reduces robustness and interoperability, as the application
logic is bound to the specific implementation, and thus cannot
be migrated easily to alternative implementations.

A well-known method for addressing problems of this type
is to develop a standard query language which will abstract
provenance retrieval operations from the implementation de-
tails of the underlying repository. This approach has been
used in all mainstream formalisms for knowledge representa-
tion in other contexts (e.g., SQL for relational, SPARQL for
RDF), and has been proven to reduce the development effort
of applications. The same idea can also improve query perfor-
mance, as language-specific optimisations may be developed
in the underlying repositories to allow faster retrieval times.

Embracing this viewpoint, we propose ProvQL, a declara-
tive, structured, high-level and non-compositional query lan-
guage for data provenance that allows expressing provenance-
enriched queries in a manner independent to the underlying
implementation. This way, applications can formulate queries

Figure 1: Querying provenance-aware repositories

1

using the ProvQL syntax, and these queries will be translated
to a query appropriate for the given implementation, in a
manner non-specific to the application (see Figure 1, top).

To support this vision, ProvQL is based on a generic model
of a provenance-aware repository, described in Section 3.
This simply assumes a set of uniquely identifiable data records
(over some data model), enriched with provenance informa-
tion (over some provenance model). The core syntax and
semantics of ProvQL are defined based on this generic model
(Sections 4 and 5 respectively). Given that different data and
provenance models have different expressive power and data
retrieval needs, ProvQL foresees the inclusion of modules
that extend its core syntax and semantics, and are specific to
different data and provenance models. In Sections 4, 5, we
describe some indicative modules, used for supporting the
data and provenance models described in Section 2.

The syntax of ProvQL borrows features from both SQL
and Cypher [6] (see Appendix A.1 for a short introduction
to Cypher), allowing the expression of queries in a compact,
platform-agnostic and representation-agnostic manner. For-
mal semantics are defined using the concept of mappings, in
a manner similar to SPARQL semantics [20].

ProvQL supports various types of queries, allowing filtering
of the required data on the basis of their provenance, the data
itself, or both. Possible ProvQL queries include:
q1. Find the provenance of a given data record
q2. Identify data records whose provenance is included in the

provenance of a given data record
q3. Identify data records whose provenance contains a spe-

cific data record
q4. Which sources contributed in deriving a data record?
q5. Identify the different ways to construct a given data record

As a proof-of-concept, ProvQL was implemented for RDF
data enriched with how-provenance information (Section 6);
plans for supporting other data/provenance models are under
way. Our implementation maps a provenance-aware reposi-
tory to a Neo4j graph (Subsection 6.1), and then translates
ProvQL queries to appropriate Cypher queries to return the
correct results (Subsection 6.2).

Note that we make no claims regarding the appropriateness
of the proposed graph-based model for the representation of
how-provenance, and this implementation is not proposed as
an improvement over alternative ones. Instead, it should be
viewed only as a reasonable choice for developing our proof-
of-concept. To support ProvQL, provenance-aware reposi-
tories should implement (or reuse) a translation of ProvQL
queries in their underlying representation, for the specific
implementation employed (as in Subsections 6.1, 6.2).

2 Preliminaries

The ProvQL specification considers the RDF and relational
data models, as well as the how, why, trio-lineage and lineage
provenance models. Due to lack of space, the presentation

focuses mainly on RDF and how-provenance, and we present
the other models only briefly1.

The RDF data model. RDF [16] is a standard model for
data interchange on the Web, which represents data in the
form of triples (subject, predicate, object), indicating that a
certain subject is related to a certain object through some
predicate. Formally, RDF employs two disjoint and infinite
sets, namely IRIs (I) and literals (L), to form triples which
are elements of the set I× I× (I∪L).

The how-provenance model. The how-provenance model
was first introduced for relational data in [11], but later
works [8, 24] explored its applicability to other data mod-
els, such as RDF. It is an algebraic model that assumes a set
of identifiers (D) and two abstract operators (denoted by⊗ for
the JOIN operator, and ⊕ for the UNION operator), to form a
provenance semiring. The identifiers in D are uniquely associ-
ated with data records, whereas operators are used to generate
algebraic expressions that represent the provenance of a data
record, by describing the operations used to construct it.

Table 1 (second column) summarizes the different types
of expressions that the how-provenance model allows. An
individual provenance expression represents a specific way of
generating the underlying data record, whereas a provenance
expression represents the different ways that this data record
can be generated; as a data record may be generated multiple
times at different instances, provenance multisets (or simply
provenance) are used to record this fact. The operators ⊕, ⊗
satisfy the properties of semiring operators (transitivity, com-
mutativity, etc). In the rest of the paper we assume that ⊗ has
higher precedence than ⊕ operator. We will use the symbol
≡ to denote equivalence between provenance expressions.

Why, trio-lineage and lineage provenance models.
Other provenance models (why-provenance, trio-lineage, lin-
eage) allow less fine-grained provenance information. In par-
ticular, lineage [7] represents the sources that contributed to
the generation of a data record (as a set), but not how they were
combined to generate it. Why-provenance [3] encodes the dif-
ferent derivations separately, in a set, but, due to set semantics,
derivations that involve the same set of source records are
lost; trio-lineage [2] addresses this shortcoming by using
multisets. Table 1 shows how different types of provenance
expressions manifest themselves in the considered models
(for relational/RDF data models).

3 The ProvQL Model

To abstract from the underlying data and provenance models,
the core model of ProvQL makes only some generic assump-
tions regarding these models.

In particular, for the data model, we denote by T the set of
all different data records that the data model admits, and CT

1We omit the description of the well-established relational model.

2

Terminology How Why Trio-Lineage Lineage
Individual provenance expression (ipe) d1⊗·· ·⊗dn {d1, . . . ,dn} {d1, . . . ,dn} di
Provenance expression (pe) ipe1⊕·· ·⊕ ipem {ipe1, . . . , ipem} [ipe1, . . . , ipem] {ipe1, . . . , ipem}
Provenance multiset (prov) [pe1, . . . , pek] [pe1, . . . , pek] [pe1, . . . , pek] [pe1, . . . , pek]

Table 1: Summary of provenance terminology, for various models

the constants that are used to generate the elements of T (e.g.,
for RDF, CT = I∪L, whereas T= I× I× (I∪L)).

Similarly, for the provenance model, we denote by P the set
of all different multisets of provenance expressions that can be
generated, and CP the constants that are used to generate these
provenance expressions (e.g., for the how-provenance model,
CP = D, whereas P contains all the provenance multisets of
semiring expressions generated from CP).

We also assume a set V, representing the variables, which
is disjoint from all other constants (V∩ (CT ∪CP∪D) = /0).

A provenance-enriched data record is a data record en-
riched with provenance information and associated with a
unique identifier. Thus, for a given pair of data/provenance
models and set of identifiers D, a provenance-enriched data
record is a tuple of the form r = (d, t, prov), where d ∈ D,
t ∈ T, prov ∈ P. A provenance-aware repository (denoted by
R) is a set of provenance-enriched data records.

Table 2 presents an example of a provenance-aware reposi-
tory employing the RDF/how-provenance models. Note that
the provenance expressions of d1,d2,d3,d4 use a special iden-
tifier (d0) which is not assigned to any of the provenance-
enriched triples. The identifier d0 is a special element of D,
reserved for the provenance of base data records (in the termi-
nology of [11]), i.e., data records whose insertion in the repos-
itory was not a result of some operation over other records.

ID Data record Provenance Multiset
r1 d1 (〈Mary〉, 〈friendOf〉, 〈Bob〉) [d0]
r2 d2 (〈Bob〉, 〈friendOf〉, 〈Bill〉) [d0,d1⊗d3⊕d1⊗d4]
r3 d3 (〈John〉, 〈knows〉, 〈Bill〉) [d0]
r4 d4 (〈Mary〉, 〈friendOf〉, 〈Bill〉) [d0]
r5 d5 (〈Mary〉, 〈knows〉, 〈Bill〉) [d1⊗d2⊗d3]
r6 d6 (〈Bill〉, 〈knows〉, 〈Bob〉) [d3]

Table 2: A provenance-aware repository example

For a given repository R, we set CR the set of all constants
that appear in R (obviously, CR ⊆CT ∪CP∪D). Given some
identifier appearing in R (say d ∈ CR∩D), we set:

• DATA(d) = t if and only if (d, t, prov) ∈ R
• PROV(d) = prov if and only if (d, t, prov) ∈ R
Note that the functions DATA, PROV are well-defined,

as d uniquely identifies a provenance-enriched record in the
context of R. Also note that these functions are only defined
for identifiers that actually appear in R.

Further, we define a function (IPROV) to return the in-
dividual provenance expressions for the how-provenance

model (the definition for the other models is analogous,
using Table 1). In particular, for a provenance expression
pe = ipe1⊕·· ·⊕ ipen, we set IPROV(pe) = [ipe1, . . . , ipen].
We extend the definition for provenance multisets prov =
[pe1, . . . , pen], by setting: IPROV(prov) =

⋃
IPROV(pei).

Finally, abusing notation, for a given identifier d ∈ CR∩D,
we set: IPROV(d) = IPROV(PROV(d)).

We also define two relations among provenance multisets
that will prove useful in the following, namely includes and
contains. Again, the definitions are provided for the how-
provenance model only, but can be easily adapted for the
other models using Table 1. Informally, prov includes prov′

if prov consists of at least the same provenance expressions
as prov′ (modulo semiring equivalence). As for contains, we
say that prov contains prov′ if each pe′ ∈ prov′ is “part of”
some pe ∈ prov, i.e., that pe′ (or one of its components) is
a subexpression of pe (or one of its components). Table 3
contains some examples for illustration.

More formally, for two provenance multisets prov =
[pe1, . . . , pem], prov′ = [pe′1, . . . , pe′n], we say that prov in-
cludes prov′, (prov w prov′) if and only if n ≤ m and there
exists a renumbering of pe′i such that pei ≡ pe′i for all i≤ n.

For example, in Table 3, [d1⊗d2⊗d3] includes [d2⊗d1⊗
d3], as they are equivalent expressions, but the relation “in-
cludes” does not hold among the provenance multisets of the
second row of the table, as d1⊗d3 does not appear in prov.

With regards to contains, for two provenance expressions
x,y, we say that x contains y, denoted by x. y if and only if
any of the following is true:

• y is an individual provenance expression, and there exists
an individual provenance expression ipe such that y⊗
ipe≡ ipe′ for some ipe′ ∈ IPROV(x)

• IPROV(x)w IPROV(y)

For two provenance multisets prov = [pe1, . . . , pem], prov′ =
[pe′1, . . . , pe′n], we say that prov contains prov′ (prov. prov′)
if and only if for all pe′i ∈ prov′ there exists pe j ∈ prov such
that pe j . pe′i.

Looking at Table 3 (second row), we note that d1⊗ d3⊕
d1⊗ d4 contains d1⊗ d3 (and d1⊗ d4) so “contains” holds.
However, looking at the last row, d3⊕d1⊗d4 is not a part of
any of the provenance expressions of prov, because it contains
two different individual provenance expressions, but only one
of them (d1⊗d4) is included in d1⊗d3⊕d1⊗d4.

3

prov prov′
prov
w
prov′

prov
.
prov′

[d0,d1⊗d3⊕d1⊗d4] [d0]
√ √

[d0,d1⊗d3⊕d1⊗d4] [d0,d1⊗d3,d1⊗d4] ×
√

[d0,d1⊗d3⊕d1⊗d4] [d4⊗d1⊕d1⊗d3]
√ √

[d1⊗d2⊗d3] [d2⊗d3⊗d1]
√ √

[d1⊗d2⊗d3] [d3⊗d1] ×
√

[d0,d1⊗d3⊕d1⊗d4] [d3⊕d1⊗d4] × ×

Table 3: Examples of includes and contains relations

4 Syntax of ProvQL

A ProvQL query is matched against a provenance-aware repos-
itory R, and the obtained values are used to construct the re-
sult, which can be a provenance expression, a data record, a
set of values, or a combination of the above.

Table 4 shows the BNF grammar of ProvQL. In particular,
subtable 4a shows the core elements of ProvQL that remain
unchanged no matter which data or provenance model is being
used. Subtable 4b presents the syntax that varies depending
on the data model (RDF, relational), whereas subtable 4b
contains the syntactic elements related to the provenance
based on the used model (how, why, trio-lineage, lineage).
Capitalized words in Table 4 are ProvQL reserved words.

In more details, the general form of a ProvQL query is:
q← USING dataModel provModel

SELECT selectPattern WHERE evalPattern
As the above general form implies, a ProvQL query consists
of two parts. The first part (starting with USING) determines
the query parameters, i.e., the environment under which the
main part of the query (starting with SELECT) will run.

The query parameters essentially determine the data and
provenance model to assume while interpreting the main part
of the query. For brevity, we will omit this part in the examples
shown in this paper, and will always assume as default that
the RDF data model and the how-provenance model are used.

The main part of a query consists of two clauses: the eval-
uation patterns (evalPattern) and the select patterns (select-
Pattern). The evalPattern is responsible for the matching part
of the query, providing the filters and conditions that the user
wants to impose on the results, whereas the selectPattern de-
scribes the values that the user wants to get from the query
(query result). These are described in more details below.

Evaluation patterns are used to match provenance and/or
data constraints. The exact form of an evalPattern depends
on the actual data/provenance model considered, so details
on their syntactical form are given in subtables 4b, 4c. An
evalPattern can be either a dataEvalPattern, which specifies
equality or inequality conditions related to data information
(e.g., match a data record with a specific data item), or a
provEvalPattern, which specifies conditions on various rela-

(a) Core Syntax

query ::= USING dataModel provModel
SELECT selectPattern WHERE evalPattern

dataModel ::= RDF | REL
provModel ::= HOW |WHY | TRIO | LIN
selectPattern ::= (var | dataSelectPattern | provSelectPattern)

(‘,’ var | dataSelectPattern) | provSelectPattern)∗

evalPattern ::= (‘(’)*dataEvalPattern | provEvalPattern ((AND |
OR) (dataEvalPattern | provEvalPattern))*(‘)’)*

var ::= ‘?’ letter+ num∗

letter ::= (a..z | A .. Z)
num ::= (0..9)+

literal ::= ‘ “ ’ letter+ num∗ ‘ ” ’
iri ::= For the definition see https://bit.ly/3bEPDN2
integer ::= (‘-’)* num
float ::= (‘-’)* num‘,’num
text ::= ‘ “’ literal (WS literal)*
boolean ::= true | false

(b) Data Model Dependent Syntax

Common Syntax for RDF, Relational
dataSelectPattern ::= dataFunc(var)
dataEvalPattern ::= dataFunc(var) <> dataFunc(var) |

dataFunc(var) (= | <>) recordExp
dataFunc ::= DATA
RDF
recordExp ::= ‘(’ recordElement ‘,’ recordElement ‘,’

(recordElement | literal) ‘)’
recordElement ::= var | iri
Relational
recordExp ::= ‘(’ tableName (’,’ recordElement)+ ‘)’
recordElement ::= var | literal | integer | float | text | boolean
tableName ::= literal

(c) Provenance Model Dependent Syntax

Common Syntax for How, Why, Trio - lineage, Lineage
provSelectPattern ::= provFunc(var)
provEvalPattern ::= provFunc(var) (= | <> | INCLUDES |

CONTAINS) provFunc(var) | provFunc(var)
(INCLUDES | CONTAINS) provExp

provFunc ::= PROV | IPROV
How
provExp ::= var (operation var)*
operation ::= JOIN | UNION
Why
provExp ::= ‘{’‘{’var (‘,’ var)*‘}(’,’ ‘{’var (‘,’ var)*‘}’)*‘}’
Trio-lineage
provExp ::= ‘[’‘{’var (‘,’ var)*‘}(’,’ ‘{’var (‘,’ var)*‘}’)*‘]’
Lineage
provExp ::= ‘{’var (‘,’ var)*’‘}’

Table 4: Syntax of ProvQL

tions (equality, inequality, includes, contains) over provenance
expressions (e.g., find provenance-enriched records whose
provenance includes/contains some provenance expression).

Select patterns are used to specify the return values of
the query. A query can return provenance expressions (in the
form of paths) as defined by a function (PROV, IPROV), a
set of data records (using DATA), or items associated to a

4

https://bit.ly/3bEPDN2

variable (identifiers, IRIs, literals, etc).
Some examples of supported queries, for the RDF/how-

provenance models, follow (the “USING” part is omitted):
q1. Find the provenance of a given data record

SELECT PROV(?id) WHERE
DATA(?id)=(s,p,o)

q2. Identify data records whose provenance is included in
the provenance of a given data record
SELECT DATA(?id1), DATA(?id2) WHERE
PROV(?id1) INCLUDES PROV(?id2)

q3. Identify data records whose provenance contains a
specific data record
SELECT DATA(?id1) WHERE PROV(?id1)
CONTAINS ?id2 AND DATA(?id2)=(s,p,o)

5 Semantics of ProvQL

5.1 Core semantics
The semantics of ProvQL are based on the idea of mappings,
as employed for the SPARQL language [20]. Mappings are
used to determine the constant value that a variable should
be assigned to. For query answering, we seek “appropriate”
mappings, i.e., mappings whose assignments are such that
they satisfy the conditions found in the evalPattern for the
given provenance-aware repository. Once the “appropriate”
mappings are found, we apply them to the selectPattern in
order to identify the answers to the query.

For example, in q1 above, an “appropriate” mapping should
assign ?id to the specific identifier (say d1) whose associated
triple is (s, p,o) in the repository; this satisfies the evalPat-
tern. Then, this specific mapping should be applied to the
selectPattern to return the result, which, in this case, should
be PROV(d1), since ?id is mapped to d1.

More formally, we define a mapping µ to be a function µ :
V∪CR 7→CR such that µ(x) = x whenever x∈CR. “Mapping
appropriateness” is made precise in Definition 5.1:

Definition 5.1 Consider an evalPattern EP, a mapping µ and
a provenance-aware repository R. Then, µ satisfies EP on R,
denoted by µ |=R EP if and only if:

1. For EP an evalPattern of the form “EP1 AND EP2”:
µ |=R EP iff µ |=R EP1 and µ |=R EP2.

2. For EP an evalPattern of the form “EP1 OR EP2”: µ |=R
EP iff µ |=R EP1 or µ |=R EP2.

Note that we also need to specify how µ |=R EP is de-
fined for the base case, i.e., when EP is a dataEvalPattern
or a provEvalPattern. This definition depends on the actual
data/provenance model considered, and is done in the next
subsections (Definitions 5.3, 5.5 respectively).

Now we need to define what an answer to a query is:

Definition 5.2 Take a provenance-aware repository R, and
a ProvQL query q whose selectPattern is SP = (SP1, . . . ,SPn)

and whose evalPattern is EP. Then, (µ(SP1), . . . ,µ(SPn)) is
an answer of q over R iff µ |=R EP.

Definition 5.2 also relies on a more precise definition of
what µ(SPi) is, when SPi is a dataSelectPattern or a provSe-
lectPattern. This is done in Definitions 5.4, 5.6, as it depends
on the considered data/provenance models.

5.2 Data-dependent semantics
Defining the data-dependent semantics requires two steps.
First, we must specify how to determine whether µ |=R EP, for
EP a dataEvalPattern as allowed by the data model. Second,
we must specify what µ(SP) is, when SP is a dataSelectPattern
for the respective model. Definitions 5.3 and 5.4 provide these
specifications for the RDF model; repeating this exercise for
the relational model is easy and omitted.

Definition 5.3 Consider a dataEvalPattern EP of the RDF
model, a mapping µ and a provenance-aware repository R.
Then, µ satisfies EP on R, denoted by µ |=R EP if and only if:

1. For EP of the form DATA(?v) = (s, p,o), where ?v ∈
V, s, p,o ∈ V ∪ CT : µ |=R EP iff DATA(µ(?v)) =
(µ(s),µ(p),µ(o)).

2. For EP of the form DATA(?v) 6= (s, p,o), where ?v ∈
V, s, p,o ∈ V ∪ CT : µ |=R EP iff DATA(µ(?v)) 6=
(µ(s),µ(p),µ(o)).

3. For EP of the form DATA(?v) 6= DATA(?v′), where
?v,?v′ ∈V: µ |=R EP iff DATA(µ(?v)) 6= DATA(µ(?v′)).

Definition 5.4 For a dataSelectPattern of the form
DATA(?v) in the RDF model, we set µ(DATA(?v)) =
DATA(µ(?v)).

5.3 Provenance-dependent semantics
As with the case of data-dependent semantics, defining the
provenance-dependent semantics requires defining: (a) how
to determine whether µ |=R EP, for EP a provEvalPattern
of the respective model; (b) what µ(SP) is, when SP is a
provSelectPattern of the respective model. Definitions 5.5
and 5.6 below provide these specifications for the patterns
used in the how-provenance model; repeating this exercise
for why, trio-lineage and lineage is analogous and omitted.

To simplify Definition 5.5, we abuse notation and use µ to
apply to provenance expressions, by “pushing” µ inside the
expression, i.e., µ(d11⊗·· ·⊗d1n1⊕·· ·⊕dm1⊗·· ·⊗dmnm) =
µ(d11)⊗·· ·⊗µ(d1n1)⊕·· ·⊕µ(dm1)⊗·· ·⊗µ(dmnm).

Definition 5.5 Consider a provEvalPattern of the how-
provenance model EP, a mapping µ and a provenance-aware
repository R. Then, µ satisfies EP on R, denoted by µ |=R EP,
if and only if:

1. For EP of the form provFunc(?v1) = provFunc(?v2):
µ |=R EP iff provFunc(µ(?v1)) = provFunc(µ(?v2)).

5

2. For EP of the form provFunc(?v1) 6= provFunc(?v2):
µ |=R EP iff provFunc(µ(?v1)) 6= provFunc(µ(?v2)).

3. For EP of the form provFunc(?v1) INCLUDES
provFunc(?v2): µ |=R EP iff provFunc(µ(?v1)) w
provFunc(µ(?v2)).

4. For EP of the form provFunc(?v1) CONTAINS
provFunc(?v2): µ |=R EP iff provFunc(µ(?v1)) .
provFunc(µ(?v2)).

5. For EP a provEvalPattern of the form provFunc(?v)
INCLUDES provExp: µ |=R EP iff provFunc(µ(?v1))w
µ(provExp).

6. For EP a provEvalPattern of the form provFunc(?v)
CONTAINS provExp: µ |=R EP iff provFunc(µ(?v1)).
µ(provExp).

Definition 5.6 For a provSelectPattern of the form
provFunc(?v), we set µ(provFunc(?v)) = provFunc(µ(?v)).

6 Implementing ProvQL

As a proof of concept, we implemented ProvQL for a specific
choice of data and provenance models (namely, RDF and how-
provenance). Instead of implementing a native provenance-
aware repository, and then implementing ProvQL on top of
that, we chose the indirect route of representing a provenance-
aware repository as a Neo4j graph database and using appro-
priate Cypher queries to access it (see Figure 2).

Towards this aim, we defined a data translation function
(called trP – see Subsection 6.1), which determines the exact
nodes and edges to create in the Neo4j graph to represent a
given provenance-aware repository. Then, a query translation
function (called trQ – see Subsection 6.2) maps a ProvQL
to an appropriate Cypher query [6], which is executed over
the Neo4j database. The results are then transformed into an
appropriate format (e.g., JSON) to be presented to the user.
Both translation functions are carefully defined to respect the
ProvQL semantics, i.e., to ensure that the result of the gener-
ated Cypher query over the respective Neo4j graph database
are the ones that the ProvQL semantics dictates.

The choice of a graph database as our implementation sub-
strate was based on the fact that ProvQL queries (and espe-
cially those requiring access to provenance information) often
require complex path traversals to evaluate the algebraic ex-
pressions that express how-provenance. In this respect, graph
databases seem an obvious choice, as they excel in path traver-
sals. Neo4j in particular is an open-source, NoSQL graph
database that provides great advantages regarding schema
flexibility, query expressivity and data scalability. Cypher was
developed to be used in Neo4j. It allows expressing simple
and complex traversals and paths, and is very efficient in eval-
uating path traversal queries. We omit details on Cypher, but
a brief tutorial can be found in Appendix A.1.

Figure 2: Implementation using translations

6.1 Data Translation (trP)
The data translation function (trP) is used to map a
provenance-aware repository into a Neo4j graph database,
which we call provenance graph:

Definition 6.1 A provenance graph G = (W,E) consists of:
• A set of nodes, W =Wdata∪Wop, where:

– Wdata is the set of data nodes, containing identifier-
triple pairs, i.e., Wdata = {(d1, t1), . . . ,(dk, tk)}, for
k ≥ 0, di ∈ D, ti ∈ I× I× (I∪L)

– Wop is the set of operation nodes, and contains
⊕-nodes and ⊗-nodes, i.e., Wop = {⊕1, . . . ,⊕n}∪
{⊗1, . . . ,⊗m} for n≥ 0, m≥ 0

• A set of directed labelled edges E ⊆ W × W ×
{ f romData, f romJoin,hasProv}

The idea of the translation under trP is visualised in Figure
3, which shows the provenance graph corresponding to the
provenance-aware repository of Table 2. In particular, each
provenance-enriched data record corresponds to one data node
in the provenance graph, which contains (as attributes) the
record’s identifier and values (subject, predicate and object).
Then, for each provenance expression in the provenance multi-
set of the given record, we create a fresh⊕-node and associate
it with the respective data node using a “hasProv” edge. Note
that labelled edges are used to optimize the Cypher query
execution. Different individual provenance expressions of
a given provenance expression are represented using fresh
⊗-nodes that are connected with the respective ⊕-node us-
ing a “fromJoin” edge. Finally, ⊗-nodes are connected with
the respective data nodes (that compose the individual prove-
nance expression) using “fromData” edges. Note that an extra
dummy node (with empty triple attributes) represents d0.

Algorithm 4 describes the above process in more details.
We will explain Algorithm 4 using the provenance-enriched
data record r2 = (d2, t2, prov2) of Table 2 (see also Figure
3). As a first step, we create the data node w2 (lines 2-3),
which contains information about the identifier d2 and triple
t2. Then, we create the required ⊕-nodes and ⊗-nodes and
paths to represent the provenance prov2. More specifically,
prov2 consists of two provenance expressions pe1 = d0 and
pe2 = d1⊗d3⊕d1⊗d4. For each provenance expression we

6

Figure 3: Example of a provenance graph

construct a ⊕-node and connect it to the data node w2 with
a directed edge, labelled as “hasProv” (lines 5-7). Then, we
create a ⊗-node for each individual provenance expression
of pe1 and pe2 (line 10), and connect it to the corresponding
⊕-node (line 11). Finally, for each individual provenance ex-
pression, we connect the data nodes that contribute to the JOIN
operation to that ⊗-node; in our example, we have that pe1
contains one individual provenance expression (namely d0, so
we connect it with w0), whereas pe2 contains two individual
provenance expressions (namely, d1⊗d3, d1⊗d4, which are
connected to w1,w3 and w1,w4 respectively).

Algorithm 1 CreateOpNode Algorithm
Require: The “type” of the operation node(union,join)
Ensure: An operation node x of the given type

1: op = new OperationNode(“type”)
2: Wop =Wop∪{x}
3: return x

Algorithm 2 CreateDataNode Algorithm
Require: A triple ti(sub ject, predicate,ob ject) and its identifier di
Ensure: A data node wi(di, ti)

1: wi = new DataNode(di, ti)
2: if wi /∈Wdata then
3: Wdata =Wdata∪{wi}
4: return wi

6.2 Query Translation (trQ)

The query translation process aims at rewriting the ProvQL
query into an appropriate Cypher query, which will run over
the provenance graph generated by the application of trP

Algorithm 3 CreateEdge Algorithm
Require: A start node “start”, a destination node “dest”, a label “l”
Ensure: A directed edge e (“start”, “dest”, “l”)

1: e = new Edge(“start", “dest”, “l”)
2: E = E ∪{e}
3: return e

Algorithm 4 Provenance Graph Construction Algorithm
Require: A provenance-aware repository R, ri(di, ti, provi) ∈ R
Ensure: A provenance graph G(W,E)

1: w0 = new DataNode(d0)
2: for all ri ∈ R do
3: wi = CREATEDATANODE(di, ti)
4: for all ri ∈ R, wi ∈W do
5: for all pek ∈ provi do
6: currNode = CREATEOPNODE(“union”)
7: CREATEEDGE(currNode, wi, “hasProv”)
8: for all ipem ∈ pek do
9: previousNode = currNode

10: currNode = CREATEOPNODE(“join”)
11: CREATEEDGE(currNode,previousNode, “fromJoin”)
12: for all d j ∈ ipem do
13: CREATEEDGE(w j,currNode, “fromData”)
14: return G(W,E)

on the provenance-aware repository. The translation process
is quite complex and we only present the basic ideas here;
additional (formal) details appear in Appendix A.2.

A Cypher query has the following general form:
MATCH MATCH_Pattern WHERE WHERE_Pattern
RETURN RETURN_Pattern
A MATCH_Pattern defines the nodes or paths that will

7

be used in the evaluation whereas WHERE_Pattern “fil-
ters” these nodes/paths with the required conditions; the RE-
TURN_Pattern is used to identify the returned values.

As explained in Section 4, the first part of a ProvQL query
(query parameters) determines the data and provenance model
to be used. This part is not involved in the translation, but
determines how to interpret the query while translating it.
Here, we focus on the RDF/how-provenance case.

During translation, we verify that the ProvQL query is
syntactically valid, and analyse the use of each variable to
ensure that all variables appearing in the selectPattern also
appear in the evalPattern. Moreover we ensure, based on the
position that each variable appears in the query, that a variable
is used to refer to an identifier (from D), or to some element
of the data record (subject, predicate, object), but not both.

For the translation, we map each variable in the ProvQL
query to a unique Cypher variable that represents either a
node or a path in the Cypher query. Each pattern appearing in
the selectPattern of a ProvQL query contributes to the gener-
ation of the RETURN_Pattern in Cypher (and sometimes
also MATCH_Pattern), whereas filter conditions and con-
straints of the evalPattern correspond to a MATCH_Pattern
(which may contain other nested MATCH_Patterns) and a
WHERE_Pattern. Table 5 illustrates the translation process
through an example, using a color code to show how each
clause in the ProvQL query translates into a clause in the
Cypher query. Note that, as ProvQL is a specialised query
language, the translation into a generic language (Cypher in
our case) generates a much more complex query, as expected.

P
ro

vQ
L SELECT DATA(?id1)

WHERE PROV(?id1) CONTAINS {?id2}
AND DATA(?id2) = (s,p,o)

C
yp

he
r

MATCH (b:Operation) -[:hasProv] ->
(a:Data) WITH a,b MATCH h = (c:Data)
-[:fromData] -> (d:Operation) -
[:fromJoin]-> (b)
WHERE c.subject = s AND
c.predicate = p AND c.object = o
RETURN a.{subject,predicate,object}
as data_a

Table 5: Translating query q3 (from Section 4) to Cypher

7 Related Work

Provenance has been widely studied in the literature [5,17,22]
with respect to many different aspects, contexts and gran-
ularities, and various provenance models have been pro-
posed [1, 3, 9, 11, 13, 14]. In this context, W3C supported
the creation of a widely used workflow provenance model,
namely PROV [18], in an effort to standardise provenance
representation and querying. The features of PROV model
were exploited in [26] to associate RDF data resulting from

SPARQL queries with provenance information. Moreover,
there are provenance-aware systems, such as RDFProv [4] and
Taverna [27], which support provenance querying and man-
agement for Semantic Web data using the PROV model. In
spite of our common motivation to query provenance related
to RDF data, there is a great difference between our works.
Our underlying provenance models concern data provenance
information that provides a detailed view on the origin of a
piece of data, whereas PROV regards workflow provenance
that describes procedural data processing and involves opera-
tions that are treated as black boxes [21].

Another popular provenance-aware system for relational
data is Perm [10], where tuples are annotated with provenance
represented in relational form and, hence, can be queried,
stored and optimized using standard relational database tech-
niques. ARIADNE [19] introduced PQL, a declarative query
language that is able to capture and query provenance on Big
Graph analytics in Vertex-Centric graph processing systems.
PQL differs from ProvQL as it addresses online provenance
querying for a newly introduced provenance model and its
data model is a graph instead of algebraic expressions.

A query language for data provenance, namely ProQL, was
proposed in [15]. Similar to our approach, the authors rep-
resented data provenance as a directed graph that contains
two types of nodes (tuples and derivations) connected through
labeled edges. In contrast to our language, ProQL is model-
dependent as it supports only the how-provenance and rela-
tional models. Furthermore, ProQL has been translated into
SQL, which is less efficient for path traversals, data-relations
questions and path expressions than Cypher.

8 Conclusions and Future Work

This paper introduced ProvQL, a query language for data
enriched with provenance information. ProvQL is by design
modular, to support different types of data and provenance
models, and to be adaptable to different implementations of
these models. We presented the syntax and semantics of the
language for the RDF and relational data models, and for the
how, why, trio-lineage and lineage provenance models. We
also presented a graph-based implementation of ProvQL, for
RDF data enriched with how-provenance information.

An experimental evaluation of our implementation on large
provenance-aware repositories is currently under way. Addi-
tional future plans include the enrichment of the language with
features such as distinction or aggregation, implementing sup-
port for the other data/provenance models,and incorporation
of high-level features to support typical uses of provenance,
such as trustworthiness and access control assessment. Fur-
thermore, we plan to implement a native provenance-aware
repository that would support the execution of ProvQL on
top of that, and comparing the performance between the two
different approaches.

8

References

[1] Argyro Avgoustaki, Giorgos Flouris, Irini Fundulaki,
and Dimitris Plexousakis. Provenance management
for evolving rdf datasets. In European Semantic Web
Conference, pages 575–592. Springer, 2016.

[2] Omar Benjelloun, Anish Das Sarma, Alon Halevy, and
Jennifer Widom. Uldbs: Databases with uncertainty and
lineage. Technical report, Stanford, 2005.

[3] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew.
Why and where: A characterization of data provenance.
In International conference on database theory, pages
316–330. Springer, 2001.

[4] Artem Chebotko, Shiyong Lu, Xubo Fei, and Farshad
Fotouhi. Rdfprov: A relational rdf store for querying
and managing scientific workflow provenance. Data &
Knowledge Engineering, 69(8):836–865, 2010.

[5] James Cheney, Laura Chiticariu, and Wang-Chiew Tan.
Provenance in Databases: Why, How, and Where. Foun-
dations and Trends in Databases, 1(4), 2009.

[6] Neo4j Corp. Neo4j’s graph query language: An intro-
duction to cypher.

[7] Yingwei Cui and Jennifer Widom. Lineage tracing for
general data warehouse transformations. VLDB Journal,
12(1):41–58, 2003.

[8] Carlos Viegas Damásio, Anastasia Analyti, and Grig-
oris Antoniou. Provenance for sparql queries. In In-
ternational Semantic Web Conference, pages 625–640.
Springer, 2012.

[9] Giorgos Flouris, Irini Fundulaki, Panagiotis Pediaditis,
Yannis Theoharis, and Vassilis Christophides. Color-
ing rdf triples to capture provenance. In International
Semantic Web Conference. Springer, 2009.

[10] Boris Glavic and Gustavo Alonso. The perm prove-
nance management system in action. In Proceedings of
the 2009 ACM SIGMOD International Conference on
Management of data, pages 1055–1058, 2009.

[11] Todd J Green, Grigoris Karvounarakis, and Val Tannen.
Provenance semirings. In Proceedings of the twenty-
sixth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 31–40, 2007.

[12] Steve Harris and Andy Seaborne. SPARQL 1.1 Query
Language. Technical report, W3C, 2013.

[13] Olaf Hartig. Provenance information in the web of data.
In Linked Data On the Web, 2009.

[14] Grigoris Karvounarakis, Irini Fundulaki, and Vassilis
Christophides. Provenance for linked data. In In Search
of Elegance in the Theory and Practice of Computation,
pages 366–381. Springer, 2013.

[15] Grigoris Karvounarakis, Zachary G Ives, and Val Tan-
nen. Querying data provenance. In Proceedings of
the 2010 ACM SIGMOD International Conference on
Management of data, pages 951–962, 2010.

[16] Frank Manola and Eric Miller. Rdf primer. Technical
report, W3C, 2004.

[17] Luc Moreau. The foundations for provenance on the
web. Foundations and Trends in Web Science, 2(2-3),
2010.

[18] Luc Moreau and Paolo Missier. PROV-DM: the PROV
data model. W3C Recommendation, 2013.

[19] Vicky Papavasileiou, Ken Yocum, and Alin Deutsch.
Ariadne: Online provenance for big graph analytics. In
Proceedings of the 2019 International Conference on
Management of Data, pages 521–536. ACM, 2019.

[20] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez.
Semantics and complexity of sparql. ACM Transactions
on Database Systems (TODS), 34(3):16, 2009.

[21] Sherif Sakr, Marcin Wylot, Raghava Mutharaju, Danh
Le Phuoc, and Irini Fundulaki. Linked Data: Storing,
Querying, and Reasoning. Springer, 2018.

[22] Wang Chiew Tan. Provenance in databases: Past, cur-
rent, and future. IEEE Data Eng. Bull., 30(4), 2007.

[23] Maria Theodoridou, Yannis Tzitzikas, Martin Doerr,
Yannis Marketakis, and Valantis Melessanakis. Mod-
eling and querying provenance by extending CIDOC
CRM. Distributed and Parallel Databases, 27(2):169–
210, 2010.

[24] Yannis Theoharis, Irini Fundulaki, Grigoris Kar-
vounarakis, and Vassilis Christophides. On provenance
of queries on semantic web data. IEEE Internet Com-
puting, 15(1):31–39, 2010.

[25] Marcin Wylot, Philippe Cudre-Mauroux, and Paul Groth.
TripleProv: Efficient processing of lineage queries in a
native RDF store. In Proceedings of the 23rd Interna-
tional Conference on World Wide Web, 2014.

[26] Marcin Wylot, Philippe Cudre-Mauroux, and Paul Groth.
Executing provenance-enabled queries over web data.
In WWW, 2015.

[27] Jun Zhao, Carole Goble, Robert Stevens, and Daniele
Turi. Mining taverna’s semantic web of provenance.
Concurrency and Computation: Practice and Experi-
ence, 20(5):463–472, 2008.

9

A Appendix

A.1 Cypher Query Language

Cypher is a declarative graph query language that was devel-
oped to be used in Neo4j. It is based on the property graph
data model, which represents directed graphs with labels on
nodes and edges, associated with (key,value) pairs.

A.1.1 Cypher Building Blocks

The building blocks of Cypher are the following:
- Nodes

A node is used to represent an entity. Nodes contain
properties, which are (key,value) pairs and they can have
zero or more edges connecting them to other nodes. They
are denoted with a parentheses, e.g. (node).

- Relationships
A relationship represents a relation between two nodes.
Relationships have a direction indicated by a start and
an end node. Like nodes, relationships can contain prop-
erties. Relationships are denoted with an arrow −− >
between two nodes, e.g. (n)−−> (m), while additional
information can be placed inside of the arrow. This in-
formation can be:
1. a relationship type -[:KNOWS|:LIKE]->
2. a variable name -[rel:KNOWS]->
3. additional properties -[since:2010]->
4. structural information for paths of variable length
-[:KNOWS*..4]->

- Properties
A property is a (key,value) pair that describes nodes and
relationships.

- Labels
Labels are associated with a set of nodes or relationships
to denote a role or a type (n:Data).

A.1.2 Cypher Clauses

- MATCH
This clause searches the graph for data with a specified
pattern.

Example A.1 The following query searches for nodes
with relationships pointing to nodes with label “Data”.
MATCH (n)->(m:Data)

- WITH
This clause is used to chain query parts together, piping
the results from one to be used as starting points or
criteria in the next.

- WHERE
This clause is used to add constraints to the patterns in a
MATCH clause or filters the results of a WITH clause.

- RETURN

This clause specifies what to include in the query result
set.

Example A.2 The following query searches for nodes
that are connecting with other nodes through a relation-
ship r. The property strength of r should be satisfy the
constraint r.strength > 0.5. The query will return the
values of n, r, and m.
MATCH (n)-[r]-(m)
WHERE r.strength > 0.5
RETURN n, r, m

A.2 Details on the implementation of ProvQL
The type of a variable ?v is denoted by TypeVar(?v). Table
6 shows how TypeVar(?v) is detected. In particular, when a
variable appears as an argument in a dataFunc, a provFunc
or in a provExp then it has to be an identifier di. In any other
case, the type of the variable depends on its position in a triple
(e.g. subject, predicate or object).

Appearance of ?v Type (TypeVar(?v))
dataFunc(?v) ID
provFunc(?v) ID

Anywhere in a provExp ID
dataFunc(t) = (?v,x,y) SUB(t)
dataFunc(t) = (x,?v,y) PRED(t)
dataFunc(t) = (x,y,?v) OBJ(t)

Table 6: Determining a variable’s type (TypeVar)

Table 7 shows the translation of each element of ProvQL
to a proper element in Cypher. The idea of the table is
that each ProvQL expression contributes to the formulation
of a Cypher query, by imposing the addition of some con-
tent (string) in the MATCH_Pattern, WHERE_Pattern and/or
RETURN_Pattern. In the table, the leftmost column con-
tains the ProvQL expression to be translated, whereas the
other three contain the string that should be added to the
MATCH_Pattern, WHERE_Pattern and RETURN_Pattern of
the Cypher query respectively.

In some cases, the computation is performed recursively;
in such cases, the respective column contains a symbol of
the form “[[X]]”, which is used to denote that a recursive
computation has to take place with regards to element X.
For example, when translating DATA(?v1) <> DATA(?v2)
the MATCH_Pattern will contain whatever results from the
translation of DATA(?v1) and DATA(?v2); this is denoted by
[[DATA(?v1)]] [[DATA(?v2)]] respectively.

10

Table 7: Translations (trQ)

ProvQL Translation to Cypher
Expression MATCH_Pattern WHERE_Pattern RETURN_

Pattern
?v,
where TypeVar(?v)
= ID

var.id

?v,
where TypeVar(?v)
= SUB(t)

RETURN
t.subject

?v,
where TypeVar(?v)
= PRED(t)

RETURN
t.predicate

?v,
where TypeVar(?v)
= OBJ(t)

RETURN
t.object

DATA(?v)
when DATA(?v) ap-
pears in the select-
Pattern

MATCH (v:Data)
WITH v

RETURN
v.{subject,
predicate,
object} as
data_v

DATA(?v)
when DATA(?v) ap-
pears in the evalPat-
tern

MATCH (v:Data)
WITH v

PROV(?v)
when PROV(?v) ap-
pears in the select-
Pattern

MATCH
(v_n3:Operation)-[:hasProv]->
(v:Data)
WITH v_n3, v
MATCH v_p=(v_n1:Data)-[:fromData]->
(v_n2:Operation)-[:fromJoin]->
(v_n3:Operation)
WITH v, v_n2, v_n3,
collect (properties(v_n1)) as v_t1,
collect (v_n2.type) as v_t2,
collect (v_n3.type) as v_t3, v_p

RETURN v_p

PROV(?v)
when PROV(?v) ap-
pears in the evalPat-
tern

MATCH
(v_n3:Operation)-[:hasProv]->
(v:Data)
WITH v_n3, v
MATCH v_p=(v_n1:Data)-[:fromData]->
(v_n2:Operation)-[:fromJoin]->
(v_n3:Operation)
WITH v, v_n2, v_n3,
collect (properties(v_n1)) as v_t1,
collect (v_n2.type) as v_t2,
collect (v_n3.type) as v_t3, v_p

Continued on next page

11

ProvQL Translation to Cypher
Expression MATCH_Pattern WHERE_Pattern RETURN_

Pattern
IPROV(?v)
when IPROV(?v) ap-
pears in the select-
Pattern

MATCH
(v_n2:Operation)-[:fromJoin]->
(v_n3:Operation)-[:hasProv]->
(v:Data)
WITH v, v_n2,v_n3
MATCH v_p=(v_n1:Data)-[:fromData]->
(v_n2)
WITH v, v_n2, v_n3,
collect (properties(v_n1)) as v_t1,
collect (v_n2.type) as v_t2,
collect (v_n3.type) as v_t3, v_p

RETURN v_p

IPROV(?v)
when IPROV(?v) ap-
pears in the evalPat-
tern

MATCH
(v_n2:Operation)-[:fromJoin]->
(v_n3:Operation)-[:hasProv]->
(v:Data)
WITH v, v_n2, v_n3
MATCH v_p=(v_n1:Data)-[:fromData]->
(v_n2)
WITH v, v_n2, v_n3,
collect (properties(v_n1)) as v_t1,
collect (v_n2.type) as v_t2,
collect (v_n3.type) as v_t3, v_p

DATA(?v1) <>
DATA(?v2)

[[DATA(?v1)]] [[DATA(?v2)]] WHERE v1.id <> v2.id

DATA(?v) =
recordExp
if recordExp =
(s,p,o) and
s, p ∈ I, o ∈ I∪L

[[DATA(?v)]] WHERE v.subject = s AND
v.predicate = p AND
v.object = o

DATA(?v) <>
recordExp
if recordExp =
(s,p,o) and
s, p ∈ I, o ∈ I∪L

[[DATA(?v)]] WHERE v.subject = s OR
v.predicate = p OR
v.object = o

PROV(?v1) <>
PROV(?v2)

[[PROV(?v1)]] [[PROV(?v2)]],
v1,v1_p

WHERE v1.id <> v2.id AND
(apoc.util.md5(v1_t1) <>
apoc.util.md5(v2_t1)
OR apoc.util.md5(v1_t2) <>
apoc.util.md5(v2_t2) OR
apoc.util.md5(v1_t3) <>
apoc.util.md5(v2_t3))

PROV(?v1) =
PROV(?v2)

[[PROV(?v1)]] [[PROV(?v2)]],
v1,v1_p

WHERE v1.id <> v2.id AND
apoc.util.md5(v1_t1) =
apoc.util.md5(v2_1)
AND apoc.util.md5(v1_t2) =
apoc.util.md5(v2_t2) AND
apoc.util.md5(v1_t3) =
apoc.util.md5(v2_t3)

Continued on next page

12

ProvQL Translation to Cypher
Expression MATCH_Pattern WHERE_Pattern RETURN_

Pattern
PROV(?v1) <>
IPROV(?v2)

[[PROV(?v1)]] [[IPROV(?v2)]],
v1,v1_p

WHERE v1.id <> v2.id AND
(apoc.util.md5(v1_t1) <>
apoc.util.md5(v2_t1)
OR apoc.util.md5(v1_t2) <>
apoc.util.md5(v2_t2))

PROV(?v1) =
IPROV(?v2)

[[PROV(?v1)]] [[IPROV(?v2)]],
v1,v1_p

WHERE v1.id <> v2.id AND
apoc.util.md5(v1_t1) =
apoc.util.md5(v2_1)
AND apoc.util.md5(v1_t2) =
apoc.util.md5(v2_t2)

IPROV(?v1) <>
IPROV(?v2)

[[IPROV(?v1)]], v1,v1_p
[[IPROV(?v2)]], v1,v1_p

WHERE v1.id <> v2.id AND
(apoc.util.md5(t1) <>
apoc.util.md5(s1)
OR apoc.util.md5(t2) <>
apoc.util.md5(s2))

IPROV(?v1) =
IPROV(?v2)

[[IPROV(?v1)]], v1,v1_p
[[IPROV(?v2)]], v1,v1_p

WHERE v1.id <> v2.id AND
apoc.util.md5(t1) =
apoc.util.md5(s1)
AND apoc.util.md5(t2) =
apoc.util.md5(s2)

PROV(?v1)
INCLUDES
PROV(?v2)

[[PROV(?v1)]], collect(v1_p) as
v1_path, size(()-[]->()-[]->(v1_n3))
as v1_s [[PROV(?v2)]],
collect(v2_p) as v2_path,
size(()-[]->()-[]->(v2_n3)) as v2_s

WHERE ALL(d IN v2_path
WHERE d IN v1_path AND
v1.id <> v2.id AND v1_s=v2_s)

PROV(?v1)
INCLUDES
IPROV(?v2)

[[PROV(?v1)]], collect(v1_p)
as v1_path, size(()-[]->()-[]->(v1_n3)
as v1_s [[IPROV(?v2)]],
collect(v2_p) as v2_path
size(()-[]->(v2_n2)) as v2_s

WHERE ALL(d IN v2_path
WHERE d IN v1_path AND
v1.id <> v2.id AND v1_s=v2_s)

IPROV(?v1)
INCLUDES
PROV(?v2)

[[IPROV(?v1)]], collect(v1_p)
as v1_path, size(()-[]->>(v1_n2)
as v1_s [[PROV(?v2)]],
collect(v2_p) as v2_path
size(()-[]->()->(v2_n3)) as v2_s

WHERE ALL(d IN v2_path
WHERE d IN v1_path AND
v1.id <> v2.id AND v1_s = v2_s)

IPROV(?v1)
INCLUDES
IPROV(?v2)

[[IPROV(?v1)]], collect(v1_p)
as v1_path , size(()-[]->>(v1_n2)
as v1_s [[IPROV(?v2)]],
collect(v2_p) as v2_path
size(()-[]->(v2_n2)) as v2_s

WHERE ALL(d IN v2_path
WHERE d IN v1_path AND
v1.id <> v2.id AND v1_s=v2_s)

PROV(?v1)
CONTAINS
PROV(?v2)

[[PROV(?v1)]], collect(v1_p) as
v1_path1,[[IPROV(?v1)]] as v1_path2
[[PROV(?v2)]], collect(v2_p) as
v2_path

WHERE ALL(d IN v2_path
WHERE (d IN v1_path1 OR d
IN v1_path2) AND v1.id <> v2.id)

Continued on next page

13

ProvQL Translation to Cypher
Expression MATCH_Pattern WHERE_Pattern RETURN_

Pattern
PROV(?v1)
CONTAINS
IPROV(?v2)

[[PROV(?v1)]], collect(v1_p) as
v1_path1,[[IPROV(?v1)]] as v1_path2
[[IPROV(?v2)]], collect(v2_p) as
v2_path

WHERE ALL(d IN v2_path
WHERE (d IN v1_path1 OR d
IN v1_path2) AND v1.id <> v2.id)

IPROV(?v1)
CONTAINS
IPROV(?v2)

[[IPROV(?v1)]], collect(v1_p) as
v1_path, [[IPROV(?v2)]],
collect(v2_p) as v2_path

WHERE ALL(d IN v2_path
WHERE (d IN v2_path
IN v1_path) AND v1.id <> v2.id)

IPROV(?v1)
CONTAINS
PROV(?v2)

[[IPROV(?v1)]], collect(v1_p) as
v1_path, [[PROV(?v2)]],
collect(v2_p) as v2_path

WHERE ALL(d IN v2_path
WHERE (d IN v2_path
IN v1_path) AND v1.id <> v2.id)

PROV(?v)
INCLUDES
provExp

[[PROV(?v)]], v_n2,
size(()-[]->(v_n2)) as v_s
MATCH (m1)-[r1:fromData]->(v_n2)
WITH v_n2, v_s, v, r1
MATCH (m2)-[r2:fromData]->(v_n2)
WITH v_n2, v_s, v, r1,r2
...
WITH v_n2, v_s, v, r1,r2, ... rn-1
MATCH (mn)-[rn:fromData]->(v_n2)

WHERE ID(r_1) <> ID(r_2)
AND ID(r_1) <> ID(r_3) AND ... ID(r_1)
<> ID(r_n) AND ID(r_2) <> ID(r_3) AND
... ID(r_{n-1}) <> ID(r_n) AND v_s=n

if provExp = m1 ⊗ m2 ⊗ ... ⊗ mn

[[PROV(?v)]], v_n3,
size(()-[:fromData]->(v_n2)-
[:fromJoin]->(v_n3)) as v_s
MATCH (m11)-[r11:fromData]->(k11)-
[:fromJoin]->(v_n3)
WITH v_n2, v_s, v, r11,k11,
size(()-[]->(k1)) as m11_size
MATCH (m12)-[r12:fromData]->(k12)-
[:fromJoin]->(v_n3)
...

WHERE ID(r1,1) <> ID(r1,2) AND
ID(r1,1) <> ID(r1,3) AND
... ID(r1,1) <> ID(r1,n) AND
ID(r2,1) <> ID(r2,2) AND ... ID(rk,1) <>
ID(rk,2) AND ... ID(rk,n−1) <> ID(rk,n) AND ...
AND vs = n AND vd = k

if provExp = m1,1 ⊗ m1,2 ⊗... m1,n
⊕ m2,1 ⊗ ... m2,n
⊕ ... ⊕ mk,1 ⊗ ... mk,n

PROV(?v)
INCLUDES
provExp

[[PROV(?v)]], v_n2,
size(()-[]->(v_n2)) as v_s

WHERE v_s=1

if provExp = m1
PROV(?v)))
CONTAINS
provExp

[[PROV(?v)]], v_n2
MATCH (m1)-[r1:fromData]->(v_n2)
WITH v_n2, v_s, v, r1
MATCH (m2)-[r2:fromData]->(v_n2)
WITH v_n2, v_s, v, r1,r2
...
WITH v_n2, v_s, v, r1,r2, ... rn-1
MATCH (mn)-[rn:fromData]->(v_n2)

WHERE ID(r1) <> ID(r2) AND
ID(r1) <> ID(r3) AND ... ID(r1)
<> ID(rn) AND ID(r2) <> ID(r3) AND ...
ID(rn−1)<> ID(rn)

if provExp = m1 ⊗ m2 ⊗ ... ⊗ mn

Continued on next page

14

ProvQL Translation to Cypher
Expression MATCH_Pattern WHERE_Pattern RETURN_

Pattern
[[PROV(?v)]], v_n3, v_n2
MATCH (m11)-[r11:fromData]->(v_n2)
-[:fromJoin]->(v_n3)
WITH v_n2, v_s, v, r11
MATCH (m12)-[r12:fromData]->(v_n2)
-[:fromJoin]->(v_n3)
WITH v_n2, v_s, v, r11,r12
...
MATCH (mkn)-[rkn:fromData]->(v_n2)
-[:fromJoin]->(v_n3)

WHERE ID(r11)<> ID(r1,2) AND
ID(r1,1)<> ID(r1,3) AND ...
ID(r1,1)<> ID(r1,n) AND
ID(r2,1)<> ID(r2,2) AND ...
ID(rk,1)<> ID(rk,2) AND ...
ID(rk,n−1)<> ID(rk,n) AND

if provExp = m1,1 ⊗ m1,2 ⊗... m1,n
⊕ m2,1 ⊗ ... m2,n
⊕ ... ⊕ mk,1 ⊗ ... mk,n

[[PROV(?v)]]
if provExp = m1

IPROV(?v)
INCLUDES
provExp

[[IPROV(?v)]], v_n2,
size(()-[]->(v_n2)) as v_s
MATCH (m1)-[r1:fromData]->(v_n2)
WITH v_n2, v_s, v, r1
MATCH (m2)-[r2:fromData]->(v_n2)
WITH v_n2, v_s, v, r1,r2
...
WITH v_n2, v_s, v, r1,r2, ... rn-1
MATCH (mn)-[rn:fromData]->(v_n2)

WHERE ID(r1)<> ID(r2) AND
ID(r1)<> ID(r3) AND ... ID(r1)
<> ID(rn) AND
ID(r2)<> ID(r3) AND ...
ID(rn−1)<> ID(rn) AND vs = n

if provExp = m1 ⊗ m2 ⊗ ... ⊗ mn

IPROV(?v)
CONTAINS
provExp

[[IPROV(?v)]], v_n2,
MATCH (m1)-[r1:fromData]->(v_n2)
WITH v_n2, v_s, v, r1
MATCH (m2)-[r2:fromData]->(v_n2)
WITH v_n2, v_s, v, r1,r2
...
WITH v_n2, v_s, v, r1,r2, ... rn-1
MATCH (mn)-[rn:fromData]->(v_n2)

WHERE ID(r1)<> ID(r2) AND
ID(r1)<> ID(r3) AND ... ID(r1)
<> ID(rn) AND
ID(r2)<> ID(r3) AND ...
ID(rn−1)<> ID(rn)

if provExp = m1 ⊗ m2 ⊗ ... ⊗ mn

15

	Introduction
	Preliminaries
	The ProvQL Model
	Syntax of ProvQL
	Semantics of ProvQL
	Core semantics
	Data-dependent semantics
	Provenance-dependent semantics

	Implementing ProvQL
	Data Translation (trP)
	Query Translation (trQ)

	Related Work
	Conclusions and Future Work
	Appendix
	Cypher Query Language
	Cypher Building Blocks
	Cypher Clauses

	Details on the implementation of ProvQL

