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Abstract
Data provenance records may be rife with sensitive infor-

mation. If such metadata is to be shared with others, it must
be transformed to protect the privacy of parties whose activity
is being reported. In general, this is a challenging task. It is
further complicated by properties of provenance that facilitate
drawing inferences about disparate portions of data sets. We
consider aspects of the problem, describe strategies to address
the identified issues, and share our implementation of con-
figurable primitives for practical application of provenance
privacy protection.

1 Introduction

When data sets are shared, the corresponding provenance
metadata can help analysts ensure the integrity of workflows
and experimental protocols. The information allows parame-
ter regimes, the sets of inputs, and intermediate information
to be accurately replicated. Provenance is of particular utility
for accurately identifying dependencies when sharing data
and procedures with others. This metadata also has a wide
variety of related applications including performing scenario
analyses without needing to gather new observations, and nar-
rowing the range of hypotheses when diagnosing problems in
complex experimental environments.

Since provenance metadata can be used for a variety of
purposes, the systems used to report such information may be
configured to collect a wide range of attributes about the data,
the processes used to manipulate it, and the agents that control
the processes. Among these attributes are some that may be
particularly sensitive, such as identity details in filesystem
and document metadata.

When data sets are shared, privacy-violating inferences
can be drawn. We explore approaches for preventing such
breaches. When provenance from multiples sources is inte-
grated [10, 13], the issue is exacerbated. If ontologies relating
the schema and semantics of different components [6] are
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available or easily constructed, it may be possible to deter-
mine which elements in the provenance must be sanitized to
satisfy the dual constraints of allowing specific provenance
queries and disallowing privacy-violating inferences about
elements in the metadata. In situations where no solution can
satisfy the competing constraints, an alternate approach can
provide auxiliary protection for subsets of the metadata using
directed granular encryption.

2 Background

Schemes for querying provenance data have received consid-
erable attention. Harvard’s PQL [19] describes a language for
querying provenance and leverages the query optimization
principles of semi-structured databases. IBM researchers have
proposed a provenance index that improves the execution of
forward and backward provenance queries [20]. Query op-
timization techniques on compressed provenance data have
also been considered [18].

While a number of efforts have studied the question of
how to secure provenance [17, 31] and developed access con-
trol models for it [3, 28], most do not address sanitizing the
provenance metadata so that it may be safely shared while
still supporting queries over it. A notable exception is the
graph transformation approach [5, 23]. These efforts provide
stronger assurance than the sanitization transformer we de-
scribe. Differential privacy-based approaches [7] offer even
stronger privacy protection. However, this comes at the cost
of being limited to statistics calculated over the provenance,
precluding responses involving complete subgraphs.

Our approach for provenance sanitization assumes a frame-
work similar to that of the privacy-preserving data publish-
ing literature [4, 9], where data originates from individual
record owners and is collected by a publisher that releases a
compendium to the public or specific recipients [9]. Mecha-
nisms to downgrade information date back several decades.
Adams [1] described three classes: (i) restricting the number
of queries that can be made, (ii) perturbing the data before
executing the query, and (iii) running the query on unmod-
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ified data, but then perturbing the output. Over the years, a
range of techniques has been proposed for sanitizing data, in-
cluding generalization, which coarsens, abstracts, or collects
multiple data into equivalence classes; suppression, which
removes records from the sanitized output; swapping, which
interchanges attributes from different records; randomization,
which adds random noise to perturb the data; and multi-views,
which applies different variants of the previous techniques [4].

If protecting quasi-identifiers was the only goal, k-
anonymity [30] would suffice. If the statistical similarity of
sensitive attributes was the only concern, then l-diversity [22]
could be used. We do not consider the case where the sani-
tization must be effected by untrusted entities, necessitating
the use of cryptographic protocols [32].

3 Practical Challenges

We decompose the problem into different classes based on
the properties of the metadata and the approaches that can be
applied.

Heterogeneous provenance arises when data sets from mul-
tiple sources that use the same provenance data model but
only partially overlapping annotation schema are integrated.
Information used for data integration can be used to identify
associations that an adversary may leverage to relate disparate
provenance elements.

In contrast, homogeneous provenance employs the same
provenance data model and annotation schema throughout.
This makes such provenance amenable to calculating statistics
over it. An adversary may be able to use such priors to make
inferences about missing elements in query responses.
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Figure 1: When provenance attributes or relationships are
deemed to be privacy-sensitive, ontologies (such as those used
for data integration) can be leveraged to infer other elements
that must be sanitized as well. Above, the ontology relates
the user whose Process is running to the home part of a
filesystem Path that identifies the user.

3.1 Heterogeneous Provenance

Each provenance metadata set may be captured at a distinct
level of abstraction, using overlapping or distinct sets of iden-
tifiers to refer to the same artifacts, processes, and agents. It
is also possible the same annotations from different data sets

may have dissimilar semantics. To facilitate analysis, schema
that specify the relationships between provenance annotation
components are assumed to be available. For example, the
name of the user that a process executes as is closely related
to a part of the path of files in that user’s home directory (on
many systems). This is depicted in Figure 1.

In the case that provenance from distinct data sets are com-
bined, knowledge of the semantic relationships (that an adver-
sary could use to breach privacy) can be used to relate com-
ponents from different graphs. This can be used to compute
the transitive closure of sensitive elements in the combined
provenance graph, starting from a seed set of provenance at-
tributes whose privacy is to be maintained. All elements in
the computed set can then be sanitized, thereby preventing the
privacy-violating inferences. Continuing with the example
above, if either the user annotation in a Process vertex [24]
or the home annotation in a Path vertex need to be sanitized,
so should the other.

3.2 Homogeneous Provenance

When users collect and analyze provenance metadata at the
operating system level, a single workload that runs in a few
hours can generate tens of thousands of vertices in a prove-
nance database. Some workflows may run for weeks, generat-
ing commensurately larger provenance graphs. This can give
rise to a significant amount of structure in the provenance that
derives from the repetitive nature of many tasks carried out,
such as trying the same task with a range of input values to
see which yields the best output.

Sanitizing the annotations of particular vertices in the
provenance graph may not suffice in the above case because
of topological relationships. Consider an example, where the
name of each patient is used as the filename of the document
in which the patient’s confidential responses are recorded.
To maintain patient privacy, these files are renamed before
they are shared. All Artifact vertices [24] with annotations
that match any of the patients’ names are sanitized. How-
ever, as Figure 2 illustrates, file renaming operations result
in a specific pattern in the provenance graph. (In Figure 2,
the shape of the vertex indicates its Open Provenance Model
(OPM) [24] type – oval for Artifact and rectangle for Process
– while the color of the edge indicates the OPM relationship
– green for used, red for wasGeneratedBy, and orange for
wasDerivedFrom.) This structure can be used to determine
the intermediate version of the file and obtain aspects such
as the time-stamp and size of the file. Correlating these at-
tributes with the arrival times and attachment sizes in email
logs, for example, would allow the patient responses to be
deanonymized.
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pidname:mv

pid:75363

ppid:74713

starttime_unix:1325991581000

starttime_simple:Sat Jan 7 18:59:41 2012

sessionid:8dd2fd8

commandline:mv userinfo.dat temp.dat

filename:userinfo.dat

path:/var/tmp/userinfo.dat

size:731463

lastmodified_unix:1325629327000

lastmodified_simple:Tue Jan 3 14:22:07 2012

endtime:1325991581911

filename:temp.dat

path:/var/tmp/temp.dat

size:731463

lastmodified_unix:1325629327000

lastmodified_simple:Tue Jan 3 14:22:07 2012

endtime:1325991581928

iotime:16206

endtime:1325991581928

operation:rename

Figure 2: Structure in a provenance graph may leak infor-
mation about vertices in non-obvious ways. In this simple
example, annotations sanitized from the Artifact vertex of
the file userinfo.dat can be inferred from those of the file
temp.dat since these vertices refer to the same file before and
after renaming.

3.3 Sanitization Residue

Provenance elements may need to be accessible to authorized
parties in order to answer particular queries. However, the
same elements may be sensitive enough that they needed to
be protected from others. For example, electronic medical
records may be augmented with Fast Healthcare Interoper-
ability Resource (FHIR) [8] provenance metadata (in W3C
PROV [27] format). A doctor may need to grant different
subsets of these records to clinical trial administrators and
patients.

This may be further complicated by the fact that subsets of
a single data artifact’s history may have been derived from
multiple owners (since independent portions of the data may
have originated from distinct individuals’ information and
activities). Each person may wish to apply a different access
policy to their part of the provenance records.

At the time that provenance metadata is being created,
the data’s owner may not know who will need access to the
metadata. In some settings, it may be desirable that the data
owner does not know who will access the provenance, as is
the case for a data set that is being submitted along with a
paper to a journal for review. Instead, access may need to be
granted to more abstract entities, such as individuals serving

as referees or auditors.
In such situations, a subset of the sensitive provenance ele-

ments cannot be sanitized. Instead, a flexible cryptographic
primitive, attribute-based encryption [2], can be utilized. The
advantage of scoping access with encryption is that the meta-
data can be shared across trust boundaries, enabling its dis-
tribution through untrusted intermediaries such as brokers in
publish-subscribe systems or cloud-based data storage ser-
vices.

4 Protection Primitives

SPADE is an open source provenance middleware frame-
work [12]. It supports inferring, collecting, filtering, storing,
and querying records of provenance in multiple data mod-
els, including OPM [24], W3C PROV [27], and DARPA’s
CDM [21]. An instance of SPADE consists of a Kernel dae-
mon to which components of various types can be added.
This process, its children, and the operating system kernel
and hardware that they run on are assumed to be trusted [11].

SPADE’s default Analyzer component provides access to
a rich query surface [15]. It can be used to locate specific
vertices and edges, find paths between endpoints, compute
ancestor or descendant lineage, and perform set operations on
provenance subgraphs. Intermediate results are stored in vari-
ables without materializing the underlying subgraphs. This
facilitates efficient faceted search on “big provenance". When
a subgraph is materialized for export, it can be programmat-
ically transformed. The latter functionality allows query re-
sponses to be transparently sanitized or encrypted as described
below.

4.1 Response Rewriting
The system has multiple points of extensibility, including
transformers [14] that allow responses to queries to be rewrit-
ten dynamically. An incoming query is sent to the selected
storage, which computes and returns a response provenance
graph. When a transformer is added, it operates on this graph
and programmatically modifies it. This is illustrated in Fig-
ure 3.

Two transformers have been developed. Details on their
usage are provided in SPADE’s Wiki [26].

4.1.1 Sanitization Transformer

The first module implements schema-specific provenance
sanitization. This is of particular utility in settings where
there are no established trust relationships between the users
making the queries and the service managing the provenance
records. The absence of trust precludes users obtaining access
credentials from an administrator.

The changes made to the provenance response are irre-
versible since the original annotation values are replaced with
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Figure 3: SPADE transformers rewrite the response graph returned after a provenance query. The two depicted here sanitize and
encrypt the values of configured keys in the annotations on vertices and edges of outbound provenance graphs.

the sanitized variants before the graph is returned to the query-
ing client. This form of provenance privacy protection is
vulnerable to re-identification attacks. However, it may still
be useful in situations where graphs (rather than aggregate
statistics) need to be sent in response to queries.

As an example, the HIPAA1 “safe harbor" approach for
patient record de-identification stipulates removal or general-
ization of 18 elements [29]. The Sanitization Transformer
can be used for this by editing its configuration to specify the
annotation keys that are covered.

4.1.2 Encryption Transformer

In situations where the querying clients have prior trust rela-
tionships with the provenance service, a system administrator
can arrange for each user to be provided with cryptographic
credentials. Once the provenance service can assume that
users have appropriate decryption keys, the provenance sub-
graphs materialized in response to queries can be appropri-
ately encrypted prior to transmission to clients.

The second module provides support for fine-grained
attribute-based provenance encryption using OpenABE [25].
When the ABE Transformer is applied, it produces an
encrypted graph. Its configuration can be edited to specify
which annotations need to be encrypted. This is a reversible
transformation since the encrypted values can be decrypted
if suitable attribute private keys are available at the client.
Support has been added to SPADE’s query engine to
recognize graphs returned in this format and transparently
handle decryption.

Both transformers can be customized. In particular, the set
of annotations that they operate upon can be configured to
match the schema of the provenance records in use. The de-
fault configurations contain support for operating upon prove-

1United States Health Insurance Portability and Accountability Act

nance inferred from Linux Audit system call events using
SPADE’s corresponding Reporter module. The functionality
of both transformers can be extended with handlers that pro-
vide custom treatment for specific annotations. This allows
each part of a complex data type, such as a filesystem path,
network address, or timestamp, to be sanitized or encrypted
differently depending on the level of protection being applied.

To simplify use of the transformers, syntactic sugar is pro-
vided for selecting the annotations that will be modified. More
specifically, the set of annotations that will be operated upon
can be partitioned into three categories, low, medium, and
high, in the configuration for each transformer. When the
transformer is added to a running SPADE Kernel, a corre-
sponding level argument can be provided to indicate which
annotations will be sanitized. Use of this functionality is op-
tional (since all annotations can be moved to a single level, if
that is preferable).

4.2 Noisy Statistics

In some settings, external sources of information may be
available about users whose activity is captured in the
provenance records. Such auxiliary data may be leveraged
for re-identification despite the protection provided by the
Sanitization Transformer. Similarly, patterns in prove-
nance graphs may be exploited to violate privacy, as illustrated
in Figure 4.

At the same time, there may be no established trust rela-
tionships between the querying clients and the provenance
service, precluding use of the ABE Transformer. Though of
more limited utility, aggregate statistics computed over the
provenance can be returned instead. Such results can be ro-
bustly protected using differential privacy [7].

SPADE’s QuickGrail query surface [15] stores the response
subgraph of a provenance query in a variable. This allows
it to be reused in subsequent queries, manipulated by set
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pidname:mv
pid:50716
ppid:50695

starttime_unix:1325715179000
sessionid:8dd2fd8

filename:Health.Report
size:46360

lastmodified_unix:1325715180000
owner:alice

filename:Patient_42
size:XXXXX

lastmodified_unix:XXXXXXXXXXXXX
owner:XXXXX

pidname:mv
pid:22478
ppid:20693

starttime_unix:1325715179000
sessionid:8dd2fd8

filename:out.run.INPROGRESS
size:667890

lastmodified_unix:1325708830000
owner:dave

filename:out.run.COMPLETE
size:667890

lastmodified_unix:1325708830000
owner:dave

Figure 4: Topological patterns (such as isomorphic subgraphs with highly correlated annotations) can be exploited by an adversary
to recover sanitized values. In this example, noting the structure of the rename operation (also described in Figure 2) on the left
allows the reconstruction of the sanitized annotations (marked with red X’s) as their values are unsanitized in the source of the
rename operation on the right. In particular, this would reveal the patient’s identity.

operations on “big provenance” (without incurring the cost
of materializing the content), or exported for visualization
or external processing. The query language contains a stat
command, initially limited to reporting the number of vertices
and edges in a graph variable.

Provenance is represented as a property graph in SPADE,
with each vertex and edge associated with a set of annotations.
Each annotation has a key and a value. Support is being added
to allow a stat query to specify whether it should operate on
the vertices or edges of a graph variable, and on which specific
annotation key. Given this, the query can ask for the mean,
standard deviation, histogram, or distribution of associated
values. The distribution variant takes a bin count, divides
the range of values from the minimum to the maximum into
the specified number of sub-range bins, and then reports the
number of values in each bin.

Differential Privacy in the Analyzer

A SPADE Analyzer provides an interface to the user for re-
trieving stored provenance records. It is responsible for re-
ceiving a query from a client, sending it to the appropriate
storage, processing the information returned, and sharing the
result with the user.

The default Analyzer is being extended with support for
differential privacy [7]. In particular, if the underlying stor-
age returns a response that is an aggregate statistic of the
form described above, the value can be perturbed to preserve
privacy. The level of noise added (determined by the differen-
tial privacy ε value used) can be specified in the Analyzer’s
configuration. This allows a tradeoff to be made between the
utility of the response and the privacy of parties whose activity
has been captured in the database of provenance records.

The implementation utilizes Google’s differential privacy
libraries [16].
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5 Conclusion

We have described concerns with protecting the privacy of
provenance in practice. Support has been added to SPADE
for rewriting responses to provenance queries to either sani-
tize the subgraph by eliding elements or use attribute-based
encryption to protect specific elements. An ongoing effort
adds storage functionality for computing aggregate statistics
about provenance subgraphs along with Analyzer support for
adding differential privacy noise to the results.
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