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Abstract
Data sharing is becoming increasingly important, but
how much risk and benefit is incurred from the sharing
is not well understood yet. Certain existing models can
be leveraged to partially determine the risk and benefit.
However, such naïve ways of quantification are inaccurate
because they fail to capture the context and the history of
the datasets in data sharing. This paper suggests utilizing
the data provenance to accurately and quantitatively
model the risk and benefit of data sharing between two
parties, and describes preliminary approaches as well as
further issues to consider. We limited the paper to 4
pages to allow a future full-length publication.

1 Introduction
Data sharing is a valuable part in data intensive and
collaborative environment due to the synergies created
by multimodal datasets generated from different sources.
We focus on the case where one party (owner) sends
his/her structured datasets to another party (recipient).
For notational simplicity, we assume the party that pos-
sesses datasets own them and ignore the distinction
between possession and true ownership since the dis-
tinction is orthogonal to the problem discussed in this
paper. Such sharing between two entities (e.g., compa-
nies and organizations) incurs security issues due to the
sensitive information about individuals (e.g., health or
financial information) or organizations (e.g., business
secrets) contained in the datasets. For example, privacy
researchers have demonstrated that diverse types of data,
e.g., electricity meter readings [6] and hospital visits [21],
can be linked back to individuals even when they are
shared without names or other overt identifiers such as
addresses or dates of birth. Due to such reasons, it is
required that the owners sanitize the datasets before
releasing them to ensure the disclosure risk is minimized
without significantly damaging the utility of dataset. Ide-
ally, the participants in data sharing want to maximize

the benefit of data sharing while minimizing the risk of
sharing. For that, they may want to quantitatively learn
how much benefit they gain from the received datasets
and how much risk exists in the sharing. Several aspects
need to be considered to accurately gauage them.
• Existing privacy evaluation can be improper.
Existing models for evaluating the privacy risk associated
with the data (e.g., k-anonymity [19], l-divsertiy [16], t-
closeness [14]) are modeled for the publication of a single
table, and certain pre-processing (e.g., generalization and
suppression) is performed to cluster individual records
into several equivalence classes to ensure the table satis-
fies the privacy definition(s). In data sharing, multiple
tables that are correlated to each other (e.g., derived from
the same table) may be shared. However, such correlation
is not considered in the data pre-processing. Further-
more, ensuring the privacy definitions (i.e., k, l, t values
in the aforementioned models) for individual tables may
not result in the desired privacy level. For example, as
shown in T1 and T2 in Figure 1, one’s record may be
generalized/suppressed to different equivalence classes
due to different distributions of the tables. Such incon-
sistent pre-processing may lead to either reduced utility
(when the same record is represented by different equiv-
alent classes, e.g., T∪ in Figure 1) or reduced privacy
(when different equivalent classes are linked and yield
more specific equivalent classes, e.g., T./ in Figure 1).
• The risk may change after the recipient inte-
grates the shared datasets with the datasets s/he
possesses. Therefore, the publisher needs to take into
account the recipient’s context, i.e., the datasets s/he
possesses, but the existing models do not capture it.
• To the best of our knowledge, there are no such
models that measure the benefits of data sharing.
Intuitively, the benefits of sharing are based on new
information obtained from the integration of datasets
between participants. The degree of new information can
be estimated by measuring the (dis)similarity between
datasets (e.g., [1]). However, it may result in incorrect
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T1
Country Gen. Age Income Occup.

North America F < 30 >100k/yr Faculty

T2
Country Gen. Age Income Occup.
Canada XX 29 <140k/yr Higher Ed.

T∪ (when T1,T2 are merged without linkage)
Country Gen. Age Income Occup.

North America F < 30 >100k/yr Faculty
Canada XX 29 <140k/yr Higher Ed.

* The same person appears in two records (utility loss).

T./ (when T1,T2 are integrated with linkage)
Country Gen. Age Income Occup.
Canada F 29 100k/yr-140k/yr Faculty
* The equivalent class becomes more specific (privacy risk).

Figure 1: Example of improper pre-processing.

estimation without considering where the information
comes from (i.e., data provenance). For example, assume
that, in Figure 1, T1 is a shared data and T2 is an
owned data. Measuring the new information gained from
the integrated data T./ over T2, e.g., using Jaccard
similarity [10], would determine the entire records in T./

as new information (the fused values are not detected
properly). Thus, we use provenance to capture such
information, e.g., F in Gen. of T./ is derived from T1
but 29 in Age is actually from T2, to accurately measure
the degree of new information.

This paper investigates how provenance can be used to
(1) accurately sanitize correlated data for better utility
and privacy, and (2) accurately evaluate the risk and
benefit of data sharing. The core ideas can be applied to
any sanitization approaches and any modeling of risk and
benefit that are data-centric (i.e., defined for individual
datasets). An in-depth understanding of risk and benefit
in data sharing can inform the data owners to make
better decisions and contribute to the development of
safe and secure data sharing ecosystem.

2 Related Work
Modeling of Disclosure Risk k-Anonymity [19], l-
divsertiy [16], and t-closeness [14] are well-known models
which quantify the re-identification risk of a given sani-
tized dataset. These models capture different types of
privacy guarantees. k-Anonymity requires each equiv-
alence class contain at least k records with identical
quasi-identifiers and aims at preventing identity disclo-
sure. l-Diversity further considers the sensitive attributes
by requiring that in any equivalence class, each sensi-
tive value can occur with a frequency of at most 1

l . t-
Closeness addresses the l-diversity’s limitations of overly-
strong/weak confidence bound by requiring the sensitive
attribute distribution in each equivalence class be close
to that in the overall data.

There are also models quantifying the re-identification
risk by record linkability (e.g., based on values [17],

rules [22], probabilistic analysis [8], and data mining
and machine learning [5]), which measures the ability of
matching between original and shared records and, thus,
quantifies the privacy level of shared records.

For the tables that are released with ε-differential pri-
vacy or ε,δ-differential privacy [15,20, 23], it is also pos-
sible to quantify the disclosure risk with the ε and/or δ.
Though providing rigorous theoretical guarantees, such
protection towards data sharing has a specific query
function or utility function towards which randomiza-
tion/perturbation mechanisms are tailored. Therefore,
it is not suitable for general-purpose data sharing.

Modeling of Information Loss In general, there are
mainly two approaches to measure utility of data. (1) One
measures the amount of utility that is remained in sani-
tized data. This includes measures such as the average
size of the equivalence classes [16] and the discernibility
metric [2], and the approach of evaluating data utility in
terms of data mining workloads. (2) The other measures
the loss of utility due to data anonymization. This is
measured by comparing the anonymized data with the
original data. It includes measures such as the number
of generalization steps and the KL-divergence between
the reconstructed distribution and the true distribution
for all possible quasi-identifier values [11].

3 Problem Definition

Suppose there exist two parties, data owner o and
third party p. The owner o shares a set of tables
To = {T1,T2, · · ·} with p who possesses another set of
tables Tp = {T ′1,T ′2, · · ·}. We assume a finite set of algo-
rithms of data integration is available to both o and p
which is denoted as A = {A1, · · · ,An}. Finally, we use
Tp./Ao = {T ./

1 ,T ./
2 , · · ·} to denote the resulting datasets

achieved by integrating To and Tp over A.
We informally define the problem as follows: (1) sanitiz-

ing To in a holistic way such that the aforementioned in-
consistent sanitization is prevented (i.e., the same record
is represented by the same equivalence class); (2) defin-
ing a quantitative model that measures the additional
risk (AR) caused at p’s end over Tp./Ao; and (3) defining
a quantitative model that measures the information gain
(IG) over Tp./Ao.

4 Sanitization with Provenance

As mentioned in Section 1, if data sanitization (e.g.,
generalization and suppression) is performed on each
individual table independently, it may result in incon-
sistent records. This occurs when two tables Ti and Tj

have correlated data (e.g., both are derived from the
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same table or one is derived from the other). We use
provenance as follows. For each table Ti in To, the owner
o analyzes the provenance of Ti and identifies all the
tables that have dependencies. The tables with depen-
dencies are clustered into several groups, and the tables
in each group are integrated into one single table that
represents the group. For example, if T1 and T2 are re-
lated and T2 and T3 are related, but T1 and T3 may
(not) be directly related, we cluster all T1,T2, and T3
into one group. By doing so, one record will be repre-
sented by one equivalence class only, and we will not
have inconsistency issues in the pre-processing. We use
To./A = {T ◦1 ,T ◦2 , · · ·} to denote the set of representative
tables derived from such integration performed by o.
Then, o sanitizes each table in To./A , e.g., such that they
have desired k-anonymity, l-diversity, and/or t-closeness
based on existing approaches and shares To./A with p.
Note that any other data-centric approaches (e.g., [3,18])
can be applied with/instead of the one described above.

5 Measuring AR
Any data-centric risk metric that is defined for the given
dataset can be used, and we will leverage the aforemen-
tioned disclosure risk of sanitized data in this paper for
illustration purposes only. We measure AR by the worst-
case differences of the privacy metrics (e.g., k, l, t values
in the k-anonymity, l-diversity, and t-closeness) between
the original sanitized representative datasets published
by o, i.e., To./A and the resulting datasets Tp./Ao. We
stress that, before p integrates Tp with To./A , the recipi-
ent p needs to analyze the provenance records of Tp and
generate the representative tables to avoid the aforemen-
tioned inconsistency. We use Tp./A to denote the set of
representative tables generated by p.

In our example, one can define AR with the difference
between the minimum k, l, t values in To./A and the
minimum k, l, t values in Tp./Ao (which is generated by
integrating To./A and Tp./A). It is thus defined as a
tuple of three values (Equation (1)). Note that k(T ), l(T ),
and t(T ) denote the k, l, t values of T in k-anonymity,
l-diversity, and t-closeness respectively. This metric can
be used to quantify the additional risk caused by the
sharing. The higher the AR is in each dimension, the
greater the additional risk is. Note that there can be
negative values when the values increase after the sharing,
which indicates the risk is actually reduced.

AR =
(

min
T◦

i
∈To./A

(
k(T ◦i )

)
− min

T ./
i
∈Tp./Ao

(
k(T ./

i )
)

,

min
T◦

i
∈To./A

(
l(T ◦i )

)
− min

T ./
i
∈Tp./Ao

(
l(T ./

i )
)

,

min
T◦

i
∈To./A

(
t(T ◦i )

)
− min

T ./
i
∈Tp./Ao

(
t(T ./

i )
)) (1)

6 Measuring IG using Provenance

The purpose of data sharing lies partly in the record
linkages resulted from the sharing of multimodal datasets,
because p gains extra information from Tp./Ao. We define
information gain (IG) based on the new values appearing
in Tp./Ai

o over To and Ai ∈A. To measure IG of sharing,
we capture different types of provenance, e.g., where
and why provenance and column dependencies over Tp
and To that contribute to those in Tp./Ai

o for each Ai.
Assuming T1 in Figure 1 is the shared data, IG of the
record in T./ should be calculated based on the values
in Gen., Income, and Occup. attributes that are derived
from the record in T1.

Adapting the concept of extensional (changes in rows)
and intensional (changes in columns) completeness in [4]
and using provenance, we measure newly introduced
values from common columns that exist in T ′l ∈ Tp, Tm ∈
To, and Tp./Ai

o and through newly added columns from
shared To. We extend the informativeness metric in [13]
for computing the IG of each record in Tp./Ai

o and use
it as a baseline method for measuring column changes
of each record. We, then, generalize the IG of Tp./Ai

o

as the harmonic mean of measures of changes in rows
and columns. This method can be applied to any data-
centric metric for measuring IG that may exist. Note
that the generalization method should be independent
of A such that the computed IG of each integrated data
is directly comparable. For example, we may be able to
compute IG of Tp./Ai

o based on the IG of each record
in it. However, generalized IG over ∀Ai ∈ A may not be
directly comparable because IG of Tp./Ai

o and Tp./Aj
o

may differ although they contain the same amount of
new information.

7 Issues to Consider Further

Overhead of Model Evaluation To use the afore-
mentioned AR and IG modeling, the owner o and the
third party p engaged in data sharing need to (1) per-
form integration on their own datasets before the sharing
to generate representative tables and (2) compute the
metrics over all integrated datasets Tp./Ao after the shar-
ing. The proposed models would not be practical if their
computation complexities are prohibitively high and the
datasets are too large. To address them, we apply the
following solutions.

Firstly, the dataset similarity measurement [10], which
is based on the MinHash algorithms [12], will be lever-
aged. These approaches generate semantic-preserving
hash values from a table, based on which the similarity
between two tables can be measured extremely efficiently.
Due to the law of large numbers, the similarity between
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tables can be approximated with bounded errors and
complexity that are independent from the size of the
tables. Since the hash values from the MinHash algo-
rithms can be used to approximately estimate how many
common data elements (e.g., tuples and subtuples in
each table) the tables have, we will use such hash values
to estimate the difference of the aforementioned k, l, t
values between the shared dataset To and the integrated
datasets Tp./Ao. This is possible since the k, l, t values
are based on the tuples and the subtuples of the tables,
whose similarity has been successfully estimated via the
MinHash algorithms. We will use the similarity between
the tuples and subtuples of To and Tp./Ao to estimate the
k, l, t values efficiently at the errors and the complexity
independent from the size of the datasets.
Secondly, approximate summaries of provenance

records [13] will be leveraged to efficiently evaluate IG of
Tp./Ao. We can naively measure the IG using the afore-
mentioned model such that evaluating all the changes
in rows (quantity of information) and columns (qual-
ity of information) from each integrated data Tp./Ai

o

comparing against Tp and To (then, Tp./Ao is the set of
IGs for all Tp./Ai

o where Ai ∈ A). However, it is com-
putationally not feasible. By extending summarization
technique in [13], we trade-off quality of IG for computa-
tional performance. We compute a provenance summary
for Tp./Ai

o using a sample of provenance and patterns
which represent sets of provenance. We, then, evaluate
approximate IG of Tp./Ai

o over the summaries while as-
suring that the approximate IG is as close as possible to
the actual IG. The provenance summaries are also used
to reduce the computational space. Assume that we have
a set of patterns p1 computed over T ′j ./Ai

Tl and p2 gen-
erated over T ′j ./Ai

Tm where T ′j ∈ Tp, {Tl,Tm} ∈ To, and
Ai ∈A. If p2 ⊂ p1, we do not have to measure the IG of
T ′j ./Ai

Tm. There are several challenges: (1) While com-
puting patterns over sample(s) of provenance of Tp./Ai

o,
we may lose some new information that is obtained over
Ai. Thus, we should keep new information as much as
possible in order to achieve the approximate IG close
enough to the actual IG; (2) Obtaining the minimal set
of summaries over T ′j ./Ai

Tl for all T ′j ∈ Tp and Ai ∈ A
is challenging because there may exist overlaps among
the integrated datasets. We can find a superset of the
optimal set by estimating the bounds of IGs and develop
an efficient method to speed up the evaluation by reusing
the provenance (summaries).

Retroactive Evaluation While such evaluation can
help mitigate the high risk caused by data sharing and
also allow third party p to understand the benefit, it is
a retroactive evaluation with certain limitations.

Firstly, the data sharing that incurs high AR (i.e., the
k, l, t values become significantly lower in the datasets

integrated by p after the sharing) may result in individual
disclosure. If p is adversarial (e.g., due to insider threats
or compromise attacks), the attackers inside p may have
access to the integrated datasets before the rest of p take
further steps to perform extra sanitization after receiving
the dataset. The attackers thereby gain extra benefits
in deanonymizing the sanitized data.

Secondly, if the data sharing is part of trading transac-
tions (e.g., p pays o fees/royalties to receive the datasets),
there can be fairness issues when the extra benefit is too
low or too high. When the extra benefit is shown to be
too low, malicious o may refuse to refund the transac-
tion amounts or share additional datasets to ensure p
receives enough benefit from the sharing. On the other
hand, when the extra benefit is too high, malicious p
may refuse to pay extra fees/royalties.

All of issues arise because the evaluation can be done
in a retroactive manner only. One potential solution to-
wards this limitation is to perform the evaluation before
sharing the actual datasets. This is possible if one lever-
ages trusted execution environment such as Intel SGX [7]
to allow the two parties to learn the additional risk and
information gain without learning each other’s datasets.
Namely, they can both securely their datasets to each
others’ SGX enclaves such that the AR/IG evaluation
can be done securely within the enclaves that are inacces-
sible by o or p. The calculated AR/IG can be returned
to o,p with the signatures generated inside the enclaves,
which would show the integrity. Though being techni-
cally feasible, such an approach incurs prohibitively large
memory I/O overhead due to the small capacity of the
SGX enclaves, therefore further investigation is needed
to make such approaches more practical.

Honesty Requirement This paper assumes the
owner o and the third party p honestly perform the
calculation to measure the AR and IG correctly. If either
party is malicious, the AR and IG values would be mean-
ingless. For example, in the scenario of dataset trading,
p who pays for the dataset access may be motivated to
claim the extra benefit is too low to get monetary benefit.
Certain authentication mechanisms need to be in place
to vet the parties and ensure that they will not engage
in such misbehavior.

Alternatively, it is technically feasible to rely on zero-
knowledge proofs such as GROTH16 [9] which is one of
the most efficient implementations of Zero-Knowledge
Succinct Non-Interactive Argument of Knowledge (zk-
SNARK). Namely, both o and p can prove to each other
without disclosing their datasets that the AR and IG
have been calculated correctly. However, similar to any
other cryptographic approaches, such an approach would
incur prohibitively larger overhead.
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