
GitLab2PROV—Provenance of Software Projects hosted on GitLab

Andreas Schreiber Claas de Boer Lynn von Kurnatowski
German Aerospace Center (DLR)

Abstract
Assertions about quality, reliability, or trustworthiness of
software systems are important for many software appli-
cations. In addition to typical quality assurance measures,
we extract the provenance of software artifacts from source
code repository’s—especially git-based repository’s. Soft-
ware repository’s contain information about source code
changes, the software development processes, and team in-
teractions. We focus on the web-based DevOps life-cycle
tool GITLAB, which provides a git-repository manager and
other development tools. We propose a provenance model
defined using W3C PROV data model and an implementation:
GITLAB2PROV.

1 Introduction

Software has conquered many application areas over the past
years. In particular safety critical systems are affected, such
as aviation and aerospace, where errors can have serious con-
sequences. Furthermore, over the years an increasing com-
plexity within these areas also resulted in the need for more
and more complex software solutions. Therefore, for many
software applications, ensuring the quality, reliability, and
trustworthiness of software systems is a basic requirement;
which can be achieved with an automated documentation of
the overall process.

Our work aims to automatically collect, store, and evaluate
the complete provenance of all process steps of a software
development project. Since software repositories contain in-
formation about source code, software development processes,
and team interactions, we extract the provenance of software
artifacts based on these repositories. For this purpose, we de-
fined a provenance model for software development processes
using the W3C PROV specification; especially the PROV data
model (PROV-DM [9]). We focus on the web-based DevOps
life-cycle tool GITLAB1, which provides a git-repository man-

1https://about.gitlab.com/features/

ager, issue-tracking, Wiki, and continuous integration and
deployment pipelines.

Among the many existing code-hosting platforms, GIT-
LAB belongs to the most popular ones2 with > 30,000,000
users; used by > 100,000 organizations (including the Ger-
man Aerospace Center). In addition to the public Open Source
platform gitlab.com, GITLAB can be self-hosted within
organizations—which many of these use GITLAB as their
internal platform for Inner Source development [3].

Since GITLAB is widely used, we contribute the following:

• Background information about provenance of software
artifacts and development processes where we briefly
summarize our work on a high-level provenance model
for software development (Section 2).

• A reasonably comprehensive overview of provenance
for git services including references to influential work
(Section 3).

• A description of GITLAB2PROV for extracting prove-
nance graphs from GITLAB instances (Section 4).

• An evaluation using an example of an Inner Source
project from DLR’s GITLAB instance (Section 5).

2 Provenance of Software Artifacts

Due to the complexity of today’s software many development
process models evolved, together with many tools. A typical
tool suite consists of an integrated development environment
(IDE), a version control system, an issue tracker, a continuous
integration framework, and a documentation management sys-
tem. Many interaction occurs between developers, between
the tools they use during the development process, and auto-
matically between different tools.

2https://en.wikipedia.org/wiki/Comparison_of_
source-code-hosting_facilities

1

https://about.gitlab.com/features/
gitlab.com
https://en.wikipedia.org/wiki/Comparison_of_source-code-hosting_facilities
https://en.wikipedia.org/wiki/Comparison_of_source-code-hosting_facilities


In our previous work [17], we developed an high-level
extensible conceptual provenance model for software devel-
opment processes using the Open Provenance Model (OPM)
notation. We updated the model from OPM to PROV. The
model covers issue tracking (requirements, bugs), develop-
ment (planning, design, coding, testing), continuous integra-
tion, documentation (developer, user), and release (Figure 1).

Revision

type=prov:Person

Issue
Change

wasGeneratedBy

wasAssociatedWith

Change 
Set

Release Release

Build

Coverage

Test

Document 
Change

Documen
-tation

Version
Control

type=prov:SoftwareAgent

Build
Result

Test
Result

Coverage
Report

CI/CD 
System

type=prov:SoftwareAgent

wasAssociatedWith

wasGeneratedBy

used

wasGeneratedBy

Issue

Commit

User

Figure 1: High-level conceptual PROV model for software
development processes (excerpt; for clarity, some relation
types and most attributes are left out).

The conceptual PROV model can—and should—be ex-
tended with further activities such as editing or deployment
and further actors such as software bots or software analytics
tools. If used for concrete processes, each of the PROV class el-
ements must be defined with specialized class elements—for
example:

• The generic role User Agent has to be specialized to roles
such as Author Agent or Test Manager Agent . Another way
would be to specify the role of an actor by adding a
property “role” to the relation, which relates that actor
with actions.

• A PROV model, which is more specific for git, has
specific class elements such as GitLab Agent as a spe-
cialization of Version Control Agent . Also the activi-
ties, such as Commit Activity or Issue Change Activity , have
much more details about relations to related activities
and related entities.

To get meaningful knowledge and insights from provenance
graphs [12], one has to extend toPROV model according to
questions of interest. Example questions include questions
related to quality assurance (e.g., “How many releases have
been produced this year?”), process compliance (e.g., “From
which revision was release X built?”), developer performance
(e.g., “Which developer is most active in contributing docu-
mentation?”), and others [17].

3 Provenance for git Services

We generate provenance from the distributed version-control
system git, which tracks changes in a file system. Nowa-
days, git is used in many developer workflows. Especially
Open-Source projects use git via hosting services such as
BITBUCKET, GITHUB, or GITLAB.

Based on the general PROV model (Section 2), we model
all actions that are possible with git services with more spe-
cialized PROV models. Our work relies on the previous works
GIT2PROV by Nies et al. [4] and GITHUB2PROV by Packer
et al. [10]. We provide a PROV model for GITLAB and the
implementation “GITLAB2PROV” (Section 4). Similar to
Packer et al. for GITHUB2PROV, our PROV model extends
the model of GIT2PROV with activities that are beyond ba-
sic git functions (i.e., specific functions of GITLAB such as
issue management).

We store the PROV graph in databases such as the PROVS-
TORE [6] or the graph database NEO4J using additional tools
(Figure 2).

gitlab.com

Graph 
Database
Neo4j

GitLab Group

git 
Repo 1

git 
Repo 2 …

GitLab (Self-Hosted)

GitLab-API
Token A

GitLab-API
Token B

ProvStore

GitLab2PROV

prov2neo
Provenance
PROV-JSON

upload

GitLab Group

git 
Repo 1

git 
Repo
2

…

GitLab2PROV

Figure 2: Extracting provenance from git repositories. Our
tool GITLAB2PROV writes the provenance to a PROV-JSON
file, which we upload to the PROVSTORE and import into
NEO4J using our tool PROV2NEO (see Section Availability).

In NEO4J, performing queries, graph reasoning, or
extracting knowledge otherwise is possible by using
CYPHER queries or graph algorithms. For example, for analyz-
ing software projects we use CYPHER queries to investigate
the following (see Section 5):

• Graph structure information, such as number of nodes
and edges, which represent the number of files, commits,
and developer activities in total.

• Graph structure changes over time, such as active periods
of developers.

• Process-specific questions, such as interactions of devel-
opers during curse of the project.

2



4 GITLAB2PROV

GITLAB2PROV extracts information from instances of GIT-
LAB and stores the PROV graph in a provenance notation file
format specified by the W3C PROV specification. We describe
GITLAB2PROV’s provenance model (Section 4.1), give de-
tails on its implementation (Section 4.2), and give an example
on the extracted provenance (Section 4.3).

4.1 Provenance Model
GITLAB2PROV uses PROV models to record actions that can
occur within arbitrary GITLAB projects3.

4.1.1 Commits

Three of the employed models are for capturing of different
effects that git commits can have on the status and content
of files. The identified effects are the addition of a new file
(Figure 3a), the change of a file (Figure 3b), and the deletion
of a file (Figure 3c).

For example, when adding or modifying a file via a commit
in the git repository, GITLAB2PROV records the following
information:

• A PROV entity Entity for the File Version at the point
of addition as well as an entity for the File itself. The
File Version is marked as a specialization of the spe-
cific File.

• The author and the committer of the git commit as repre-
sented by the PROV agents Agent Author and Committer.
The File and File Version entities are attributed to
the Author to represent that the Author is responsible
for their content.

• The commit that adds the file is represented by the spe-
cialized PROV activity Activity Commit which generates the
PROV entities File and File Version. The commits di-
rectly preceding Commit are also recorded. The Author
and the Committer are associated with the Commit ac-
tivity, since they are responsible for the commit taking
place.

4.1.2 Issue Management and Merge Requests

Two models capture user interactions and events that occur
on or with GITLAB Web resources such as maintaining GIT-
LAB issues (Figure 4), managing GITLAB merge requests
(Figure 5), or using the GITLAB Web interface for commits.
These interactions happen in sequence, one event following
the next, without branching the timeline of events. Packer

3The PROV model and results in this paper are defined and produced
using GITLAB2PROV version 0.4 (https://doi.org/10.5281/zenodo.
4714963)

Commit

Parent Commit

wasInformedBy

Committer

wasAssociatedWith

Author

wasAssociatedWith

prov:type commit
id
message
prov:endedAt
prov:startedAt
short_id
title

prov:type commit
id
message
prov:endedAt
prov:startedAt
short_id
title

prov:role committer
prov:type user
email
name

prov:role author
prov:type user
email
name

File

wasGeneratedBy

wasAttributedTo

prov:type file
path_at_addition File Version

wasGeneratedBy

wasAttributedTo

specializationOf

prov:type file_version
new_path
old_path

(a) Addition of a file.

Commit

Parent Commit

wasInformedBy

Committer

wasAssociatedWith

Author

wasAssociatedWith

File Version N-1

used

prov:type commit
id
message
prov:endedAt
prov:startedAt
short_id
title

prov:type commit
id
message
prov:endedAt
prov:startedAt
short_id
title

prov:role committer
prov:type user
email
name

prov:role author
prov:type user
email
name

File

prov:type file
path_at_addition

File Version N

wasGeneratedBy

wasAttributedTo

specializationOf

wasDerivedFrom

prov:type file_version
new_path
old_path

specializationOf

prov:type file_version
new_path
old_path

(b) Change of a file.

Commit

Parent Commit

wasInformedBy

Committer

wasAssociatedWith

Author

wasAssociatedWith

prov:type commit
id
message
prov:endedAt
prov:startedAt
short_id
title

prov:type commit
id
message
prov:endedAt
prov:startedAt
short_id
title

prov:role committer
prov:type user
email
name

prov:role author
prov:type user
email
name

File

prov:type file
path_at_additionFile Version

wasInvalidatedBy specializationOf

prov:type file_version
new_path
old_path

(c) Deletion of a file.

Figure 3: PROV sub-models for the different actions on files,
which users can perform by git commits.

et al. [10] used the term annotation for such interactions, as
every interaction annotates additional information to the re-
source itself. An emoji reaction could add a “thumps up” to
an issue where previously was none or a comment could be
added to the discussion of a code review in the comment sec-
tion of a merge request. The issue and merge request model
capture the chain of consecutive events, which occur on the
respective resources.

3

https://doi.org/10.5281/zenodo.4714963
https://doi.org/10.5281/zenodo.4714963


Creator

prov:role creator
prov:type user
name

Annotator

prov:role initiator
prov:type user
name

Issue Creation

wasAssociatedWith

prov:type issue_creation
prov:endedAt
prov:startedAt

Issue Annotation

wasAssociatedWith

wasInformedBy

Issue Version

used

prov:type event
event
prov:endedAt
prov:startedAt

Issue

wasAttributedTo

wasGeneratedBy

prov:type issue_resource
description
id
iid
project_id
title
web_url

wasAttributedTo

wasGeneratedBy

specializationOf

prov:type issue_resource_version

Annotated Issue Version

wasAttributedTo

wasGeneratedBy

specializationOf

wasDerivedFrom

prov:type issue_resource_version

Figure 4: PROV model for maintaining a GITLAB issue using
its Web interface.

Creator

prov:role creator
prov:type user
name

Annotator

prov:role initiator
prov:type user
name

Merge Request Creation

wasAssociatedWith

prov:type merge_request_creation
prov:endedAt
prov:startedAt

Merge Request Annotation

wasAssociatedWith

wasInformedBy

Merge Request Version

used

prov:type event
event
prov:endedAt
prov:startedAt

Merge Request

wasAttributedTo

wasGeneratedBy

prov:type merge_request_resource
description
id
iid
project_id
source_branch
source_project_url
target_branch
target_project_url
title
web_url

wasAttributedTo

wasGeneratedBy

specializationOf

prov:type merge_request_resource_version

Annotated Merge Request Version

wasAttributedTo

wasGeneratedBy

specializationOf

wasDerivedFrom

prov:type merge_request_resource_version

Figure 5: PROV model for creating and annotating a GITLAB
merge request.

Apart from replacing the name “Issue” with “Merge Re-
quest” both models are equal in their conception. For sim-
plicity, we describe the models as one, exchanging “Issue”
and “Merge Request” for “Resource.” Both models record the
following information:

• A PROV entity Entity for the Resource Version at the
point of its creation, one entity for the Resource it-
self as well as an entity Annotated Resource Version
representing the state of the resource after every new
Resource Annotation. The Resource Version and
Annotated Resource Version entities are specializa-
tions of the Resource entity. Each new Annotated
Resource Version is derived from the entity represent-
ing its previous version.

• A PROV agent Agent for the Creator of the resource, as
well as an agent for every user that carries out an annota-
tion event. The latter agents are called Annotator and

are responsible for the Resource Annotation activity
that they triggered by their action. For both issues and
merge requests the GitLab user that first opened the issue
or request is considered to be its Creator. The Creator
is responsible for the Resource Creation activity. The
Resource entity and the initial Resource Version en-
tities are attributed to the Creator agent.

• A PROV activity Activity for the Resource Creation
that generates Resource and Resource Version en-
tities together with an activity for each Resource
Annotation. Resource Annotation activities use a
specific Resource Version entity that represents the
version of the resource just before the annotation event
took place and generates a new version in the form of
the Annotated Resource Version entity.

4.2 Implementation

GITLAB2PROV is implemented in Python and can be used as
a command line tool or as a library for Python to compute the
provenance graph of a single or multiple GITLAB projects.

To extract a provenance graph from git repositories, the
tool GIT2PROV [4] first clones a git repository, followed by
executing a specific “git log” command inside of it, parsing
the generated output, and converting the parsed data into a
provenance graph. The tool GITHUB2PROV [10] combines
the approach of GIT2PROV with the addition of requesting
API data for GITHUB; both stored in a tailored provenance
model.

In contrast to these implementations, GITLAB2PROV gets
its required data solely from the GITLAB REST API and
does not use the command line tool “git.” This reduces the
multiplicity of data sources and to avert having to clone a
repository to a temporary location for data retrieval. As a side
effect, the independence from git allows GITLAB2PROV to
run on devices on which users lack file permissions or on
which git is not installed.

The bottleneck of this approach is the generation of the
desired PROV graph, as GITLAB2PROV has to wait for all
API requests to return, before being able to resume with the
computation of the graph itself. Instead of waiting for every
single GET request to dispatch the next one, we chose to
speed up the retrieval of API data by performing the necessary
HTTP requests asynchronously.

Each GITLAB instance defines a rate limit for API requests,
which confines the speed at which GITLAB2PROV is able to
request data (set to 10 requests per second by default). Using
the asynchronous HTTP client/server framework “aiohttp,”4

we implemented a custom, asynchronous Token Bucket API
client to do requests in as little time as possible. At the time
of implementation, there was no asynchronous GITLAB API

4https://github.com/aio-libs/aiohttp

4

https://github.com/aio-libs/aiohttp


client available. This may change in the future with the addi-
tion of support for asynchronous requests by the API client
“python-gitlab.”5

To generate provenance representations, we use the Python
package “prov,”6 a library for W3C PROV, that supports se-
rialization of PROV documents to the text-based representa-
tions PROV-O (RDF), PROV-XML, PROV-JSON, and DOT
(GraphViz).

A known limitation is, that GITLAB2PROV cannot update
previously extracted provenance when new GITLAB events
occur; it extracts the entire history again. To overcome this
drawback, we plan to use GITLAB “Webhooks” to record
events immediately when they happen.

4.3 Querying the GitLab Provenance
We show how to query the provenance graph on an ex-
ample for a single Open Source project from gitlab.com:
Flockademic/whereisscihub,7

As an example query we choose the workload metric M7
(The number of events an agent is associated with) from
Packer et al. [10], which notates in CYPHER as:

MATCH
(user:Agent)-[:wasAssociatedWith]-(event:Activity)

WHERE
event.`prov:type` = "commit" OR
event.`prov:type` = "issue" OR
event.`prov:type` = "merge_request"

RETURN
user.user_name,
COUNT(DISTINCT event) as event_count

ORDER BY event_count DESC

The result of that query is:

"user.user_name" "event_count"

"Vincent" 32
"Jon Mountjoy" 9
"GitHub" 7
"Jeremy Morrell" 5
"Hunter Loftis" 2
"scantini" 2
"Jon Byrum" 1

5 Evaluation

We evaluate GITLAB2PROV with an Inner Source project
that consists of multiple repositories, which all belong to the
same GITLAB group.

5https://github.com/python-gitlab/python-gitlab
6https://github.com/trungdong/prov
7https://gitlab.com/Flockademic/whereisscihub. PROV file at

https://openprovenance.org/store/documents/4128.

We selected the software system OPENVOCS [16], which
is an open and flexible software for control room commu-
nication developed by DLR’s German Space Operations
Center. We selected three repositories: openvocs/code,
openvocs/voice_control, and openvocs/load_tests.
For those projects, we are particularly interested in the
following questions—its results are provides as charts and
diagrams produced using the graphing library PLOT.LY:

(1) How many activities have been conducted and how
many files have been produced or changed? 7→ Fig-
ure 6

(2) What and how many interactions took place for each
of the git projects? 7→ Figure 7

(3) Who contributed to each of the projects? 7→ Figure 8

(4) Who is active during development? 7→ Figure 9

(5) How did the project activities grow over time? 7→
Figure 10

(6) What are developers interactions over time? 7→ Fig-
ure 11

62 56597 366

2633

3555

Activity Entity
0

500

1000

1500

2000

2500

3000

3500
openvocs/load_tests openvocs/voice_control openvocs/code

PROV Type

N
od

e 
Ty

pe
 C

ou
nt

Figure 6: Results for question (1): number of PROV types for
each of the OPENVOCS software repositories.

255 133 97 355 133 355 94 11381 135 62

503 135

503 61 62

2975 2314

2633

3299

2314

3299

2417

81
specializationOf

used
wasAssociatedWith

wasAttributedTo

wasDerivedFrom

wasGeneratedBy

wasInformedBy

wasInvalidatedBy

0
500

1000
1500
2000
2500
3000

openvocs/voice_control openvocs/load_tests openvocs/code

PROV Relations

R
el

at
io

ns
 C

ou
nt

Figure 7: Results for question (2): the number of PROV rela-
tions for each of the OPENVOCS software repositories.

Based on the results, we can gain a basic understanding of
the project and its development history. In our example, this
leads to the following insights:

5

gitlab.com
https://github.com/python-gitlab/python-gitlab
https://github.com/trungdong/prov
https://gitlab.com/Flockademic/whereisscihub
https://openprovenance.org/store/documents/4128


openvocs/load_tests

Project

openvocs/code

openvocs/voice_control

Developer 1

Agent Name

Developer 2

Developer 3

Developer 4

Developer 5

Developer 6

Figure 8: Results for question (3): mapping of developers (PROV agents) to each of the OPENVOCS software repositories. The
agents are connected with all the projects they participate in, which is the case, if in the provenance graph an agent is assigned to
an activity.

May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021 Mar 2021

Developer 1

Developer 3

Developer 4

Developer 5

Developer 6

1w 1m 6m YTD 1y all

Time

A
ge

nt
 N

am
e

Figure 9: Results for question (4): activity period of the agents
involved in the OPENVOCS repository.

• Developer 1 is active in all three repositories (Figure 8).
This leads to the assumption that Developer 1 has a
central role in the project; a conclusion that is supported
by the agent timeline (Figure 9). Developer 1 was active
during the entire duration of the project. In addition to
Developer 1, Developers 3 and 4 were also active during
the entire course of the project. This indicates that these
three developers might have a high level of knowledge
about the project.

• Based on the evolution of the number of graph nodes
(Figure 10), we can identify whether new actions are
actively taking place in a GITLAB project. Thus the evo-
lution of the graph is an indicator of the development
activity of a project. For our example, in all three repos-
itories the number of entities per activity is high (Fig-
ure 10). Therefore, it can be assumed that the actions
performed in the project are predominantly commits,
which add or modify files, or the creation of issues.

• The event timeline (Figure 11) show how and when the
project, and consecutively the developers, were partic-
ularly active. As a general conclusion, we find that the
project was particularly active at the beginning from
March 2020 to June 2020 and from January 2021 to
March 2021.

6 Related Work

Our approach combines two major research areas: software
repository mining and provenance. The software repository
mining community identified early on the benefits of analyz-
ing software artifacts from software repositories, for example
Bevan et al. [2] and Dyer et al. [5]. Especially, infrastruc-
tures for repository mining at large-scale are available, such
as WORLD OF CODE by Ma et al. [8] or SMARTSHARK by
Trautsch et al. [15]. However, these repository mining tools
do not generate provenance graphs.

Several works focus on git only, which—in contrast to
our work—do not rely on a standardized graph model such as
PROV and do not include knowledge from the hosting service
such as issues. Two examples are:

• GITGRAPH by Zhao et al. [18] constructs automatically
a knowledge graph associated with a git repository.
Their knowledge graph contains commits, files, classes,
methods, and branches. The graph is stored in graph
database and queried using CYPHERfor understanding
the content of the repository and for visual exploration.

• GITHRU by Kim et al. [7] focus on visual analytics for
understanding the software development history. They
use a visual encoding that allows scalable exploration of
large git commit graphs.

6



May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021 Mar 2021
0

2000
4000
6000
8000

Jan 10
2021

Jan 17 Jan 24 Jan 31 Feb 7 Feb 14 Feb 21
0

200
400
600

May 2020 Jun 2020 Jul 2020 Aug 2020 Sep 2020 Oct 2020 Nov 2020
0

200
400

Entity Activity Agent
N

od
es

 C
ou

nt
openvocs/code

openvocs/load_tests

openvocs/voice_control

Figure 10: Results for question (5): the number of nodes over project run-time for each PROV class element (entity, activity, and
agent) for each of the OPENVOCS software repositories.

Costa and Castro [1] propose an approach called “iSPuP”
(improving Software Process using Provenance). iSPuP uses
provenance to monitor and analyse software processes and
provides information about artifacts that can increase new
process instances at runtime.

7 Conclusions and Future Work

We presented a provenance model in PROV for software de-
velopment projects, which are hosted on GITLAB; and the
implementation GITLAB2PROV, which extracts and stores
provenance graphs from GITLAB instances. With the prove-
nance graphs, we can answers questions on the development
process (e.g., for reporting the project’s state). However, some
of these results can be retrieved via GITLAB’s web-interface
also. We see more benefit when combining the provenance
graph with other data sources, such as analytics results of the
source code, text mining results of content (issues, wiki pages,
commit messages, etc.), or communication patterns between
developers.

Our current work focuses on applications such as:

• Automated, provenance-driven security audits for git-
based repositories, which we apply to Germany’s
Corona-Warn-App [13].

• Visual analysis of contributions to Open Source projects
by non-team developers [11].

• Detecting community smell patterns [14] of communi-
cation and collaboration in Open Source projects.

As future work, we extend the existing PROV model to
support more GITLAB events—based on requirements by
provenance questions of applications. For example, we plan
to extend the PROV model for release actions, continuous
integration and continuous deployment, and documentation
changes in the Wiki. Maybe, we model and extract instance-
wide security audit events such as (failed) sign-ins, added and
removed users, or created or revoked user’s personal access
token.

Availability

GITLAB2PROV is available as Open Source software
under the MIT license: https://github.com/DLR-SC/
gitlab2prov.

The tool PROV2NEO is available under the MIT license at
https://github.com/DLR-SC/prov2neo.

7

https://github.com/DLR-SC/gitlab2prov
https://github.com/DLR-SC/gitlab2prov
https://github.com/DLR-SC/prov2neo


M
ar

 2
02

0
A

pr
 2

02
0

M
ay

 2
02

0
Ju

n 
20

20
Ju

l 2
02

0
A

ug
 2

02
0

S
ep

 2
02

0
O

ct
 2

02
0

N
ov

 2
02

0
D

ec
 2

02
0

Ja
n 

20
21

Fe
b 

20
21

M
ar

 2
02

1

R
eq

ue
st

ed
 R

ev
ie

w

M
ar

ke
d 

M
er

ge
 R

eq
ue

st
 R

ea
dy

A
dd

re
ss

 In
 M

er
ge

 R
eq

ue
st

M
er

ge

C
ha

ng
e 

Ta
rg

et
 B

ra
nc

h

R
eo

pe
n

Aw
ar

d 
E

m
oj

i

A
pp

ro
ve

 M
er

ge
 R

eq
ue

st

C
ha

ng
e 

D
ue

 D
at

e

M
en

tio
n 

In
 M

er
ge

 R
eq

ue
st

M
er

ge
 R

eq
ue

st
 C

re
at

io
n

U
na

ss
ig

n 
U

se
r

C
ha

ng
e 

W
ei

gh
t

C
ha

ng
e 

Ti
tle

A
dd

 C
om

m
its

M
en

tio
n 

In
 Is

su
e

C
om

m
it

R
el

at
e 

To
 Is

su
e

A
ss

ig
n 

U
se

r

C
lo

se

C
ha

ng
e 

D
es

cr
ip

tio
n

R
em

ov
ed

 L
ab

el

Is
su

e 
C

re
at

io
n

A
dd

ed
 L

ab
el

N
ot

e

M
en

tio
n 

In
 C

om
m

it

Ti
m
e

Figure 11: Results for question (6): timeline for each interaction event in the OPENVOCS repository. The markers’ colors (colored
rhombuses) indicate which developer has initiated the corresponding event.

8



References

[1] Gabriella Castro Barbosa Costa. Using data provenance
to improve software process enactment, monitoring and
analysis. In Proceedings of the 38th International Con-
ference on Software Engineering Companion, ICSE ’16,
pages 875–878, New York, NY, USA, 2016. ACM.

[2] Jennifer Bevan, E. James Whitehead, Sunghun Kim, and
Michael Godfrey. Facilitating software evolution re-
search with kenyon. In Proceedings of the 10th Euro-
pean Software Engineering Conference, ESEC/FSE-13,
pages 177–186, New York, NY, USA, 2005. ACM.

[3] Maximilian Capraro and Dirk Riehle. Inner source def-
inition, benefits, and challenges. ACM Comput. Surv.,
49(4), December 2016.

[4] Tom De Nies, Sara Magliacane, Ruben Verborgh, Sam
Coppens, Paul Groth, Erik Mannens, and Rik Van
De Walle. Git2PROV: Exposing version control sys-
tem content as W3C PROV. In Proceedings of the 12th
International Semantic Web Conference, volume 1035,
pages 125–128. CEUR-WS.org, 2013.

[5] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and
Tien N. Nguyen. Boa: Ultra-large-scale software reposi-
tory and source-code mining. ACM Trans. Softw. Eng.
Methodol., 25(1), December 2015.

[6] Trung Dong Huynh and Luc Moreau. ProvStore: A
public provenance repository. In Provenance and Anno-
tation of Data and Processes, IPAW 2014, volume 8628
of Lecture Notes in Computer Science, pages 275–277.
Springer, 2015.

[7] Youngtaek Kim, Jaeyoung Kim, Hyeon Jeon, Young-
Ho Kim, Hyunjoo Song, Bohyoung Kim, and Jinwook
Seo. Githru: Visual analytics for understanding software
development history through git metadata analysis.

[8] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaret-
zki, and Audris Mockus. World of code: An infrastruc-
ture for mining the universe of open source vcs data.
In 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), pages 143–154,
2019.

[9] Luc Moreau, Paolo Missier, Khalid Belhajjame, Reza
B’Far, James Cheney, Sam Coppens, Stephen Cresswell,
Yolanda Gil, Paul Groth, Graham Klyne, Timothy Lebo,
Jim McCusker, Simon Miles, James Myers, Satya Sahoo,
and Curt Tilmes. PROV-DM: The PROV data model,
2013.

[10] Heather S. Packer, Adriane Chapman, and Leslie Carr.
GitHub2PROV: Provenance for supporting software

project management. In Proceedings of the 11th
USENIX Conference on Theory and Practice of Prove-
nance, TAPP’19, USA, 2019. USENIX Association.

[11] Andreas Schreiber. Visualization of contributions to
open-source projects. In Proceedings of the 13th In-
ternational Symposium on Visual Information Commu-
nication and Interaction, New York, NY, USA, 2020.
ACM.

[12] Andreas Schreiber and Claas de Boer. Modelling knowl-
edge about software processes using provenance graphs
and its application to git-based version control systems.
In Proceedings of the 42nd International Conference
on Software Engineering Workshops, ICSEW’20, pages
358–359, New York, NY, USA, 2020. ACM.

[13] Tim Sonnekalb, Thomas S. Heinze, Lynn von Kur-
natowski, Andreas Schreiber, Jesus M. Gonzalez-
Barahona, and Heather Packer. Towards automated,
provenance-driven security audit for git-based reposi-
tories: Applied to Germany’s Corona-Warn-App. In
Proceedings of the 3rd International Workshop on Soft-
ware Security from Design to Deployment (SEAD ’20),
New York, NY, USA, 2020. ACM.

[14] Damian A. A. Tamburri, Fabio Palomba, and Rick Kaz-
man. Exploring community smells in open-source: An
automated approach. IEEE Transactions on Software
Engineering, pages 630–652, 2019.

[15] Fabian Trautsch, Steffen Herbold, Philip Herbold, and
Jens Grabowski. Addressing problems with replicabil-
ity and validity of repository mining studies through a
smart data platform. Empirical Software Engineering,
23(2):1036–1083, 2017.

[16] Markus Töpfer, Anja Sonnenberg, and Rolf A. Ko-
zlowski. Open Source based Voice Communication for
Mission Control. American Institute of Aeronautics and
Astronautics, Daejeon, Korea, 2016.

[17] Heinrich Wendel, Markus Kunde, and Andreas
Schreiber. Provenance of software development
processes. In Provenance and Annotation of Data and
Processes, IPAW 2010, volume 6378 of Lecture Notes
in Computer Science, pages 59–63. Springer, 2010.

[18] Yanjie Zhao, Haoyu Wang, Lei Ma, Yuxin Liu, Li Li,
and John Grundy. Knowledge graphing git reposito-
ries: A preliminary study. In 26th International Confer-
ence on Software Analysis, Evolution and Reengineer-
ing, SANER 2019, pages 599–603, 2019.

9


	Introduction
	Provenance of Software Artifacts
	Provenance for git Services
	GitLab2PROV
	Provenance Model
	Commits
	Issue Management and Merge Requests

	Implementation
	Querying the GitLab Provenance

	Evaluation
	Related Work
	Conclusions and Future Work

