

Telescope: Profiling Memory Access
Patterns at the Terabyte-scale

ALAN NAIR SANDEEP KUMAR ARAVINDA PRASAD

June 24, 2024

The increasing prevalence of applications with memory footprints over terabytes in size,
coupled with the rising popularity of tiered and disaggregated memory systems has

generated an urgent need for memory access telemetry that scales well with working set
size. We observe that telemetry techniques used in prior work have shortcomings that

make them unsuitable for terabyte-scale workloads. We present our key insight that
exploits the RADIX-tree structure of the page table to enable fast, precise, and accurate

telemetry that works even for terabyte-scale applications at low performance overheads.
We leverage this insight in Telescope [9], a novel method to profile memory access

patterns of applications. We implement Telescope in the Linux kernel. Our evaluation
reveals that Telescope consistently delivers over 90% accuracy and coverage at just 0.9%
CPU utilization for workloads with a memory footprint of 5TB, while data tiering (placement

into memory tiers) guided by Telescope offers 5.6% to 34% extra throughput over other
state-of-the-art approaches on workloads with up to 2TB of memory footprint.

Fig 1. Telescope vs other state of the art memory access telemetry techniques.

Terabyte-Scale Applications and Systems

Datacenter workloads memory requirements have skyrocketed in recent times. This rise
has been fueled by many application domains, including Large Language Models, High-
Performance Computing, and large databases. Application datasets commonly exceed
terabytes in size [7,8]. Furthermore, these applications prefer to keep their working sets in
memory to maximize performance. This trend has been enabled by the emergence of
tiered and disaggregated memory systems. Various memory technologies are integrated
horizontally and/or vertically to get terabytes of physical memory on a single system. On a
tiered memory system, memory is populated in various tiers. The hot tiers are placed
closer to the processor-and-cache hierarchy and are composed of technologies that offer
high bandwidth and low access latency, such as DDR-attached memory, or High
Bandwidth Memory (HBM). The cold tiers are farther away from the processor-and-cache
hierarchy and are made of technologies that offer less bandwidth and higher latency, such
as Persistent Memory, and CXL-attached memory. Overall, tiered memory systems
promise vastly high memory capacity at low performance overheads.

However, the tiering is only as good as the telemetry. Telemetry refers to the active profiling
and identification of the memory access patterns of a target workload. On a tiered memory
system, data placement must be guided by accurate telemetry, so that the hot data, or the
data that is expected to be used soon in the future, gets placed in the hot memory tiers,
while the cold data, or the data that is not expected to be used in the near future, stays in
the cold memory tiers. The telemetry technique should identify the hot data with
precision, ideally at the granularity of the page size. Further, the technique must be fast
and scalable to terabytes of memory footprint. Lastly, the performance overheads
associated with the technique must be minimal.

Prior Work Does Not Scale to Terabytes of Memory

Telemetry techniques used in prior work fall under 3 categories.

• Linear Scanning of Page Table Entries (PTEs) is a common technique to track
workload access patterns. Each PTE contains the physical frame number of the
indexed page, and some status bits. These status bits include an ACCESSED bit. On

every Page Table Walk, the hardware page table walker sets the ACCESSED bit in
the PTE. Thus, checking this bit in a PTE is enough to ascertain whether the page
was accessed since it was mapped, or since the last time when the bit was reset.
In this telemetry, all the mapped PTEs of a workload are scanned periodically by a
thread. The thread is awoken every few milliseconds to perform a scan, completing
which, it goes back to sleep. During each scan, the PTEs’ ACCESSED bits are
checked, and then reset, cleared so that they may be set by the page table walker
on the next access. Therefore, on each scan, the thread identifies the pages that
were accessed via a page walk since the last scan. This telemetry technique is used
by various tools in the Linux kernel such as kstaled and MGLRU (Multi-Generation
LRU lists) [3].
This technique, though simple, does not scale well as the number of PTEs used by
an application becomes large. We find that even with nearly 50% CPU utilization,
over 20 seconds are needed to complete one full linear scan of all the PTEs
belonging to an application with a memory footprint of 1TB.

• Region-Based Sampling is an enhancement over the linear-scanning technique,
that quickens the convergence time by reducing the number of PTEs to scan. The
mapped address space of a workload is divided into contiguous regions. Each
region maintains its own access counter. One PTE is sampled from each region.
Every few milliseconds, the sampled PTEs are checked to see if their ACCESSED
bits are set. If so, the access counter is updated for the corresponding region. Then
a new PTE is sampled from each region for the next round. About every 100
sampling rounds, regions are split or merged, based on their access counts. This
repeated split-and-merge paradigm ensures that over time (typically in a few
seconds for a gigabytes-large working set), the region boundaries and their
corresponding access counts can be used to classify data into hot and cold sets.
The most well-known example of a tool that uses region-based sampling is DAMON
[4] which is now a part of the Linux kernel.
Our experiments reveal that DAMON is utterly ineffective when the target
application’s working set exceeds 100 GBs of 4 KB pages. This is because when the
number of pages per region is quite high, the likelihood that the access pattern of a
sampled page accurately reflects that of its entire region is quite low. Increasing the
number of regions reintroduces the same sluggishness and resource utilization
overheads that afflict techniques based on linearly scanning PTEs.

• Performance Monitoring Unit (PMU) counters are hardware counters present in
some architectures that can count events such as Last Level Cache (LLC) misses,
Translation Lookaside Buffer (TLB) misses, and so on. When the counter overflows,
an interrupt gets triggered which writes the hardware state to a memory buffer. Prior

works [1,5,6] have used event samples collected via PMU counters to identify hot
and cold data. An example of this is Intel’s Processor Event-Based Sampling (PEBS).
The main drawback of this approach when used on terabyte-scale applications is
the associated performance degradation. Accurately profiling memory access
patterns necessitates a high sampling rate, and consequently many interrupts. This
may result in significant slowdowns in the target application.

Telescope

Here we present some key background followed by the insight behind Telescope, our novel
memory access telemetry technique. We then discuss its design and implementation
details.

The Radix-Tree Structure of the Page Table
Virtual memory is implemented via a data structure called the page table which must be
searched (or ‘walked’) to find the physical page address given a virtual address. Most
architectures implement the page table as a multi-level radix tree of PTEs. On a 64-bit x86
machine, the page table can have 4 or 5 levels, with 512 PTEs packed into a page.

Fig 2. A Four-level Radix Tree Page Table with 8-bit PTEs and 4 KB base page size can fit 512
entries at each level. The red, blue, and green arrows show the paths taken by the page
walks triggered by the virtual addresses VA1, VA2, and VA3, respectively.

On a TLB miss, the hardware page table walker reads PTEs from each level of the page
table from the highest to lowest level to reach the physical page pointed by a virtual
address, by treating chunks of the virtual address as offsets to index into the next level PTE.
This mechanism is depicted in Figure 2. For each PTE in higher levels of the page table, the
page table walker reads the address of the next-lower PTE, and updates the status bits
(including the ACCESSED bits), and then reads the next-level PTE.

One corollary of the above mechanism is that if the ACCESSED bit is not set in a PTE at the
higher level, then none of the PTEs in the levels beneath, which are indexed by that PTE,
will have that bit set. Therefore, on a system which packs 512 PTEs into a page, if we check
the ACCESSED bit at the second level of the page table, the total number of PTEs to be
scanned to cover the entire mapped address space reduces by 512x relative to the case
where the scanning happened at the first (or the lowest) level. The spatial granularity at

which accesses to data are detected also becomes coarser by 512x. Similarly, at the
(n+1)th level, the number of PTEs to be scanned is 512n times less, and the granularity at
which accesses to data are detected is 512n times more, compared to scanning at the
lowest level of the page table. This is the key insight that drives the design of Telescope.

Telescope Design
We use the above insight to augment region-based sampling. For a large region, tracking
the ACCESSED bits at a higher level of the page table allows quicker convergence and
better coverage. For a small region, tracking the bits at a lower level of the page table
allows for precise convergence. By dynamically adjusting the level of the page table where
the PTE’s ACCESSED bit is tracked (called the ‘profiling level’), our novel approach
Telescope, can ‘zoom’ out of and into the address space by profiling at higher and lower
levels, respectively.

Profiling

For each region, every sampling period (typically a few milliseconds), we sample an
address at random. We identify the highest level of the page table where the area covered
by the PTE corresponding to this address falls within the bounds of the region. Each time
we find that the ACCESSED bit was set, we update the region’s access count. If there are
512 PTEs per page, a set ACCESSED bit at a lower level begets an access counter
increment that is 512 times the increment corresponding to the next higher level.

Figure 3 shows an example of how this works. For Sampled Address 1, the corresponding
L1 PTE is the highest PTE whose covered area falls within the region bounds. Similarly, for
Sampled Address 2, the profiling level is L2.

Fig 3. In Telescope (Bounded variant), the profiling level is the highest level at which the
area covered by the PTE corresponding to the sampled address falls within the region
bounds.

Region Management

To converge to the correct access pattern, Telescope must ensure that region boundaries
get finer over time.

Telescope’s region management is inspired by that of DAMON. Initially, the workload’s
Virtual Memory Areas (VMAs) are scanned to obtain the initial set of regions. This is done
every few seconds to capture new memory allocations. Before every region-update-
interval (typically 100 milliseconds), DAMON splits each region into two smaller regions.
After the region-update-interval, DAMON merges all adjacent regions with similar access
counts.

We make the following changes to merging/splitting heuristic. If more than half a region’s
size is covered by one PTE (at level n+1), then it must be split into smaller regions each
covered by one PTE at level n of the page table. Else, the region must be broken into
smaller regions each covered by one PTE at level n+1 of the page table. Similarly, a merge

proceeds by applying the above split conditions in reverse order, provided the presence of
adjacent smaller regions with similar access counts.

This algorithm ensures that regions with non-uniform access patterns within will stabilize
over time, into smaller sub-regions that align with the boundaries of the actual access
patterns. Telescope converges to the right access pattern over time, starting from a coarse
granularity (a higher profiling level), and going to finer granularities (lower profiling levels) if
needed.

Bounded and Flexible Variants

The scheme outlined above is the Bounded variant of Telescope. In addition, we present a
Flexible variant that sacrifices accuracy for better coverage. In contrast to the Bounded
variant, the Flexible variant can pick a PTE at a higher profiling level whose covered address
space shoots over the region boundaries. The proportion of area covered by the PTE that
falls outside the region boundary must be less than an error threshold. This error threshold
can be configured independently at each level of the page table. The Flexible variant would
be useful for simple access patterns with contiguous hot sets.

MGLRU + Telescope
Multi-Generational Least Recently Used (MGLRU) [3] is an algorithm implemented in the
Linux kernel that uses linear-scanning-based telemetry to maintain multiple generation
LRU lists instead of the typical ‘active’ and ‘inactive’ lists used in the classical OS
implementation of LRU. Each MGLRU scan starts by creating a new generation LRU list. In
every scan, frequently accessed or hot pages are moved to newer generations, while cold
pages are “aged” to “old generation” LRU lists. Pages in the older generation LRU lists are
considered for placement in the cold tier to reclaim space on the hot tier.

We augment MGLRU with Telescope’s profiling technique to make it effective for memory
reclaim on terabyte-scale workloads.

Implementation
We implement Telescope in Linux v6.6.3. We reuse the logic introduced by DAMON,
making changes wherever needed. Our patch is in the process of being pushed to the
mainline Linux kernel [2].

Evaluation

We evaluated both the Bounded and Flexible variants of Telescope against DAMON and
PEBS. We adjusted DAMON’s sampling intervals to 1ms and 5ms respectively, and PEBS’
event sampling frequency to 5kHz and 10kHz respectively, to create aggressive (more
resource-intensive) and moderate (less resource-intensive) variants of both. We also
evaluated MGLRU+Telescope against vanilla MGLRU.

Setup and Benchmarks
We used a tiered memory system with an Intel Xeon Gold 6238M CPU having 4 sockets, 22
cores per socket, and 2-Way HT for a total of 176 cores. It has a DRAM-based hot memory
tier with 768 GB capacity and a cold memory tier with Intel’s Optane DC Persistent Memory
Modules configured in flat mode (as volatile main memory) with 6 TB capacity for a total of
6.76 TB physical memory. The server runs Fedora 30 on Linux v5.18.19 with 4 KB pages. We
used the Memcached and Redis key-value stores as benchmarks. On both, we ran two
different load patterns, generated from Memtier and YCSB, respectively. The details of
these are outlined in Table 1.

Table 1. Workload Configuration

Parameter Memtier YCSB
Memory Footprint 1 TB 2 TB
Number of Keys 200,000 1,000,000
Value Size 5 MB 2 MB
Number of threads 170 170
Execution Time 40 minutes (150 s warmup) 40 minutes (150 s warmup)
Hot Data Distribution Gaussian with Standard

Deviation 100
Hotspot (99% ops on 1%
hot data)

The workloads’ initial memory footprint was initialized in the Optane NVM cold tier using
interleaved memory allocation policy. DAMON and Telescope output a list of regions and
their access counts every 200ms which is also the region update interval. From PEBS, we
collected samples of retired loads and stores every 200ms and converted them into a list
of 2MB regions (2MB aligned), with access counts proportional to the number of samples
that generate this address. We used 2MB as the region size as this has been used by prior
work that utilizes PEBS [1]. We considered regions with 5 or more accesses in the last 120

secs as HOT. Hot regions with size 4GB or less were migrated from Optane to DRAM in
descending order of access counts. Up to 10GB of data may be migrated in one round.

Results
Figures 4-7 show throughput in ops/sec and the amount of data migrated to DRAM over
time. Not only did DAMON fail to identify even a single hot data page, but the profiling
overheads resulted in decreased throughput compared to the baseline (no telemetry).
With PEBS, only a few gigabytes of hot data could be identified, resulting in marginal
throughput improvements in some cases. We depict only one variant each of DAMON and
PEBS because we fail to see any major difference in the results of the aggressive and
moderate configurations.

Fig . Memcached + YCSB. Throughput (left) and data migrated to hot tier (right) with time.

Fig 5. Memcached + Memtier. Throughput (left) and data migrated to hot tier (right).

Fig 6. Redis + YCSB. Throughput (left) and data migrated to hot tier (right) with time.

Fig 7. Redis + Memtier. Throughput (left) and data migrated to hot tier (right) with time.

We quantify the impact of the telemetry on the application’s performance by the 95 th
percentile latency among all requests. The results are shown in Table 2. We see that with
Telescope, the tail latency is lower than with DAMON or with PMU counters.

Table 2. Tail Latency with different telemetry techniques.

Application Telemetry
95th Percentile Latency (ms)

YCSB Memtier

Memcached

DAMON - Moderate 881 11.2
PEBS - Aggressive 976 11.3
Telescope - Bounded 867 10.8
Telescope - Flexible 824 10.5

Redis

DAMON - Moderate 850 59.13
PEBS - Aggressive 757 57.50
Telescope - Bounded 696 54.01
Telescope - Flexible 741 55.55

MGLRU + Telescope
We evaluated classical MGLRU against our MGLRU+Telescope on a 2 socket Intel Xeon
Gold 6354 with 72 cores and 1TB local (DDR-attached) DRAM, running Linux v6.5.0. We ran
Memcached with Memtier load generator. Initially 976GB of data was initialized in DRAM.
We ran MGLRU in parallel, and let it reclaim memory into a compressed in-memory zswap
[10] pool, later repeating the experiment with MGLRU+Telescope.

Fig 8. RSS (Resident Set Size) of Memcached with proactive reclaim to zswap.

Figure 8 shows how the Resident Set Size (RSS) of the workload changes with time in either
case. Table 3 shows the overheads of both variants of MGLRU in terms of CPU cycles
consumed, time taken to complete one full scan, and the impact on the throughput of
Memcached. In every metric MGLRU+Telescope outperforms standalone MGLRU.

Table 3. Summary of overheads for MGLRU

Metric MGLRU Standalone MGLRU + Telescope
Scan Time (secs) 14.57 12.77
CPU cycles (billions) 53.15 46.85
Memcached ops/sec 1 (normalized) 1.08

Conclusion

The effectiveness of a terabyte-scale tiered memory system depends on precise and timely
telemetry data to identify hot/cold pages. Telescope future-proofs telemetry for tiered
memory systems with memory capacity up to and beyond the terabyte scale with a novel
page table profiling technique.

References
1. Raybuck, Amanda, et al. "Hemem: Scalable tiered memory management for big

data applications and real nvm." Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles. 2021.

2. Mm/damon. Profiling Enhancements for the Linux kernel.
https://lore.kernel.org/linux-
mm/MW5PR11MB5907791BEAA13D89C8B3948DF290A@MW5PR11MB5907.namp
rd11.prod.outlook.com/T/

3. Multi-Gen LRU. Linux Kernel Documentation. https://docs.kernel.org/admin-
guide/mm/multigen_lru.html

4. DAMON: Data Access Monitor. Linux Kernel Documentation.
https://www.kernel.org/doc/html/v5.18/vm/damon/index.html

5. Lee, Taehyung, et al. "MEMTIS: Efficient Memory Tiering with Dynamic Page
Classification and Page Size Determination." Proceedings of the 29th Symposium
on Operating Systems Principles. 2023.

6. Maruf, Hasan Al, et al. "TPP: Transparent page placement for CXL-enabled tiered-
memory." Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3. 2023.

7. Borthakur, Dhruba. "Petabyte scale databases and storage systems at facebook."
Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data. 2013.

8. Li, Mu, et al. "Scaling distributed machine learning with the parameter server." 11th
USENIX Symposium on operating systems design and implementation (OSDI 14).
2014.

https://lore.kernel.org/linux-mm/MW5PR11MB5907791BEAA13D89C8B3948DF290A@MW5PR11MB5907.namprd11.prod.outlook.com/T/
https://lore.kernel.org/linux-mm/MW5PR11MB5907791BEAA13D89C8B3948DF290A@MW5PR11MB5907.namprd11.prod.outlook.com/T/
https://lore.kernel.org/linux-mm/MW5PR11MB5907791BEAA13D89C8B3948DF290A@MW5PR11MB5907.namprd11.prod.outlook.com/T/
https://docs.kernel.org/admin-guide/mm/multigen_lru.html
https://docs.kernel.org/admin-guide/mm/multigen_lru.html
https://www.kernel.org/doc/html/v5.18/vm/damon/index.html

9. Nair, Alan et al. “Telescope: Profiling Memory Access Patterns at the Terabyte-
scale.” 2024 USENIX Annual Technical Conference (USENIX ATC 24). 2024.

10. Zswap. Linux Kernel Documentation.
https://www.kernel.org/doc/html/latest/admin-guide/mm/zswap.html

https://www.kernel.org/doc/html/latest/admin-guide/mm/zswap.html

	Terabyte-Scale Applications and Systems
	Prior Work Does Not Scale to Terabytes of Memory
	Telescope
	The Radix-Tree Structure of the Page Table
	Telescope Design
	Profiling
	Bounded and Flexible Variants

	MGLRU + Telescope
	Implementation

	Evaluation
	Setup and Benchmarks
	Results
	MGLRU + Telescope

	Conclusion
	References

