usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Your Coflow has Many Flows:
Sampling them for Fun and Speed

Akshay Jajoo, Y. Charlie Hu, and Xiaojun Lin, Purdue University

https://www.usenix.org/conference/atc19/presentation/jajoo

This paper is included in the Proceedings of the

2019 USENIX Annual Technical Conference.
July 10-12, 2019 « Renton, WA, USA
ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference
is sponsored by USENIX.




Your Coflow Has Many Flows: Sampling Them for Fun and Speed

Akshay Jajoo
ajajoo@purdue.edu

Y. Charlie Hu
ychu@purdue.edu

Xiaojun Lin

linx@purdue.edu

Purdue University

Abstract

Coflow scheduling improves data-intensive application per-
formance by improving their networking performance. State-
of-the-art online coflow schedulers in essence approximate
the classic Shortest-Job-First (SJF) scheduling by learning the
coflow size online. In particular, they use multiple priority
queues to simultaneously accomplish two goals: to sieve long
coflows from short coflows, and to schedule short coflows
with high priorities. Such a mechanism pays high overhead
in learning the coflow size: moving a large coflow across
the queues delays small and other large coflows, and moving
similar-sized coflows across the queues results in inadvertent
round-robin scheduling.

We propose PHILAE, a new online coflow scheduler that
exploits the spatial dimension of coflows, i.e., a coflow has
many flows, to drastically reduce the overhead of coflow size
learning. PHILAE pre-schedules sampled flows of each coflow
and uses their sizes to estimate the average flow size of the
coflow. It then resorts to Shortest Coflow First, where the no-
tion of shortest is determined using the learned coflow sizes
and coflow contention. We show that the sampling-based
learning is robust to flow size skew and has the added benefit
of much improved scalability from reduced coordinator-local
agent interactions. Our evaluation using an Azure testbed,
a publicly available production cluster trace from Facebook
shows that compared to the prior art Aalo, PHILAE reduces
the coflow completion time (CCT) in average (P90) cases by
1.50x (8.00%) on a 150-node testbed and 2.72x (9.78x) on a
900-node testbed. Evaluation using additional traces further
demonstrates PHILAE’s robustness to flow size skew.

1 Introduction

1.1 Motivation

In big data analytics jobs, speeding up the communication
stage where the data is transferred between compute nodes
is important to speed up the jobs. However, improving net-
work level metrics such as flow completion time may not
translate into improvements at the application level metrics
such as job completion time. The coflow abstraction [18] was
proposed to bridge such a gap. The abstraction captures the
collective network requirements of applications, as reduced
coflow completion time (CCT) can directly lead to faster job
completion time [20, 24].

There have been a number of efforts on network designs
for coflows [7,21,27] that assume complete prior knowledge
of coflow sizes (The coflow size is defined as the total size of
its constituent flows.). However, in many practical settings,
coflow characteristics are not known a priori. For example,
multi-stage jobs pipeline data from one stage to the next
as soon as the data is generated, which makes it difficult
to know the size of each flow [22,40]. A recent study [40]
shows various other reasons why it is not very plausible to
learn flow sizes from applications, for example, learning flow
sizes from applications requires changing either the network
stack or the applications.

Scheduling coflows in such non-clairvoyant settings, how-
ever, is challenging. The major challenge in developing an
effective non-clairvoyant coflow scheduling scheme has cen-
tered around how to learn the coflow sizes online quickly
and accurately, as once the coflow sizes (bytes to be trans-
ferred) can be estimated, one can apply variations of the
classic Shortest-Job-First (SJF) algorithm such as Shortest
Coflow First [21] or apply an LP solver (e.g., [7]).

State-of-the-art online non-clairvoyant schedulers such as
Saath [30], Gravtion [29] and Aalo [19] in essence learn
coflow sizes and approximate SJF using discrete priority
queues, where all newly arriving coflows start from the high-
est priority queue, and move to lower priority queue as they
send more data (without finishing), i.e., cross the per-queue
thresholds. In this way, the smaller coflows finish in high
priority queues, while the larger coflows gradually move to
the lower priority queues where they finish after smaller
coflows.

To realize the above idea in scheduling coflows which have
flows at many network ports, i.e., in a distributed setting, Aalo
uses a global coordinator to assign coflows to logical priority
queues, and uses the total bytes sent by all flows of a coflow as
its logical “length” in moving coflows across the queues. The
logical priority queues are mapped to local priority queues
at each port, and the individual local ports then schedule the
flows in its local priority queues, e.g., by enumerating flows
from the highest to lowest priority queues and using FIFO
to order the flows within each queue.

In essence, Aalo learns coflow sizes by actually scheduling
the coflow, a “try and miss” approach to approximate SJF. As
coflow sizes are not known, in each queue, Aalo schedules
each coflow for a fixed amount of data (try). If the coflow
does not finish (miss), it is demoted to a lower priority queue.

USENIX Association

2019 USENIX Annual Technical Conference 833



Afterwards, such a coflow will no longer block coflows in
higher priority queues.

Using multiple priority queues to learn the relative coflow
sizes of coflows this way, however, negatively affects the
average CCT and the scalability of the coordinator:

(1) Intrinsic queue-transit overhead: Every coflow
that Aalo transits through the queues before reaching its
final queue worsens the average CCT because during transi-
tions, such a coflow effectively blocks other shorter coflows in
the earlier queues it went through, which would have been
scheduled before this coflow starts in a perfect SJF.

(2) Overhead due to inadvertent round-robin: Al-
though Aalo attempts to approximate SJF, it inadvertently
ends up doing round-robin for coflows of similar sizes as it
moves them across queues. Aalo assigns a fixed threshold of
data transfer for each coflow in each queue. Assume there
are “N” coflows in a queue that do not finish in that queue.
Aalo schedules one coflow (chosen using FIFO) and demotes
it to a lower priority queue when the coflow reaches the
data threshold. At that point, the next coflow from the same
queue is scheduled, which joins the previous coflow at a
lower priority queue after exhausting its quantum, and this
cycle continues as coflows of similar sizes move through
the queues. Effectively, these coflows experience the round-
robin scheduling which is known to have the worst average
CCT [39], when jobs are of similar sizes.

(3) Limited scalability from frequent updates from
local ports: To support the try-and-error style learning, the
coordinator requires frequent updates from all local ports
of the bytes sent for each coflow in order to move coflows
across multiple queues timely. This results in high load on
the central coordinator from receiving frequent updates and
calculating and sending new rate allocations, which limits
the scalability of the overall approach.

Empirical measurement We quantify the coflow size
learning overhead of Aalo, defined as the portion of the bytes
of a coflow that has been transferred (or the fraction of its
CCT spent in doing so) before reaching its correct queue,
using a trace from Facebook clusters [4] (see detailed method-
ology in §8). Figure 1 shows that 40% of the coflows that
moved beyond the initial queue reached the correct priority
queue after spending more than 20% of their CCT moving
across early queues.

1.2 Our Contribution

We propose PHILAE, a new non-clairvoyant coflow scheduler
with a dramatically different approach to learning coflow
sizes to enable online SJF. To leverage optimal scheduling
SJF in coflow scheduling, it is vital to learn the coflow sizes
quickly and accurately. PHILAE achieves this objective by
exploiting the spatial dimension of coflows, i.e., a coflow typ-
ically consists of many flows, via sampling, a highly effective
technique used in large-scale surveys [34]. In particular, PaiI-
LAE pre-schedules sampled flows, called pilot flows, of each

1073 102 1071 10°
Learning time/Total time
Figure 1: CDF of learning overhead per coflow, i.e., the time
to reach the correct priority queue as a fraction of CCT,
excluding coflows directly scheduled by PHILAE or finish in
Aalo’s first queue.

coflow and uses their measured size to estimate the coflow
size. It then resorts to SCF using the estimated job size.

Intuitively, such a sampling scheme avoids all three
sources of overhead in Aalo — Once the coflow sizes are
learned, the coflows are assigned to the correct queues, which
avoids the intrinsic queue-transit and round-robin effects.
Further, a sampling-based design has an important benefit —
it offers much higher scalability than priority-queue-based
learning in Aalo. This is because unlike Aalo, after estimating
the coflow size, PHILAE clients do not need to send periodic
updates of bytes sent-so-far to the centralized coordinator.

Developing a complete non-clairvoyant coflow scheduler
based on the simple sampling idea raises three questions:
(1) Why is sampling more efficient than the priority-queue-
based coflow size learning? (2) Will sampling be effective in
the presence of skew of flow sizes? (3) How to design the
complete scheduler architecture? We systematically address
these questions with design rational, theoretical analysis,
system design, prototyping, and extensive evaluation.

In summary, this paper makes the following contributions:

(1) Using a production datacenter trace from Facebook, we
show that the prior art scheduler Aalo spends substantial
amount of time and network bandwidth in learning coflow
sizes, which negatively affects the CCT of coflows.

(2) We propose the novel idea of applying sampling in the
spatial dimension of coflow to significantly reduce the over-
head of online learning coflow sizes.

(3) We present theoretical underpinning explaining why sam-
pling remains effective in the presence of flow size skew.
(4) We present the design and implementation of PHILAE.
(5) We extensively evaluate PHILAE via simulations and
testbed experiments, and show that compared to the prior
art, the new design reduces the average CCT by 1.51x for
the Facebook coflow trace and by 1.36x for a trace with
properties similar to a Microsoft production cluster.

(6) The CCT improvement mainly stems from reduced coflow
size learning overhead. PHILAE reduces the median latency
and data sent in finding the right queue for coflows in Aalo
by 19.0x and 20.0%, respectively (§8.2).

834 2019 USENIX Annual Technical Conference

USENIX Association



2 Background and Problem Statement

We start with a brief review of the coflow abstraction and the
need for non-clairvoyant coflow scheduling. We then state
the network model and problem formulation.

Coflow abstraction In data-parallel applications such as
Hadoop [1] and Spark [2], the job completion time heav-
ily depends on the completion time of the communication
stage [12,20]. The coflow abstraction [18] was proposed to
speed up the communication stage to improve application
performance. A coflow is defined as a set of flows between
several nodes that accomplish a common task. For example,
in map-reduce jobs, the set of all flows from all map to all
reduce tasks in a single job forms a typical coflow. The coflow
completion time (CCT) is defined as the time duration be-
tween when the first flow arrives and the last flow completes.
In such applications, improving CCT is more important than
improving individual flows’ completion time (FCT) for im-
proving the application performance [19, 21, 24, 29, 30].

Non-clairvoyant coflows Data-parallel directed acyclic
graphs (DAGs) typically have multiple stages which are rep-
resented as multiple coflows with dependencies between
them. Recent systems (e.g., [3,22,28,36]) employ optimiza-
tions that pipeline the consecutive computation stages which
removes the barrier at the end of each coflow, making know-
ing flow sizes of each coflow beforehand difficult. Thus in
this paper, we focus on non-clairvoyant coflow scheduling
which do not assume knowledge about coflow characteristics
such as flow sizes upon coflow arrival.

Non-blocking network fabric We assume the same non-
blocking network fabric model in recent network designs for
coflows [7,19,21,29,30], where the datacenter network fabric
is abstracted as a single non-blocking switch that intercon-
nects all the servers, and each server (computing node) is
abstracted as a network port that sends and receives flows. In
such a model, the ports, i.e., server uplinks and downlinks, are
the only source of contention as the network core is assumed
to be able to sustain all traffic injected into the network. We
note that the abstraction is to simplify our description and
analysis, and is not required or enforced in our evaluation.

Problem statement Our goal is to develop an efficient non-
clairvoyant coflow scheduler that optimizes the communication
performance, in particular the average CCT, of data-intensive
applications without prior knowledge, while guaranteeing star-
vation freedom and work conservation and being resilient
to the network dynamics. The problem of non-clairvoyant
coflow scheduling is NP-hard because coflow scheduling
even assuming all coflows arrive at time 0 and their size are
known in advance is already NP-hard [21]. Thus practical
non-clairvoyant coflow schedulers are approximation algo-
rithms. Our approach is to dynamically prioritize coflows by
efficiently learning their flow sizes online.

3 Keyldea

Our new non-clairvoyant coflow scheduler design, PHILAE, is
based on a key observation about coflows that a coflow has a
spatial dimension, i.e., it typically consists of many flows. We
thus propose to explicitly learn coflow sizes online by using
sampling, a highly effective technique used in large-scale sur-
veys [34]. In particular, PHILAE preschedules sampled flows,
called pilot flows, of each coflow and uses their measured
sizes to estimate the coflow size. It then resorts to SJF or
variations using the estimated coflow sizes.

Developing a complete non-clairvoyant coflow scheduler
based on the simple sampling idea raises three questions:

(1) Why is sampling more efficient than the priority-queue-
based coflow size learning? Would scheduling the remaining
flows after sampled pilot flows are completed adversely affect
the coflow completion time?

(2) Will sampling be effective in the presence of skew of flow
sizes?
(3) How to design the complete scheduler architecture?

We answer the first two questions below, and present the
complete architecture design in §4.

3.1 Why is sampling more efficient?

Scheduling pilot flows first before the rest of the flows can
potentially incur two sources of overhead. First, schedul-
ing pilot flows of a newly arriving coflow consumes port
bandwidth which can delay other coflows (with already esti-
mated sizes). However, compared to the multi-queue based
approach, the overhead is much smaller for two reasons: (1)
PHILAE schedules only a small subset of the flows (e.g., fewer
than 1% for coflows with many flows). (2) Since the CCT of a
coflow depends on the completion of its last flow, some of its
earlier finishing flows could be delayed without affecting the
CCT. PHILAE exploits this observation and schedules pilot
flows on the least-busy ports to increase the odds that it only
affects earlier finishing flows of other coflows.

Second, scheduling pilot flows first may elongate the CCT
of the newly arriving coflow itself whose other flows cannot
start until the pilot flows finish. This is again typically in-
significant for two reasons: (1) A coflow (e.g., from a MapRe-
duce job) typically consists of flows from all sending ports
to all receiving ports. Conceptually, pre-scheduling one out
of multiple flows from each sender may not delay the coflow
progress at that port, because all flows at that port have to
be sent anyway. (2) Coflow scheduling is of high relevance
in a busy cluster (when there is a backlog of coflows in the
network), in which case the CCT of coflow is expected to
be much higher than if it were the only coflow in the net-
work, and hence the piloting overhead is further dwarfed by
a coflow’s actual CCT.

USENIX Association

2019 USENIX Annual Technical Conference 835



3.2 Why is sampling effective in the pres-
ence of skew?

The flow sizes within a coflow may vary (skew). Intuitively,
if the skew across flow sizes is small, sampling even a small
number of pilot flows will be sufficient to yield an accurate
estimate. Interestingly, even if the skew across flow sizes is
large, our experiment indicates that sampling is still highly
effective. In the following, we give both the intuition and
theoretical underpinning for why sampling is effective.

Consider, for example, two coflows and the simple setting
where both coflows share the same set of ports. In order to
improve the average CCT, we wish to schedule the shorter
coflow ahead of the longer coflow. If the total sizes of the
two coflows are very different, then even a moderate amount
of estimation error of the coflow sizes will not alter their
ordering. On the other hand, if the total sizes of the two
coflows are close to each other, then indeed the estimation
errors will likely alter their ordering. However, in this case
since their sizes are not very different anyway, switching the
order of these two coflows will not significantly affect the
average CCT.

Analytic results. To illustrate the above effect, we show
that the gap between the CCT based on sampling and assum-
ing perfect knowledge is small, even under general flow size
distributions. Specifically, coflows C| and C; have cnj and
cny flows, respectively. Here, we assume that n; and ny are
fixed constants. Thus, by taking c to be larger, we will be
able to consider wider coflows. Assume that each flow of C;
(correspondingly, Cy) has a size that is distributed within a
bounded interval [ay,b1] ([a2,b>]) with mean py (u2), i.i.d.
across flows. However, the exact distributions can be arbi-
trary. Let T¢ be the total completion time when the exact
flow sizes are known in advance. Let 7¢ be the average CCT
by sampling m; and my flows from C; and C,, respectively.
Without loss of generality, we assume that nouy > nyu;. Then,
using Hoeffding’s Inequality, we can show that,

TCc __ cC

2 _ 2
lim ——— <4exp (nattz =)

napiy —niii

¢ T

Vimy Vimy

(1)
(Note that here we have used the fact that, since both coflows
share the same set of ports and c is large, the CCT is asymp-
totically proportional to the coflow size.)

Equation (1) can be interpreted as follows. First, due to
the first exponential term, the relative gap between 7¢ and
T¢ decreases as by —aj and by — a; decrease. In other words,
as the skew of each coflow decreases, sampling becomes
more effective. Second, when by —ay and by — ay are fixed,
if npup — nyy is large (ie., the two coflow sizes are very
different), the value of the exponential function will be small.
On the other hand, if npu, — nju; is close to zero (i.e., the
two coflow sizes are close to each other), the numerator on

(mhz—uz) +n1<hl—u1>)2 nopn + 2n1

the second term on the right hand side will be small. In both
cases, the relative gap between T and T will also be small,
which is consistent with the intuition explained earlier. The

largest gap occurs when nouy —nju; is on the same order

nz(braz)_’_nl(bral)
my N

results assume that both coflows share the same set of ports,
similar conclusions on the impact of estimation errors due
to sampling also apply under more general settings.

as Finally, although these analytical

The above analytical results suggest that, when c is large,
the relative performance gap for CCT is a function of the
number of pilot flows sampled for each coflow, but is indepen-
dent of the total number of flows in each coflow. In practice,
large coflows will dominate the total CCT in the system.
Thus, these results partly explain that, while in our experi-
ments the number of pilot flows is never larger than 1% of
the total number of flows, the performance of our proposed
approach is already very good.

Finally, the above analytical results do not directly tell
us how to choose the number of pilot flows, which likely
depends on the probability distribution of the flow size. In
practice, we do not know such distribution ahead of time.
Further, while choosing a larger number of pilot flows re-
duces the estimation errors, it also incurs higher overhead
and delay. Therefore, our design (§4) needs to have practical
solutions that carefully address these issues.

4 PHILAE Design

In this section, we present the detailed design of PHILAE,
which addresses three design challenges: (1) Coflow size es-
timation: How to choose and schedule the pilot flows for
each newly arriving coflow? (2) Starvation avoidance: How
to schedule coflows after size estimation using variations
of SJF that avoid starvation? (3) Coflow scheduling: How to
schedule among all the coflows with estimated sizes?

4.1 Puiae architecture

Fig. 2 shows the PHILAE architecture. PHILAE models the
entire datacenter as a single big-switch with each computing
node as an individual port. The scheduling task in PHILAE is
divided among (1) a central coordinator, and (2) local agents
that run on individual ports. A computing framework such
as Spark [42] first registers (removes) a coflow when a job
arrives (finishes). Upon a new coflow arrival, old coflow com-
pletion, or pilot flow completion, the coordinator calculates
a new coflow schedule, which includes (1) coflows that are to
be scheduled in the next time slot, and (2) flow rates for the
individual flows of a coflow, and pushes this information to
the local agents which use this information to allocate their
bandwidth. The local agents will follow the current schedule
until they receive a new schedule.

836 2019 USENIX Annual Technical Conference

USENIX Association



Framework  _COFlow operations | Coordinator
[ S,
- |
l Set priority

mmmm | > - |
||

Taskl | —» Pilot flow queue

Priority queues
Task N va

Local Agent

Figure 2: PHILAE architecture.
4.2 Sampling pilot flows

As discussed in §3, PHILAE estimates the size of a coflow
online by actually scheduling a subset of its flows (pilot flows)
at their ports. We do not schedule the flows of a coflow other
than the pilot flows until the completion of the pilot flows in
order to avoid unnecessary extra blocking of other potentially
shorter coflows.

How many pilot flows? When a new coflow arrives, PHI-
LAE first needs to determine the number of pilot flows. As
discussed at the end of §3, the number of pilot flows affects the
trade-off between the coflow size estimation accuracy and
scheduling overhead. For coflows with skewed flow sizes, ac-
curately estimating the total coflow size potentially requires
sampling the sizes of many pilot flows. However, scheduling
pilot flows has associated overhead, i.e., if the coflow turns
out to be a large coflow and should have been scheduled to
run later under SJF.

We explore several design options for choosing the number
of pilot flow. Two natural design choices are using a constant
number of pilot flows or a fixed fraction of the total number of
flows of a coflow. In addition, we observe that typical coflows
consist of flows between a set of senders (e.g., mappers) and
a set of receivers (e.g., reducers) [23]. We thus include a third
design choice of a fixed fraction of sending ports. This design
also spreads the pilot flows to avoid having multiple pilot
flows contending for the same sending ports. We empirically
found that (§8.2) limiting the pilot flows to 5% to 10% of the
number of its sending ports (e.g., mappers in a MapReduce
coflow) strikes a good balance between estimation accuracy
and overhead. We note the total number of flows sampled in
this case is still under 1%.

Finally, we estimate the total coflow size as S = f; - N, where
N is the number of flows in a coflow, and f; is the average
size of the sampled pilot flows.

Which flows to probe? Second, PHILAE needs to decide
which ports to schedule the chosen number of probe flows
for a coflow. For this, we use a simple heuristic where, upon
the arrival of a new coflow, we select the ports for its pilot

flows that are least busy, i.e., having pilot flows from the least
number of other coflows. PHILAE starts with the least busy
sending port and iterates over receiving ports starting with
the least busy receiving port and assigns the flow if it exists.
It then updates the statistics for the number of pilot flows
scheduled at each port and repeats the above process. Such
a choice will likely delay fewer coflows when the pilot flows
are scheduled and hence reduce the elongation on their CCT.
We note that such an online heuristic may not be optimal;
more sophisticated algorithms can be derived by picking
ports for multiple coflows together. However, we make this
design choice for its simplicity and low time complexity to
ensure that the coordinator makes fast decisions.

How to schedule pilot flows? In PHILAE, we prioritize the
pilot flows of a new coflow over existing flows to accelerate
learning the size of the new coflow. In particular, at each port,
pilot flows have high priority over non-pilot flows. If there
are multiple outstanding pilot flows (of different coflows) at
a port, PHILAE schedules them in the FIFO order.

4.3 Coflow scheduling with starvation

avoidance

Once the sizes of coflows are learned, we can apply variations
of the SJF policy to schedule them. However, it is well known
that such policies can lead to starvation.

There are many ways to mitigate the starvation issue.
However, a subtlety arises where even slight difference in
how starvation is addressed can result in different performance.
For example, the multiple priority queues in Aalo has the
benefit of ensuring progress of all coflows, but assigning
different time-quanta to different priority queues can result
in different average CCT for the same workload. To ensure
the fairness of performance comparison with Aalo, we need
to ensure that both PHILAE and Aalo provide the same level
of starvation freedom (or progress measure).

For this reason, in this paper, we inherit the multiple pri-
ority queue structure from Aalo for coflow scheduling. As
in Aalo, PHILAE sorts the coflows among multiple priority
queues. In particular, PHILAE uses N queues, Qo to Qn_1, with
each queue having lower queue threshold fo and higher

threshold Qh", where Qé” =0, Q;{,’;] = oo, Iqo+1 = Zi, and the
queue thresholds grow exponentially, i.e., QZQrl =E- Qgi.

The overall coflow scheduling in PHILAE works as follows.
After the coflow size is estimated using pilot flows, PHILAE
assigns the coflow to the priority queue using inter-coflow
policies discussed in §4.4. Within a queue, we use FIFO to
schedule coflows. Lastly, we use weighted sharing of net-
work bandwidth among the queues, where a priority queue
receives a network bandwidth based on its priority. As in
Aalo, the weights decrease exponentially with decrease in
the priority of the queues.

Using FIFO within the priority queue and weighted fair
sharing among the queues together ensure the same starva-

USENIX Association

2019 USENIX Annual Technical Conference 837



tion freedom and thus meaningful performance comparison
between PHILAE and Aalo [19].

4.4 Inter-coflow scheduling policies

In PHILAE, we explore four different scheduling policies based
on different combinations of coflow size and contention, two
size-based policies (A, B) as in Aalo, a contention-based, sim-
ilar to the intra-queue policy used in Saath [30] (C), and a
new contention-and-length-based policy (D):

(A) Smallest job first: Coflows are sorted based on coflow
size (I - n).

(B) Smallest remaining data first: Coflows are sorted
based on remaining data (/ - n — d).

(C) Least contention first: Coflows are sorted based on
their contention (c).

(D) Least length-weighted total-port contention
first: Coflows are sorted based on the sum of port-wise con-
tention times estimated flow length Y ¢” - L.

P

We use the following parameters of a coflow to define the
metrics in scheduling algorithms: (1) average flow length (/)
from piloting, (2) number of flows (n), (3) number of sender
and receiver ports (s,r), (4) total amount of data sent so
far (d), (5) contention (c), defined as the number of other
coflows sharing any ports with the given coflow, and (6)
port-wise contention (c”), defined as the number of other
coflows blocked at a given port p.

PHILAE uses Policy D by default, as it results in the least
average CCT (§8). For all policies, we continue to use the
priority-queue based scheduling, and the algorithms only
differ in what metric they use in assigning coflows to the pri-
ority queues. In contrast, Aalo does not handle inter-coflow
contention, and uses the total bytes sent so far (d) to move
coflows across multiple priority queues.

4.5 Rate allocation

Once the scheduling order of the coflows is determined, we
need to determine the rates for the individual flows at each
port. First, since we want to quickly finish the pilot flow,
at any port that has pilot flows, PHILAE assigns the entire
port bandwidth to the pilot flows. For the remaining ports,
as discussed in §4.3, across multiple queues, PHILAE assigns
weighted shares of the port bandwidth, by assigning them
varying numbers of scheduling intervals according to the
weights assigned to each priority queues.

Second, at each scheduling interval, PHILAE assigns rates
for the flows of the coflow in the head of the FIFO queue as
follows. It assigns equal rates at all the ports containing its
flows as there is no benefit in speeding-up its flows at certain
ports when its CCT depends on the slowest flow. At each port,
we could use max-min fairness to schedule the individual
flows of the coflow (to different receivers), and then assign
the rate of the slowest flow to all the flows in the coflow.
Afterwards, the port-allocated bandwidths are incremented

accordingly at the coordinator, which then allocates rates
for the next coflow in the same FIFO queue, and so on.
Though the above max-min approach has the advantage of
minimizing bandwidth wastage, it slows down the coordina-
tor which has to iterate over many flows. In our experiments,
we used a simple scheme where we assign the entire band-
width at the sender and receiver ports to one flow of the
coflow at the head of the FIFO queue at a time. We found
that this simple scheme has very marginal effect on CCTs
but makes the rate assignment process considerably faster.

4.6 Additional design issues

Thin coflow bypass Recall that, in PHILAE, when a new
coflow arrives, PHILAE only schedules its pilot flows. All other
flows of that coflow are delayed until the pilot flows finish
and coflow size is known. However, such a design choice can
inadvertently lead to higher CCTs for coflows, particularly for
thin coflows, e.g., a two-flow coflow would end up serializing
scheduling its two flows, one for the piloting purpose.

To avoid CCT degradations for thin coflows, we schedule
all flows of a coflow if its width is under a threshold (set to 7
in PHILAE; §8.6 provides sensitivity analysis for thresholds).

Failure tolerance and recovery Cluster dynamics such
as stragglers or node failure can delay some of the flows
of a coflow or start new flows, increasing their CCT. The
PHILAE design automatically self-adjusts to speed up coflows
that are affected by cluster dynamics using the following
mechanisms: (1) It adjusts the coflow size as the amount of
data left by the coflow, which is essentially the difference
between the size calculated using pilot flows and amount
of data already sent. (2) It calculates contention only on the
ports that have unfinished flows.

Work Conservation By default, PHILAE schedules non-pilot
flows of a coflow only after all its pilot flows are over. This
can lead to some ports being idle where the non-pilot flows
are waiting for the pilot flows to finish. In such cases, PHILAE
schedules non-pilot flows of coflows which are still in the
sampling phase at those ports. In work conservation, the
coflows are scheduled in the FIFO order of arrival of coflows.

5 Scalability Analysis

Compared to learning coflow sizes using priority queues (PQ-
based) [19,30], learning coflow sizes by sampling PHILAE not
only reduces the learning overhead as discussed in §3.1 and
shown in §8.2, but also significantly reduces the amount of
interactions between the coordinator and local agents and
thus makes the coordinator highly scalable, as summarized
in Table 1.

First, PQ-based learning requires much more frequent up-
date from local agents. PQ-based learning estimates coflow
sizes by incrementally moving coflows across priority queues

838 2019 USENIX Annual Technical Conference

USENIX Association



Table 1: Comparison of frequency of interactions between
the coordinator and local agents.

Update Update of Rate
of data sent | flow completion calculation
PHILAE No Yes Event triggered
Aalo Periodic () Yes Periodic ()

according to the data sent by them so far. As such, the sched-
uler needs frequent updates (every & ms) of data sent per
coflow from the local agents. In contrast, PHILAE directly
estimates a coflow’s size upon the completion of all its pilot
flows. The only updates PHILAE needs from the local agents
are about the flow completion which is needed for updating
contentions and removing flows from active consideration..

Second, PQ-based learning results in much more frequent
rate allocation. In sampling-based approach, since coflow
sizes are estimated only once, coflows are re-ordered only
upon coflow completion or arrival events or in the case of
contention based policies only when contention changes,
which is triggered by completion of all the flows of a coflow
ata port. In contrast, in PQ-based learning, at every  interval,
coflow data sent are updated and coflow priority may get
updated, which will trigger new rate assignment.

Our scalability experiments in §9.3 confirms that PHILAE
achieves much higher scalability than Aalo.

6 Implementation

We implemented both PHILAE and Aalo scheduling policies
in the same framework consisting of the global coordinator
and local agents (Fig. 2), in 5.2 KLoC in C++.

Coordinator: The coordinator schedules the coflows
based on the operations received from the registering frame-
work. The key implementation challenge for the coordinator
is that it needs to be fast in computing and updating the
schedules. The PHILAE coordinator is optimized for speed
using a variety of techniques including pipelining, process
affinity, and concurrency whenever possible.

Local agents: The local agents update the global coordi-
nator only upon completion of a flow, along with its length if
it is a pilot flow. Local agents schedule the coflows based on
the last schedule received from the coordinator. They comply
to the last schedule until a new schedule is received. To inter-
cept the packets from the flows, local agents require the com-
pute framework to replace datasend(), datarecv()
APIs with the corresponding PHILAE APIs, which incurs very
small overhead.

Coflow operations: The global coordinator runs inde-
pendently from, and is not coupled to, any compute frame-
work, which makes it general enough to be used with any
framework. It provides RESTful APIs to the frameworks for
coflow operations: (a) register () for registering a new
coflow when it enters, (b) deregister () for removing a

coflow when it exits, and (c) update () for updating coflow
status whenever there is a change in the coflow structure,
e.g., during task migration and restarts after node failures.

7 Evaluation Highlights

We evaluated PHILAE using a 150-node and a 900-node
testbed cluster in Azure and using large scale simulations
by utilizing a publicly available Hive/MapReduce trace col-
lected from a 3000-machine, 150-rack Facebook production
cluster [4] and multiple derived traces with varying degrees
of flow size skew to measure PHILAE’s robustness to skew.

« Facebook (FB) trace: The trace contains 150 ports and
526 (> 7 x 10° flows) coflows, that are extracted from
Hive/MapReduce jobs from a Facebook production clus-
ter. Each coflow consists of pair-wise flows between a
set of senders and a set of receivers.

Due to the lack of other publicly available coflow trace’, we
derived three additional traces using the original Facebook
trace in order to more thoroughly evaluate PHILAE under
varying coflow size skew:

« Low-skew-filtered: Starting with the FB trace, we fil-
tered out coflows that have skew (max flow length/min
flow length) less than a constant k. We generated five
traces in this class with k = 1,2,3,4,5. The filtered
traces have 142, 100, 65, 51 and 43 coflows, respectively.

« Mantri-like: Starting with the FB trace, we adjusted the
sizes of the flows sent by the mappers, keeping the total
reducer data the same as given in the original trace, to
match the skew of a large Microsoft production cluster
trace as described in Mantri [12]. In particular, the sizes
are adjusted so that the coefficients of variation across
mapper data are about 0.34 in the 50" percentile case
and 3.1 in the 90" percentile case. This trace has the
same numbers of coflows and ports as the FB trace.

« Wide-coflows-only: We filtered out all the coflows in
the FB trace with the total number of flows < 7, the
default thin coflow bypass threshold (thinLimit) in PHi-
LAE. The filtered trace has 269 coflows spreading over
150 ports.

The primary performance metrics used in the evaluation
are CCT or CCT speedup, defined as the ratio of a CCT un-
der other baseline algorithms and under PHILAE, piloting
overhead, and coflow size estimation accuracy.

The highlights of our evaluation results are:

(1) PHILAE significantly improves the CCTs. In simulation
using the FB trace, the average CCT is improved by 1.51x
over the prior art, Aalo. Individual CCT speedups are 1.78 x
in the median case (P90 = 9.58 x). For the Mantri-like trace,

1A challenge that has also been faced by previous work on coflow
scheduling such as [19,27,29,44].

USENIX Association

2019 USENIX Annual Technical Conference 839



Table 2: Performance improvement over Aalo for varying pilot flow selection schemes.

Constant Proportional to number of senders Proportional to number of flows
2 5% 10% 20% 50% 100% 1% 10%
Avg. error 13.21% 6.14% 542% 4.94% 5.53% 4.25% 4.15% 2.90%
Avg. CCT 1.27x 1.51x  1.45x  1.50x  1.50x  1.50x  1.43x 0.49x
P50 speedup 1.75x 1.78x  1.76x 1.71x  1.52x 1.40x 1.33x 0.69x
P90 speedup 9.00x 9.58x  9.00x 9.15x  8.33x 8.45x 8.23x 8.23x

the average CCT is improved by 1.36 x and individual CCT
speedups are 1.75x in the median case (P90 = 12.0 ).

(2) The CCT improvement mainly stems from the reduc-
tion in the learning overhead (in terms of latency and amount
of data sent) in determining the right queue for the coflows.
Compared to Aalo, median reduction in the absolute latency
in finding the right queue for coflows in PHILAE is 19.0x,
and in absolute amount of data sent is 20.0x (§8.2).

(3) PHILAE improvements are consistent when varying the
skew among the flow sizes in a coflow (§8.5).

(4) PHILAE improvements are consistent when varying its
parameters (§8.6).

(5) The PHILAE coordinator is much more scalable than
that of Aalo (§9.3).

8 Simulation

We present detailed simulation results in this section, and
the testbed evaluation of our prototype in §9.

Experimental setup: Our simulated cluster uses the same
number of nodes (sending and receiving network ports) as in
the trace. As in [19], we assume full bisection bandwidth is
available, and congestion can happen only at network ports.
The default parameters for Aalo and PHILAE in the experi-
ments are: starting queue threshold (Qgi) is 10MB, exponen-
tial threshold growth factor (E) is 10, number of queues (K) is
set to 10, the weights assigned to individual priority queues
decrease exponentially by a factor of 10, and the new schedule
calculation interval 3 is set to 8ms for the 150-node cluster 2,
the default suggested in its publicly available simulator [19].
In PHILAE, a new schedule is calculated on demand, upon
arrival of a new coflow, completion of a coflow, or completion
of all pilot flows of a coflow. Finally, in PHILAE the threshold
for thinLimit (T) is set to 7, the number of pilot flows assigned
to wide coflows are max(1,0.05 - S), where S is the number
of senders, and the default inter-coflow scheduling policy in
PHILAE is Least length-weighted total-port contention.

8.1 Pilot flow selection policies

We start by evaluating the impact of different policies in
choosing the pilot flows for a coflow in PHILAE. Table 2 sum-
marizes the improvement in average CCT of PHILAE over

28ms is the time to send 1MB of data.

Aalo and average error in size estimation normalized to the
actual coflow size, when varying the pilot flow selection pol-
icy while keeping other parameters as the default in PHILAE,
using the FB trace.

Unsurprisingly, the estimation accuracy increases when
increasing the number of pilot flows across the three selec-
tion schemes: constant, fraction of senders, and fraction of
total flows. However, as the number of pilot flows increases
(over the range of parameter choices), the CCT speedup (P50
and P90 of individual coflow CCT speedups) decreases. This
is because the benefit from size estimation accuracy improve-
ment from using additional pilot flows does not offset the
added overhead from completing the additional pilot flows
and the delay they incur to other coflows.

We find sampling 5% of the number of senders per coflow
strikes a good trade-off between piloting overhead and size
estimation accuracy leading to the best CCT reduction. We
thus set it (0.05 - S) as the default pilot flow selection policy.

8.2 Piloting overhead and accuracy

107
2 10¢ Nl
5
g1
%]
- 104
2103
© 10 ot
-g 102
(%]
101 et
10! 102 103 104 10° 10° 107
Actual size (MB)

Figure 3: PHILAE coflow size learning accuracy. Coflows that
did not go through the piloting phase (48%) are not shown.

Next, using the default pilot selection policy, we evaluate
PHILAEs effectiveness in estimating coflow sizes by sampling
pilot flows. Fig. 3 shows a scatter plot of the actual coflow
size vs. estimated size from running PHILAE under the default
settings. We observe that PHILAE coflow’s size estimation is
highly accurate except for a few outliers. Overall, the average
and standard deviation of relative estimation error are 0.06
and 0.15, respectively, and for the top 99% and 95% coflows
(in terms of estimation accuracy), the average (standard de-
viation) of relative error are only 0.05 (0.12) and 0.03 (0.07)
respectively. Interestingly, a few coflows experience large
estimation errors, and we found they all have very high skew

840 2019 USENIX Annual Technical Conference

USENIX Association



in their flow lengths; the mean standard deviation in flow
lengths, normalized by the average length, of the bottom 1%
(in terms of accuracy) ranges between 4.6 and 6.8.

Fig. 1 shows the cost of estimating the correct queue for
each coflow in PHILAE and Aalo, measured as the time in
learning the coflow size as a fraction of the coflow’s CCT in
PHILAE and Aalo. We see that under PHILAE, about 63% of
the coflows spent less than 1% of their CCT in the learning
phase, while under Aalo, 63% coflows reached the correct
priority queue after spending up to 22% of their CCT moving
across other queues. Compared to Aalo, PHILAE in the median
case sends 20 less data in determining the right queue and
reduces the latency in determining the right queue by 19x.

8.3 Inter-coflow scheduling policies

PuiLAE differs from Aalo in two ways: online size estima-
tion and inter-flow scheduling policy. Here, we evaluate the
effectiveness of the four inter-coflow scheduling policies of
PHILAE discussed in §4.4, keeping the remaining parameters
as the default. Such evaluation allows us to decouple the
contribution of sampling-based learning from the effect of
scheduling policy difference.

Table 3 shows the CCT improvement of PHILAE under the
four inter-flow scheduling policies over Aalo. We make the
following observations.

First, PHILAE with the purely sized-based policy, Smallest
job first (A), which uses the same inter-queue and intra-
queue scheduling policy as Aalo and only differs from Aalo
in coflow size estimation, reduces the average CCT (P50) of
Aalo by 1.40x (1.48x).

In contrast, the default PHILAE uses Least length-
weighted total-port contention (D), which uses the sum
of size-weighted port contention to assign coflows to priority
queues, and slightly outperforms the size-based policy A; it
reduces the average CCT (P50) of Aalo by 1.51x (1.78x). This
is because it captures the diversity of contention at different
ports, which happens often in real distributed settings, and
at the same time accounts for the coflow size by using length-
weighted sum of the port-wise contention. The above results
for policy A and policy D indicate that the primary improve-
ment in PHILAE comes from its sampling-based coflow size
estimation scheme.

Shortest remaining time first (B) performs similarly as
smallest job first. This is because the preemptive nature of
SRTF will kick in only on arrival of new coflows. Also, al-
though SRTF is advantageous for small coflows, since PHILAE
already schedules thin coflows at high priority, many thin
and thus small coflows are anyways being scheduled at high
priority under both policies A and B, and as a result they
perform similarly.

Finally, Least contention first (C) performs poorly. This
is because contention for a coflow is defined as the unique
number of other coflows that share ports, and as a result such
a policy completely ignores the size (length) of the coflows.

Table 3: CCT speedup in PHILAE under different inter-coflow
scheduling policies (§4.4) over Aalo.

Priority estimation metric P50 P90  Avg.CCT
Estimated size (A) 1.48x  8.27x 1.40x
Remaining size (B) 1.54x  8.34x 1.37x
Global Contention (C) 0.75x  8.26x 0.13x
Length-weighted total-port contention (D) 1.78x  9.58x 1.51x
(PHILAE)

8.4 Average CCT improvement

We now compare the CCT speedups of PHILAE against 5 well-
known coflow scheduling policies: (1) Aalo, (2) Aalo-Oracle,
which is an oracle version of Aalo where the scheduler knows
the final queue of a coflow upon its arrival time and directly
starts the coflow from that queue, (3) SEBF in Varys [21]
which assumes the knowledge of coflow sizes apriori and
uses the Shortest Effective Bottleneck First policy, where the
coflow whose slowest flow will finish first is scheduled first.
(4) FIFO, which is a single queue FIFO based coflow scheduler,
and (5) FAIR, which uses per-flow fair sharing. We do not
include Saath [30] in the comparison as it does not provide
the same liveliness guarantees as PHILAE which as discussed
in §4.3 can obscure the comparison result. All experiments
use the default parameters discussed in the setup, including
K,E,S, unless otherwise stated. The results are shown in
Fig. 4(a). We make the following observations.

First, we compare CCT under PHILAE against under Aalo-
Oracle, where Aalo-Oracle starts all coflows at the correct
priority queues (i.e., no learning overhead). PHILAE im-
proves the average CCT by 1.18 x and P50 CCT by 1.40x,
respectively. Since Aalo-Oracle pays no overhead for coflow
size estimation, its worse performance suggests that using
length-weighted total-port contention in assigning coflows
to the priority queues in PHILAE outperforms Aalo’s size-
based, contention-oblivious policy in assigning coflows to
the queues.

Second, PHILAE improves the average CCT over Aalo by
1.51x (median) and P50 by 1.78. The significant additional
improvement on top of the gain over Aalo-Oracle comes
from fast and accurate estimation of the right queues for the
coflows (Fig. 1).

Third, PHILAE, which requires no coflow size knowledge
a priori, achieves comparable performance as SEBF [21]; it
reduces the average CCT by 1.16x. Again this is because
its total-port contention policy outperforms the contention-
oblivious SEBF.

Finally, PHILAE significantly outperforms the single-queue
FIFO-based coflow scheduler, with a median (P90) CCT
speedup of 3.00 (77.96) x and average CCT speedup of 3.16 X,
and the un-coordinated flow-level fair-share scheduler, with
a median (P90) CCT speedup of 70.82x (1947 x) and average
CCT speedup of 5.66 .

To gain insight into how different coflows are affected by
PHILAE over Aalo, we group the coflows in the trace into

USENIX Association

2019 USENIX Annual Technical Conference 841



— P10-P90
P50
L] Average

l I

AaloAalo(Oracle)FAIR  FIFO
Other schedulers

— P10-P90
P50
® Average

’ 54 B 15 2%
100 : .
112

AaloAalo(Oracle)FAIR  FIFO
Other schedulers

=
S

CCT Speedup
CCT Speedup

SEEF SEBF

(a) Using original FB trace.

(b) Using Wide-coflows-only trace.

CCT Speedup

(c) Using 5 Low-skew-filtered traces.

— P10-P90
P50
® Average

5
CCT Speedup
=
2

— P10-P90
P50
o Average

>4 >5

I 107

SEBF

e
1.14

>2 >3
Skew

°

AaloAalo(Oracle)FAIR  FIFO
Other schedulers

(d) Using the Mantri-like trace.

Figure 4: CCT speedup using PHILAE compared to using other coflow schedulers on different traces. In Fig. 4(c), the x-axis

denotes the minimum skew in the 5 Low-skew-filtered traces.

— P10-P90
P50
® Average

E s

B 1.52
.

0.59

Bin-2 Bin-3 Bin-4
Bins

5

CCT Speedup
~
m
&

2

Bin-1 100 10!

Speedup

Figure 6: [Testbed] Distribution
of speedup in CCT and JCT in
PHILAE using the FB trace.

Figure 5: Performance
breakdown into bins shown
in Table 4.

Table 4: Bins based on total coflow size and width (number
of flows). The numbers in brackets denote the fraction of
coflows in that bin.

width < 7(thin)
bin-1 (44.3%)
bin-3 (4.5%)

width > 7(wide)
bin-2 (24.1%)
bin-4 (27.1%)

size < 100MB (small)
size > 100MB (large)

four bins defined in Table 4, and show in Fig. 5 the CCT
speedups for each bin. We see that PHILAE improves CCT
for all coflows in bin 1 and 3 and for large fraction in bin-4.
Most of the underperforming coflows fall in bin-2. Coflows
in bin-2 have width > 7 and size < 100MB, i.e., the flows
are short but wide. Because the width exceeds the thinLimit,
PHILAE schedules the pilot flows to estimate the coflow size
first (§4). Thus, although the remaining flows are short, they
get delayed until the completion of the pilot flows, which
results in CCT increase.

Finally, since thin coflows benefit from PHILAE’s scheme of
bypassing probing for thin coflows, we also compare PHILAE
with other schemes using the Wide-coflows-only trace which
consists of all coflows wider than the default thinLimit (7)
in PHILAE. Fig. 4(b) shows that PHILAE continues to perform
well, reducing the average CCT by 1.54%, 1.15%, and 1.12x
over Aalo, Aalo-Oracle, and SEBF, respectively.

8.5 Robustness to coflow data skew

Next, we evaluate PHILAE’s robustness to flow size skew by
comparing it against Aalo using traces with varying degrees
of skew. First, we evaluate PHILAE using the Mantri-like
trace. Fig. 4(d) shows that PHILAE consistently outperforms
prior-art coflow schedulers. In particular, PHILAE reduces the
average CCT by 1.36x compared to Aalo. Second, we evalu-

ate PHILAE using the Low-skew-filtered traces which have
low skew coflows filtered out. Fig. 4(c) shows that PHILAE
performs better than Aalo even with highly skewed traces
and reduces the average CCT by 1.45x, 1.44x, 1.44X, 1.40X
and 1.38x for the five Low-skew-filtered traces containing
coflows with skew of at least 1, 2, 3, 4 and 5, respectively.

8.6 Sensitivity analysis

Compared to Aalo, PHILAE has only two additional para-
maters: thinLimit and flow sampling rate. We already dis-
cussed the choice of sampling rate in §8.1. Below, we evaluate
the sensitivity of PHILAE to thinLimit and other design pa-
rameters common to Aalo by varying one parameter at a
time while keeping the rest as the default.

Thin coflow bypassing limit (7') In this experiment, we
vary thinLimit (T) in PHILAE for bypassing coflows from
the probing phase. The result in Fig. 7(a) shows that the
average CCT remains almost the same as T increases. This
is because the average CCT is dominated by wide and large
coflows, which are not affected by thinLimit. However, the
P50 speedup increases till 7 = 7 and tapers off after 7 = 7.
The reason for the CCT improvement until 7 = 7 is that
all flows of thin coflows (with width < 7) are scheduled
immediately upon arrival which improves their CCT, and
the number of thin coflows is significant.

Start queue threshold (Q[') We next vary the threshold for
the first priority queue from 2 MB to 64 MB. Fig. 7(b) shows
the average CCT of PHILAE over Aalo. Overall, PHILAE is
not very sensitive to the threshold of first priority queue
and the CCT speedup over Aalo is within 8% of the default
PHILAE (10 MB). The speedup appears to oscillate with a
periodicity of 5x to 10x. For example, the speedups for 2 MB
and 64 MB are close to that of the default (10 MB), while
for 4 MB and 32 MB are lower. This can be explained by
the impact of the first queue threshold on job segregation;
with the default queue threshold growth factor of 10, every
time the first queue threshold changes by close to 10x, the
distribution of jobs across the queues become similar.

Multiplication factor (E) In this experiment, we vary the
queue threshold growth factor from 2 to 64. Recall that the
queue thresholds are computed as Qh’ = Q’“ -E.Thus,asE
grows, the number of queues decreases As shown in Fig. 7(c),

842 2019 USENIX Annual Technical Conference

USENIX Association



1.6
2
1.g MAverage §P5
ol
516

(0]

S 14
§1.2
1

2 0.8
(&) 0.6
O 0.4
0.2

0

4 5 6 7 8 9 10

(a) Thin coflow bypass threshold

0.8
0.6

0.2

Avg. CCT speedup
o B e
o D PN D
%
o
%
%
%
%
%
Avg. CCT speedup
|—\

(b) First queue capacity (Q(l}i)

1.8
1.6

14
1.2
0.8
0.6
0.4
0.2

0

2 4 8 10 16 32 64

(c) Exponent (E)

Figure 7: [Simulation] PHILAE sensitivity analysis. We vary one parameter of PHILAE keeping rest same as default and compare

it with Aalo.

smaller queue threshold multiplication factor which leads to
more queues performs better because of fine-grained priority
segregation.

9 Testbed Evaluation

Next, we deployed PHILAE in a 150-machine Azure cluster
and a 900-machine cluster to evaluate its performance and
scalability.

Testbed setup: We rerun the FB trace on a Spark-like
framework on a 150-node cluster in Microsoft Azure [5].
The coordinator runs on a Standard DS15 v2 server with
20-core 2.4 GHz Intel Xeon E5-2673 v3 (Haswell) processor
and 140GB memory. The local agents run on D2v2 with
the same processor as the coordinator with 2-core and 7GB
memory. The machines on which local agents run have 1
Gbps network bandwidth. Similarly as in simulations, our
testbed evaluation keeps the same flow lengths and flow ports
in trace replay. All the experiments use default parameters
K,E,S and the default pilot flow selection policy.

9.1 CCT Improvement

In this experiment, we measure CCT improvements of PHi-
LAE compared to Aalo. Fig. 6 shows the CDF of the CCT
speedup of individual coflows under PHILAE compared to
under Aalo. The average CCT improvement is 1.50 X which
is similar to the results in the simulation experiments. We
also observe 1.63x P50 speedup and 8.00x P90 speedup.

We also evaluated PHILAE using the Wide-coflow-only
trace. Table 5 shows that PHILAE achieves 1.52x improve-
ment in average CCT over Aalo, similar to that using the full
FB trace. This is because the improvement in average CCT
is dominated by large coflows, PHILAE is speeding up large
coflows, and the Wide-coflow-only trace consists of mostly
large coflows.

9.2 Job Completion Time

Next, we evaluate how the improvement in CCT affects the
job completion time (JCT). In data clusters, different jobs

Table 5: [Testbed] CCT improvement in PHILAE as compared
to Aalo.

P50 P90 | Avg. CCT
FB Trace 1.63x | 8.00x 1.50%
Wide-coflow-only | 1.05x | 2.14x 1.49%

Table 6: [Testbed] Average (standard deviation) coordinator

CPU time (ms) per scheduling interval in 900-port runs. PHI-

LAE did not have to calculate and send new rates in 66% of

intervals, which contributes to its low average.

Rate Calc. | New Rate Send | Update Recv. Total

PHILAE | 2.99 (5.35)| 4.90 (11.25) | 6.89 (17.78) | 14.80 (28.84)
Aalo |4.28 (4.14)| 17.65(20.9) | 10.97 (19.98) |32.90 (34.09)

spend different fractions of their total job time in data shuffle.
In this experiment, we used 526 jobs, each corresponding
to one coflow in the FB trace. The fraction of time that the
jobs spent in the shuffle phase follows the same distribution
used in Aalo [19], i.e., 61% jobs spent less than 25% of their
total time in shuffle, 13% jobs spent 25-49%, another 14% jobs
spent 50-74%, and the remaining spent over 75% of their total
time in shuffle. Fig. 6 shows the CDF of individual speedups
in JCT. Across all jobs, PHILAE reduces the job completion
time by 1.16x in the median case and 7.87x in the 90"
percentile. This shows that improved CCT translates into
better job completion time. As expected, the improvement
in job completion time is smaller than the improvement in
CCT because job completion time depends on the time spent
in both compute and shuffle (communication) stages, and
PHILAE improves only the communication stage.

9.3 Scalability

Finally, we evaluate the scalability of PHILAE by comparing
its performance with Aalo on a 900-node cluster. To drive
the evaluation, we derive a 900-port trace by replicating the
FB trace 6 times across ports, i.e., we replicated each job 6
times, keeping the arrival time for each copy the same but
assigning sending and receiving ports in increments of 150
(the cluster size for the original trace). We also increased the

USENIX Association

2019 USENIX Annual Technical Conference 843



Table 7: [Testbed] Percentage of scheduling intervals where

synchronization and rate calculation took more than 3 for

150-port and &' (= 6 x 8) for 900-port runs.

150 ports | 900 ports

PHILAE 1% 10%
Aalo 16% 37%

scheduling interval 3 by 6 times to &' = 6x3.

PHILAE achieved 2.72x (9.78 X) speedup in average (P90)
CCT over Aalo. The higher speedup compared to the 150-
node runs (1.50 x) comes from higher scalability of PHILAE.
In 900-node runs, Aalo was not able to finish receiving up-
dates, calculating new rates and updating local agents of new
rates within &' in 37% of the intervals, whereas PHILAE only
missed the deadline in 10% of the intervals. For 150-node
runs these values are 16% for Aalo and 1% for PHILAE. The
21% increase in missed scheduling intervals in 900-node runs
in Aalo resulted in local agents executing more frequently
with outdated rates. As a result, PHILAE achieved even higher
speedup in 900-node runs.

As discussed in§5, Aalo’s poorer coordinator scalability
comes from more frequent updates from local agents and
more frequent rate allocation, which result in longer coordi-
nator CPU time in each scheduling interval. Table 6 shows
the average coordinator CPU usage per interval and its break-
down. We see that (1) on average PHILAE spends much less
time than Aalo in receiving updates from local agents, be-
cause PHILAE does not need updates from local agents at
every interval — on average in every scheduling interval
PHILAE receives updates from 49 local agents whereas Aalo
receives from 429 local agents, and (2) on average PHILAE
spends much less time calculating new rates and send new
rates. This is because rate calculation in PHILAE is triggered
by events and PHILAE did not have to flush rates in 66% of
the intervals.

10 Related Work

Coflow scheduling: In this paper, we have shown PHILAE
outperforms prior-art non-clairvoyant coflow scheduler Aalo
from more efficient learning of coflow sizes online. Saath [30]
and Graviton [29] also learn coflow sizes online using prior-
ity queues and hence suffers the same inefficiency as Aalo.
Graviton [29] uses the number of ports a coflow is present at,
as an additional indicator of its size. In [19], Aalo was shown
to outperform previous non-clairvoyant coflow schedulers
Baraat [24] by using global coordination, and Orchestra [20]
by avoiding head-of-line blocking.

Clairvoyant coflow schedulers such as Varys [21] and Sin-
cronia [7] assume prior knowledge of coflows upon arrival.
Varys runs a shortest-effective-bottleneck-first heuristic for
inter-coflow scheduling and performs per-flow rate alloca-
tion at the coordinator. Sincronia improves the scalability of
the centralized coordinator of Varys by only calculating the
coflow ordering at the coordinator (by solving an LP) and

offloading flow rate allocation to individual local agents. Sin-
cronia is orthogonal to PHILAE; once coflow sizes are learned
through sampling, ideas from Sincronia can be adopted in
PHILAE to order coflows and offload rate allocation to local
ports. CODA [44] tackles an orthogonal problem of identify-
ing flows of individual coflows online.

However, recent studies [19,40] have shown various rea-
sons why it is not very plausible to learn flow sizes from
applications beforehand. For example, many applications
stream data as soon as data are generated and thus the appli-
cation does not know the flow sizes until flow completion,
and learning flow sizes from applications requires changing
either the network stack or the applications.

Flow scheduling: There exist a rich body of prior work
on flow scheduling. Efforts to minimize flow completion time
(FCT), both with prior information (e.g., PDQ [26], pFab-
ric [9]) and without prior information (e.g., Fastpass [35],
PIAS [13], [14]), fall short in minimizing CCTs which depend
on the completion of the last flow [21]. Similarly, Hedera [8]
and MicroTE [15] schedule the flows with the goal of reduc-
ing the overall FCT, which again is different from reducing
the overall CCT of coflows.

Speculative scheduling Recent works [16, 33] use the
idea of online requirement estimation for scheduling in data-
center. In [31], recurring big data analytics jobs are scheduled
using their history.

Job scheduling: There have been much work on schedul-
ing in analytic systems and storage at scale by improving
speculative tasks [11,12,43], improving locality [10,41], and
end-point flexibility [17,38]. The coflow abstraction is com-
plimentary to these work, and can benefit from them. Com-
bining coflow with these approaches remains a future work.

Scheduling in parallel processors: Coflow schedul-
ing by exploiting the spatial dimension bears similarity to
scheduling processes on parallel processors and multi-cores,
where many variations of FIFO [37], FIFO with backfill-
ing [32] and gang scheduling [25] have been proposed.

11 Conclusion

State-of-the-art online coflow schedulers approximate the
classic SJF by implicitly learning coflow sizes and pay a high
penalty for large coflows. We propose the novel idea of sam-
pling in the spatial dimension of coflows to explicitly and
efficiently learn coflow sizes online to enable efficient on-
line SJF scheduling. Our extensive simulation and testbed
experiments show the new design offers significant perfor-
mance improvement over prior art. Further, the sampling-in-
spatial-dimension technique can be generalized to other dis-
tributed scheduling problems such as cluster job scheduling.
We have made our simulator publicly available at https:
//github.com/coflowPhilae/simulator [6].

Acknowledgement We thank our shepherd Patrick Stuedi
and the anonymous reviewers for their insightful comments.

844 2019 USENIX Annual Technical Conference

USENIX Association


https://github.com/coflowPhilae/simulator
https://github.com/coflowPhilae/simulator

References

(1]
(2]
(3]
(4]

Apache hadoop. http://hadoop.apache.org.
Apache spark. http://spark.apache.org.
Apache tez. http://tez.apache.org.

Coflow  trace from facebook  datacenter.
https://github.com/coflow/coflow-benchmark.

Microsoft azure. http://azure.microsoft.com.

Philae simulator. https://github.com/
coflowPhilae/simulator.

Saksham Agarwal, Shijin Rajakrishnan, Akshay
Narayan, Rachit Agarwal, David Shmoys, and Amin
Vahdat. Sincronia: Near-optimal network design for
coflows. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’18, pages 16—29, New York, NY, USA, 2018.
ACM.

Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, and Amin Vahdat.
Hedera: Dynamic flow scheduling for data center
networks. In Proceedings of the 7th USENIX Conference
on Networked Systems Design and Implementation,
NSDI'10, pages 19-19, Berkeley, CA, USA, 2010.
USENIX Association.

Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pfabric: Minimal near-optimal datacen-
ter transport. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM 13, pages
435-446, New York, NY, USA, 2013. ACM.

Ganesh Ananthanarayanan, Sameer Agarwal, Srikanth
Kandula, Albert Greenberg, Ion Stoica, Duke Harlan,
and Ed Harris. Scarlett: Coping with skewed content
popularity in mapreduce clusters. In Proceedings of
the Sixth Conference on Computer Systems, EuroSys ’11,
pages 287-300, New York, NY, USA, 2011. ACM.

Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker,
and Ion Stoica. Effective straggler mitigation: Attack
of the clones. In Proceedings of the 10th USENIX Con-
ference on Networked Systems Design and Implementa-
tion, nsdi’13, pages 185-198, Berkeley, CA, USA, 2013.
USENIX Association.

Ganesh Ananthanarayanan, Srikanth Kandula, Albert
Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and Edward
Harris. Reining in the outliers in map-reduce clusters

(13]

(14]

[15]

[16]

(17]

(18]

[20]

using mantri. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementa-
tion, OSDI’10, pages 265-278, Berkeley, CA, USA, 2010.
USENIX Association.

Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Weicheng Sun. Pias: Practical information-agnostic
flow scheduling for data center networks. In Proceedings
of the 13th ACM Workshop on Hot Topics in Networks,
HotNets-XIII, pages 25:1-25:7, New York, NY, USA, 2014.
ACM.

Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-agnostic flow scheduling
for commodity data centers. In 12th USENLX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 15), pages 455-468, Oakland, CA, 2015. USENIX
Association.

Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Microte: Fine grained traffic engineering
for data centers. In Proceedings of the Seventh COnfer-
ence on Emerging Networking EXperiments and Tech-
nologies, CONEXT ’11, pages 8:1-8:12, New York, NY,
USA, 2011. ACM.

Inho Cho, Keon Jang, and Dongsu Han. Credit-
scheduled delay-bounded congestion control for data-
centers. In Proceedings of the Conference of the ACM Spe-
cial Interest Group on Data Communication, SSGCOMM
’17, pages 239-252, New York, NY, USA, 2017. ACM.

Mosharaf Chowdhury, Srikanth Kandula, and Ion Sto-
ica. Leveraging endpoint flexibility in data-intensive
clusters. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, pages 231-242,
New York, NY, USA, 2013. ACM.

Mosharaf Chowdhury and Ion Stoica. Coflow: A net-
working abstraction for cluster applications. In Pro-
ceedings of the 11th ACM Workshop on Hot Topics in Net-
works, HotNets-XI, pages 31-36, New York, NY, USA,
2012. ACM.

Mosharaf Chowdhury and Ion Stoica. Efficient coflow
scheduling without prior knowledge. In Proceedings of
the 2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM 15, pages 393-406,
New York, NY, USA, 2015. ACM.

Mosharaf Chowdhury, Matei Zaharia, Justin Ma,
Michael I. Jordan, and Ion Stoica. Managing data trans-
fers in computer clusters with orchestra. In Proceedings
of the ACM SIGCOMM 2011 Conference, SIGCOMM 11,
pages 98-109, New York, NY, USA, 2011. ACM.

USENIX Association

2019 USENIX Annual Technical Conference 845


https://github.com/coflowPhilae/simulator
https://github.com/coflowPhilae/simulator

[21]

(23]

[24]

(29]

(30]

Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Ef-
ficient coflow scheduling with varys. In Proceedings of
the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
pages 443-454, New York, NY, USA, 2014. ACM.

Tyson Condie, Neil Conway, Peter Alvaro, Joseph M.
Hellerstein, Khaled Elmeleegy, and Russell Sears.
Mapreduce online. In Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implemen-
tation, NSDI'10, pages 21-21, Berkeley, CA, USA, 2010.
USENIX Association.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. volume 51,
pages 107-113, New York, NY, USA, January 2008. ACM.

Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani,
and Antony Rowstron. Decentralized task-aware
scheduling for data center networks. In Proceedings
of the 2014 ACM Conference on SIGCOMM, SIGCOMM
’14, pages 431-442, New York, NY, USA, 2014. ACM.

Dror G. Feitelson and Morris A. Jette. Improved uti-
lization and responsiveness with gang scheduling. In
Proceedings of the Job Scheduling Strategies for Parallel
Processing, IPPS °97, pages 238-261, London, UK, UK,
1997. Springer-Verlag.

Chi-Yao Hong, Matthew Caesar, and P. Brighten God-
frey. Finishing flows quickly with preemptive schedul-
ing. In Proceedings of the ACM SIGCOMM 2012 Con-
ference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, SSIGCOMM 12,
pages 127-138, New York, NY, USA, 2012. ACM.

Xin Sunny Huang, Xiaoye Steven Sun, and T.S. Eugene
Ng. Sunflow: Efficient optical circuit scheduling for
coflows. In Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and
Technologies, CONEXT 16, pages 297-311, New York,
NY, USA, 2016. ACM.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In Proceed-
ings of the 2Nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2007, EuroSys *07, pages
59-72, New York, NY, USA, 2007. ACM.

Akshay Jajoo, Rohan Gandhi, and Y. Charlie Hu. Gravi-
ton: Twisting space and time to speed-up coflows. In
8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16), Denver, CO, 2016. USENIX Association.

Akshay Jajoo, Rohan Gandhi, Y. Charlie Hu, and Cheng-
Kok Koh. Saath: Speeding up coflows by exploiting

(32]

(33]

(37]

the spatial dimension. In Proceedings of the 13th Inter-
national Conference on Emerging Networking EXperi-
ments and Technologies, CONEXT ’17, pages 439-450,
New York, NY, USA, 2017. ACM.

Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram
Rao, Konstantin Makarychev, and Matthew Caesar.
Network-aware scheduling for data-parallel jobs: Plan
when you can. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication,
SIGCOMM 15, pages 407-420, New York, NY, USA, 2015.
ACM.

David A. Lifka. The anl/ibm sp scheduling system. In
Proceedings of the Workshop on Job Scheduling Strategies
for Parallel Processing, IPPS °95, pages 295-303, London,
UK, UK, 1995. Springer-Verlag.

Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise triggers in
data centers. In Proceedings of the 2016 ACM SIGCOMM
Conference, SSIGCOMM ’16, pages 129-143, New York,
NY, USA, 2016. ACM.

Stanley Lemeshow Paul S. Levy. Sampling of Popula-
tions: Methods and Applications. Wiley, 4 edition, Jun
2012.

Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. Fastpass: A centralized
"zero-queue” datacenter network. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
pages 307-318, New York, NY, USA, 2014. ACM.

Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-
Philippe Martin, and Dennis Fetterly. Dandelion: A
compiler and runtime for heterogeneous systems. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 49-68,
New York, NY, USA, 2013. ACM.

Uwe Schwiegelshohn and Ramin Yahyapour. Analysis
of first-come-first-serve parallel job scheduling. In Pro-
ceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’98, pages 629-638, Philadel-
phia, PA, USA, 1998. Society for Industrial and Applied
Mathematics.

David Shue, Michael J. Freedman, and Anees Shaikh.
Performance isolation and fairness for multi-tenant
cloud storage. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Implementa-
tion, OSDI’12, pages 349-362, Berkeley, CA, USA, 2012.
USENIX Association.

Abraham Silberschatz, Peter B. Galvin, and Greg Gagne.
Process Scheduling. Operating System Concepts. John
Wiley & Sons, 8 edition, 2010.

846

2019 USENIX Annual Technical Conference

USENIX Association



(40]

[41]

Vojislav Dukié, Sangeetha Abdu Jyothi, Bojan Karlas,
Muhsen Owaida, Ce Zhang, and Ankit Singla. Is ad-
vance knowledge of flow sizes a plausible assump-
tion? In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 565-580,
Boston, MA, 2019. USENIX Association.

Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
scheduling: A simple technique for achieving locality
and fairness in cluster scheduling. In Proceedings of the
5th European Conference on Computer Systems, EuroSys
’10, pages 265-278, New York, NY, USA, 2010. ACM.

Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. In Proceedings of the

[44]

2Nd USENIX Conference on Hot Topics in Cloud Com-
puting, HotCloud’10, pages 10-10, Berkeley, CA, USA,
2010. USENIX Association.

Matei Zaharia, Andy Konwinski, Anthony D. Joseph,
Randy Katz, and Ion Stoica. Improving mapreduce per-
formance in heterogeneous environments. In Proceed-
ings of the 8th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI'08, pages 29-42,
Berkeley, CA, USA, 2008. USENIX Association.

Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf
Chowdhury, and Yanhui Geng. Coda: Toward automati-
cally identifying and scheduling coflows in the dark. In
Proceedings of the 2016 ACM SIGCOMM Conference, SIG-
COMM 16, pages 160-173, New York, NY, USA, 2016.

USENIX Association

2019 USENIX Annual Technical Conference 847



	Introduction
	Motivation
	Our Contribution

	Background and Problem Statement
	Key Idea
	Why is sampling more efficient?
	Why is sampling effective in the presence of skew?

	Philae Design
	Philae architecture
	Sampling pilot flows
	Coflow scheduling with starvation avoidance
	Inter-coflow scheduling policies
	Rate allocation
	Additional design issues

	Scalability Analysis
	Implementation
	Evaluation Highlights
	Simulation
	Pilot flow selection policies
	Piloting overhead and accuracy
	Inter-coflow scheduling policies
	Average CCT improvement
	Robustness to coflow data skew
	Sensitivity analysis

	Testbed Evaluation
	CCT Improvement
	Job Completion Time
	Scalability

	Related Work
	Conclusion



