
1June 27, 2020

OSCA: An Online-Model Based Cache Allocation
Scheme in Cloud Block Storage Systems

Yu Zhang†, Ping Huang†§, Ke Zhou†, Hua Wang†, Jianying Hu‡, Yongguang Ji‡, Bin Cheng‡
†Huazhong University of Science and Technology

†Intelligent Cloud Storage Joint Research center of HUST and Tencent
§Temple University

‡Tencent Technology (Shenzhen) Co., Ltd.

USENIX Annual Technical Conference 2020

USENIX Annual Technical Conference 2020

Agenda
• Research Background

ØCloud Block storage (CBS)

• Motivation

• OSCA System Design
ØOnline Cache modeling
ØSearch for the optimal solution

• Evaluation Results

• Conclusion

2June 27, 2020 USENIX Annual Technical Conference 2020

June 27, 2020 USENIX Annual Technical Conference 2020 3

• To satisfy the rigorous performance and availability requirements of
different tenants, cloud block storage (CBS) systems have been
widely deployed by cloud providers.

Background

Storage ClusterTenants

iSCSI, etc.

Network & Data
Forwarding

June 27, 2020 USENIX Annual Technical Conference 2020 4

• Cache servers, consisting of multiple cache instances competing for the
same pool of resources.

• Cache allocation scheme plays an important role.

Background

Cache Server
Instance 1 Instance 2 ĊĊ

Storage Server

Storage Cluster

ĊĊ

ĊĊ

Network
Client

Node 1 Node 2 ĊĊ

�� ��� ��� ��� ��� ��� ��� ���� ��� �������������

���

���

���

���

&
DF
KH
�5
HT
XL
UH
P
HQ
W��
*
%
�

7LPH��+RXU�

June 28, 2020 USENIX Annual Technical Conference 2020 5

Motivation

(a) (b)

• The highly-skewed cloud workloads cause uneven distribution of
hot spots in nodes.→ figure (a)

• The currently used even-allocation policy is inappropriate for the
cloud environment and induces resource wastage.→ figure (b)

Maximum

Minimum

Median

7LPH��+RXU�

�

�

�

��

��

��

6W
RU
DJ
H�
1
RG
H�
1
XP

EH
U

���� ��� ��� ��� ���� ������ ����� ����� ��
/RZ

+LJK

0LG

June 28, 2020 USENIX Annual Technical Conference 2020 6

Motivation

To improve this policy via ensuring more appropriate cache
allocations, there have been proposed two broad categories of
solutions.

• Qualitative methods based on intuition or experience.

• Quantitative methods enabled by cache models typically described
by Miss Ratio Curves (MRC).

June 28, 2020 USENIX Annual Technical Conference 2020 7

Motivation

To improve this policy via ensuring more appropriate cache
allocations, there have been proposed two broad categories of
solutions.

• Qualitative methods based on intuition or experience.

• Quantitative methods enabled by cache models typically described
by Miss Rate Curves (MRC).

We propose OSCA, an Online-Model based Scheme for
Cache Allocation

June 28, 2020 USENIX Annual Technical Conference 2020 8

Main Ideas

• Obtain the miss ratio curve, which indicates the miss ratio
corresponding to different cache sizes.

Online Cache Modeling

• Define an optimization target.

Optimization Target Defining

• Based on the cache modeling and defined target mentioned
above, our OSCA searches for the optimal configuration scheme.

Searching for Optimal Configuration

June 28, 2020 USENIX Annual Technical Conference 2020 9

Cache Modeling

Ø Cache Controller

• IO processing & Obtain Miss
Ratio Curve.

• Optimization Target.
• Configuration Searching.

Ø Periodically Reconfigure.

ś Ş ś Ŝ

ŚŚ

Instance 1

Client Read

Cache
Pool

Client Write

ĊĊ ĊĊ

ĊĊ
Storage
Server

Ŝ ŝ ŝ

IO Partition and Routing

Cache Controller

Configuration
Searching

ASYN

ĊĊInstance 2

Periodically
Reconfiguring

Instance 1
Instance 2

ĊĊ

Miss ratio
Curve

Builder

Target Defining

IO 4UBUJTUJDIO statistic

June 28, 2020 USENIX Annual Technical Conference 2020 10

Cache Modeling (cont.)

• Obtain the miss ratio curve, which describes the relationship
between hit ratio and cache size.

Online Cache Modeling

• The hit ratio of the LRU algorithm can be calculated from the discrete
integral sum of the reuse distance distribution (from zero to the cache
size).

C

x 0
hr(C) = rdd(x)

=
å

� ������� ��������� ���LQI

5HXVH�'LVWDQFH

�� �

�� �

�� �

���

5
DW
LR
���

�

June 29, 2020 USENIX Annual Technical Conference 2020 11

Cache Modeling (cont.)

• The reuse distance is the amount of unique data
blocks between two consecutive accesses to the
same data block.
Ø ABCDBDA
Ø Reuse Distance of block A = 3

• A data block can be hit in the cache only when its
reuse distance is smaller than the cache size.

• The hit ratio of the LRU algorithm can be
calculated from the discrete integral sum of the
reuse distance distribution (from zero to the
cache size).

• Reuse Distance

C

x 0
hr(C) = rdd(x)

=
å

� ������� ��������� ���LQI

5HXVH�'LVWDQFH

�� �

�� �

�� �

���

5
DW
LR
���

�

June 27, 2020 USENIX Annual Technical Conference 2020 12

Reuse Distance

• However, obtaining the reuse distance distribution has an O(N ∗ M)
complexity.

• Recent studies have proposed various ways to decrease the computation
complexity to O(N ∗ log(n)). SHARDS further decreases the computation
complexity by sampling method.

• We propose Re-access Ratio based Cache Model (RAR-CM), which does
not need to collect and process traces, which can be expensive in many
scenarios. RAR-CM has an O(1) complexity.

June 29, 2020 USENIX Annual Technical Conference 2020 13

Re-access Ratio

• Re-access ratio (RAR) is defined as the ratio of the
re-access traffic to the total traffic during a time
interval τ after time t.

• RAR can be transferred to Reuse distance.

Ø ABCDBDEFBA→ RAR(t,τ) = 2 / 5 = 40%

Ø Reuse Distance of Block X = Traffic(t,τ) * (1 -
RAR(t,τ)) = 6

• So we can get the reuse distance distribution by
obtaining the RAR.

June 29, 2020 USENIX Annual Technical Conference 2020 14

Obtain Re-access Ratio

• RAR(t0,t1-t0) is calculated by dividing the re-
access request count (RC) by the total
request count (TC) during [t0,t1].

• To update RC and TC, we first lookup the
block request in a hash map to determine
whether it is a re-access request.

Stream of request

B

Hash map for the block
fast lookup

t1

Found in
the hash

map

Not Found
1. TC Ĭ TC + 1
2. Insert B into the
hash mapTC Ĭ TC + 1

RC Ĭ RC + 1

t0

RAR(t0 , t1-t0) = RC / TC
t0 : the start timestamp t1 : current timestamp
B : the block-level request TC : total request count
RC : the re-access-request count

June 29, 2020 USENIX Annual Technical Conference 2020 15

Construct MRC from RAR

• For a request to block B, we first check its history
information in a hash map and obtain its last
access timestamp (lt) and last access counter (lc, a
64-bit number denoting the block sequence
number of the last reference to block B).

• We then use lt, lc and RAR curve to calculate the
reuse distance of block B.

• Finally, the resultant reuse distance is used to
calculate the miss ratio curve.

B

Hash map for block
history information

1. Time interval = CT – lt(B) =τ
2. Traffic = CC - lc(B) = T(τ)
3. rd(B) = (1 - RAR(lt(B),τ)) × T(t,τ) = x

Reuse distance
distribution

HistoryInformation{
 uint64_t lt;
 uint64_t lc;
}

Stream of requestCTlt(B)

lt(B) : last access timestamp of block B CT: current timestamp
B : the block-level request CC : current request count
lc(B) : last access counter at block B rd(B) : reuse distance of block B
hr(c) : the hit ratio of cache size c mr: miss ratio
rdd(x) : the ratio of data with the reuse distance x

Miss ratio curve

B

m
r

c

hr(c)=Ķrdd(x)
c

x=0

June 29, 2020 USENIX Annual Technical Conference 2020 16

Define the Optimization Target

• Considering our case being cloud server-end caches, in this work
we use the overall hit traffic among all nodes as our
optimization target.

• The greater the value of E is, the less traffic is sent to the
backend HDD storage.

June 29, 2020 USENIX Annual Technical Conference 2020 17

Search for the Optimal Solution

• Based on the cache modeling and defined target mentioned
above, our OSCA searches for the optimal configuration scheme.

Searching for Optimal Configuration

• Configuration searching process tries to find the optimal combination
of cache sizes of each cache instance to get the highest overall hit
traffic.

[CacheSize0, CacheSize1, ……, CacheSizeN]

June 29, 2020 USENIX Annual Technical Conference 2020 18

Dynamical Programming

• The simplest method is the time-consuming exhaustive searching,
which will calculate all possible cases.

• To speed up the search process, we use dynamical programming
(DP).

June 29, 2020 USENIX Annual Technical Conference 2020 19

System Evaluations
• Trace Collection
Ø We have collected I/O traces from a production cloud block storage system.

We are in the process of making it publicly available via the SNIA IOTTA
repository.

• Trace Storage
Ø The traces are stored in a storage server and each thread accesses the traces

via the network file system (i.e., Tencent CFS).

• Simulation
Ø We have implemented a trace-driven simulator in C++ language for the rapid

verification of the optimization strategy.

• Counterpart
Ø Even-allocation Policy
Ø Exact MRC Construction
Ø Miniature-Simulation (FAST’15, USENIX’17)

https://intl.cloud.tencent.com/product/cfs

June 29, 2020 USENIX Annual Technical Conference 2020 20

Miss Ratio Curves

June 29, 2020 USENIX Annual Technical Conference 2020 21

Mean Absolute Error (MAE)

• The MAE averaged across all 20 storage nodes (labeled "Total") for RAR-CM is
smaller than for Mini-Simulation: 0.005 vs 0.017, in addition to being smaller for
each of the 17 out of the 20 nodes.

June 29, 2020 USENIX Annual Technical Conference 2020 22

Overall Efficacy

• We compare the efficacy of OSCA in terms of hit ratio and backend traffic.

• The backend traffic is normalized to that of original method.

• On average, OSCA based on RAR-CM can reduce IO traffic to back-end storage
server by 13.2%.

• OCSA adjusts the cache space for 20 storage nodes dynamically in response to their
respective cache requirements decided by our cache modeling.

,GHDO
5$5�&0
0LQL�6LPXODWLRQ
2ULJLQDO

(a)

0LQL�6LPXODWLRQ
5$5�&0
�,GHDO

(b)

������ ��� ��� ��� ������

(c)

Conclusion
• Propose an online cache model-based cache allocation

scheme for CBS systems

• Our approach complements the SHARDS method which
adopts sampling but requires much less memory

• We have demonstrated its efficacy via perform simulating
experiments with real-world CBS traces

• Publicize the traces to the storage research community

June 29, 2020 USENIX Annual Technical Conference 2020 23

Q&A
Thanks！

Contact me :
Yu Zhang

Homepage: yuzhang.pro

E-mail: mail@yuzhang.pro

https://yuzhang.pro/
http://yuzhang.pro

