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• To satisfy the rigorous performance and availability requirements of
different tenants, cloud block storage (CBS) systems have been
widely deployed by cloud providers.

Background

Storage ClusterTenants

iSCSI, etc.

Network & Data 
Forwarding
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• Cache servers, consisting of multiple cache instances competing for the
same pool of resources.

• Cache allocation scheme plays an important role.

Background

Cache Server
Instance 1 Instance 2 ĊĊ

Storage Server

Storage Cluster

ĊĊ

ĊĊ

Network
Client

Node 1 Node 2 ĊĊ
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Motivation

(a) (b)

• The highly-skewed cloud workloads cause uneven distribution of
hot spots in nodes.→ figure (a)

• The currently used even-allocation policy is inappropriate for the
cloud environment and induces resource wastage.→ figure (b)
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Motivation

To improve this policy via ensuring more appropriate cache
allocations, there have been proposed two broad categories of
solutions.

• Qualitative methods based on intuition or experience.

• Quantitative methods enabled by cache models typically described
by Miss Ratio Curves (MRC).



June 28, 2020 USENIX Annual Technical Conference 2020 7

Motivation

To improve this policy via ensuring more appropriate cache
allocations, there have been proposed two broad categories of
solutions.

• Qualitative methods based on intuition or experience.

• Quantitative methods enabled by cache models typically described
by Miss Rate Curves (MRC).

We propose OSCA, an Online-Model based Scheme for 
Cache Allocation
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Main Ideas

• Obtain the miss ratio curve, which indicates the miss ratio
corresponding to different cache sizes.

Online Cache Modeling

• Define an optimization target.

Optimization Target Defining

• Based on the cache modeling and defined target mentioned
above, our OSCA searches for the optimal configuration scheme.

Searching for Optimal Configuration
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Cache Modeling

Ø Cache Controller

• IO processing & Obtain Miss
Ratio Curve.

• Optimization Target.
• Configuration Searching.

Ø Periodically Reconfigure.

ś Ş ś Ŝ

ŚŚ

Instance 1

Client Read

Cache 
Pool

Client Write

ĊĊ ĊĊ

ĊĊ
Storage
Server

Ŝ ŝ ŝ

IO Partition and Routing

Cache Controller

Configuration 
Searching

ASYN

ĊĊInstance 2

Periodically
Reconfiguring

Instance 1
Instance 2

ĊĊ

Miss ratio 
Curve 

Builder

Target Defining

IO 4UBUJTUJDIO statistic
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Cache Modeling (cont.)

• Obtain the miss ratio curve, which describes the relationship
between hit ratio and cache size.

Online Cache Modeling

• The hit ratio of the LRU algorithm can be calculated from the discrete
integral sum of the reuse distance distribution (from zero to the cache
size).

C

x 0
hr(C) = rdd(x)
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Cache Modeling (cont.)

• The reuse distance is the amount of unique data
blocks between two consecutive accesses to the
same data block.
Ø ABCDBDA
Ø Reuse Distance of block A = 3

• A data block can be hit in the cache only when its
reuse distance is smaller than the cache size.

• The hit ratio of the LRU algorithm can be
calculated from the discrete integral sum of the
reuse distance distribution (from zero to the
cache size).

• Reuse Distance

C

x 0
hr(C) = rdd(x)
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Reuse Distance

• However, obtaining the reuse distance distribution has an O(N ∗ M)
complexity.

• Recent studies have proposed various ways to decrease the computation
complexity to O(N ∗ log(n)). SHARDS further decreases the computation
complexity by sampling method.

• We propose Re-access Ratio based Cache Model (RAR-CM), which does
not need to collect and process traces, which can be expensive in many
scenarios. RAR-CM has an O(1) complexity.
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Re-access Ratio

• Re-access ratio (RAR) is defined as the ratio of the
re-access traffic to the total traffic during a time
interval τ after time t.

• RAR can be transferred to Reuse distance.

Ø ABCDBDEFBA→ RAR(t,τ) = 2 / 5 = 40%

Ø Reuse Distance of Block X = Traffic(t,τ) * ( 1 -
RAR(t,τ)) = 6

• So we can get the reuse distance distribution by
obtaining the RAR.
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Obtain Re-access Ratio

• RAR(t0,t1-t0) is calculated by dividing the re-
access request count (RC) by the total
request count (TC) during [t0,t1].

• To update RC and TC, we first lookup the
block request in a hash map to determine
whether it is a re-access request.

Stream of request

B

Hash map for the block 
fast lookup

t1

Found in 
the hash 

map

Not Found
1. TC Ĭ TC + 1
2. Insert B into the 
hash mapTC Ĭ TC + 1

RC Ĭ RC + 1

t0

RAR(t0 , t1-t0) = RC / TC
t0 : the start timestamp               t1 : current timestamp
B : the block-level request         TC : total request count
RC : the re-access-request count



June 29, 2020 USENIX Annual Technical Conference 2020 15

Construct MRC from  RAR

• For a request to block B, we first check its history
information in a hash map and obtain its last
access timestamp (lt) and last access counter (lc, a
64-bit number denoting the block sequence
number of the last reference to block B).

• We then use lt, lc and RAR curve to calculate the
reuse distance of block B.

• Finally, the resultant reuse distance is used to
calculate the miss ratio curve.

B

Hash map for block 
history information

1. Time interval = CT – lt(B) =τ
2. Traffic = CC - lc(B) = T(τ)
3. rd(B) = (1 - RAR(lt(B),τ)) × T(t,τ) = x

Reuse distance 
distribution

HistoryInformation{
    uint64_t lt;
    uint64_t lc;
}

Stream of requestCTlt(B)

lt(B) : last access timestamp of block B   CT: current timestamp
B : the block-level request                CC : current request count
lc(B) : last access counter at block B       rd(B) : reuse distance of block B
hr(c) : the hit ratio of cache size c           mr: miss ratio
rdd(x) : the ratio of data with the reuse distance x

Miss ratio curve

B

m
r

c

hr(c)=Ķrdd(x)   
c

x=0
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Define the Optimization Target

• Considering our case being cloud server-end caches, in this work
we use the overall hit traffic among all nodes as our
optimization target.

• The greater the value of E is, the less traffic is sent to the
backend HDD storage.



June 29, 2020 USENIX Annual Technical Conference 2020 17

Search for the Optimal Solution 

• Based on the cache modeling and defined target mentioned
above, our OSCA searches for the optimal configuration scheme.

Searching for Optimal Configuration

• Configuration searching process tries to find the optimal combination
of cache sizes of each cache instance to get the highest overall hit
traffic.

[CacheSize0, CacheSize1, ……, CacheSizeN]
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Dynamical Programming 

• The simplest method is the time-consuming exhaustive searching,
which will calculate all possible cases.

• To speed up the search process, we use dynamical programming
(DP).
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System Evaluations
• Trace Collection
Ø We have collected I/O traces from a production cloud block storage system.

We are in the process of making it publicly available via the SNIA IOTTA
repository.

• Trace Storage
Ø The traces are stored in a storage server and each thread accesses the traces

via the network file system (i.e., Tencent CFS).

• Simulation
Ø We have implemented a trace-driven simulator in C++ language for the rapid 

verification of the optimization strategy. 

• Counterpart
Ø Even-allocation Policy 
Ø Exact MRC Construction 
Ø Miniature-Simulation (FAST’15, USENIX’17)

https://intl.cloud.tencent.com/product/cfs
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Miss Ratio Curves
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Mean Absolute Error (MAE)

• The MAE averaged across all 20 storage nodes (labeled "Total") for RAR-CM is
smaller than for Mini-Simulation: 0.005 vs 0.017, in addition to being smaller for
each of the 17 out of the 20 nodes.
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Overall Efficacy

• We compare the efficacy of OSCA in terms of hit ratio and backend traffic.

• The backend traffic is normalized to that of original method.

• On average, OSCA based on RAR-CM can reduce IO traffic to back-end storage
server by 13.2%.

• OCSA adjusts the cache space for 20 storage nodes dynamically in response to their
respective cache requirements decided by our cache modeling.
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Conclusion
• Propose an online cache model-based cache allocation 

scheme for CBS systems

• Our approach complements the SHARDS  method which 
adopts sampling but requires much less memory 

• We have demonstrated its efficacy via perform simulating 
experiments with  real-world CBS traces 

• Publicize the traces to the storage research community 
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