

Harmonizing Performance and Isolation in Microkernels with Efficient Intra-kernel Isolation and Communication

Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, Haibo Chen

Monolithic Kernel and Microkernel

Hardware

Monolithic Kernel and Microkernel

Microkernel's philosophy:

Moving most OS components into isolated user processes

Benefits and Usages of Microkernel

- Achieves good extensibility, security, and fault isolation
- Succeeds in safety-critical scenarios (Airplane, Car)
- For more general-purpose applications (Google Zircon)

Expensive Communication Cost

- Tradeoff: Performance and Isolation
 - Inter-process communication (IPC) overhead

IPC Overhead is Considerable

Direct cost: privilege switch, process switch, ...

Zircon seL4 seL4 w/ kpti w/o kpti

Indirect cost: CPU internal structures pollution

Evaluated on Dell PowerEdge R640 server with Intel Xeon Gold 6138 CPU

Goal: Both Ends

Harmonize the tension between Performance
 and Isolation in microkernels

Reducing the IPC overhead

– Maintaining the isolation guarantee

New Hardware Brings Opportunities

- PKU: Protection Key for Userspace (aka. MPK)
 - Assign each page one PKEY (i.e., memory domain ID)

A new register PKRU stores read/write permission

- ERIM [Security'19] & Hodor [ATC'19]
 - Based on Intel PKU

- Build isolate domains in the same process efficiently
- Domain switch only takes **28 cycles** (modify PKRU)

Intra-Process Isolation + Microkernel

|--|

Isolate different system servers in a single process.

Design Choice #2

Let's get more aggressive!

Drawbacks

- 1. Update Server mapping is costly
- 2. IPC connection is also costly
- 3. Less flexibility for applications on address space and using PKU

Microkernel

An Observation on Intel PKU

- A misleading name
 - Protection Key for Userspace
- It still takes effect when in kernel (ring-0)
 - The "Userspace" means user-accessible memory
 - U/K bit in PTE

UnderBridge: Sinking System Servers

Design Choice #3: UnderBridge

Build execution domains in the kernel page table

Execution Domain

- Execution domain 0 is for the microkernel
 - Use memory domain 0
 - Can access all the memory
- Others own a private memory domain
 - A private MPK memory domain ID
- Shared memory
 - Allocate a free
 MPK memory domain ID

Connect two servers

- Generated by the microkernel
- Resides in memory domain 0 (execute-only for servers)
- Transfer control flow during IPC invocations
 - context switch and domain switch
- Connect the microkernel and servers
 - System calls

Server Migration

- The number of execution domain is limited
 - Hardware only provides 16 memory domains
 - Time-multiplexing is expensive
- Move servers between user and kernel space
 - Disjoint virtual memory regions
 - Runtime migration

Privilege Deprivation

- In-kernel servers have supervisor privilege
 - Can affect the whole system if compromised
 - CFI (with binary scanning) incurs runtime overhead
 - Binary rewriting only is infeasible
- Prevent servers to execute privilege instructions
 - Add a tiny secure monitor in hypervisor mode
 - For instructions rarely execute: VMExits
 - For instructions that frequently required: Rewriting

Other Designs and Implementations

- IPC capability authentication
- Seamless server migration
- Privilege deprivation details

Cross-server IPC Round-Trip Latency

SQLite Throughput under YCSB-A

Evaluated on Dell PowerEdge R640 server with Intel Xeon Gold 6138 CPU

Conclusion & Thanks!

- UnderBridge
 - A redesign of the runtime structure of microkernel
 OSes for faster OS services

 The efficient intra-kernel isolation mechanism may also be used to harden the isolation of monolithic kernels

Q&A: gujinyu@sjtu.edu.cn