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Abstract
Accelerating SQL queries on stream processing by utilizing
heterogeneous coprocessors, such as GPUs, has shown to be
an effective approach. Most works show that heterogeneous
coprocessors bring significant performance improvement be-
cause of their high parallelism and computation capacity.
However, the discrete memory architectures with relatively
low PCI-e bandwidth and high latency have dragged down
the benefits of heterogeneous coprocessors. Recently, hard-
ware vendors propose CPU-GPU integrated architectures that
integrate CPU and GPU on the same chip. This integration
provides new opportunities for fine-grained cooperation be-
tween CPU and GPU for optimizing SQL queries on stream
processing. In this paper, we propose a data stream system,
called FineStream, for efficient window-based stream pro-
cessing on integrated architectures. Particularly, FineStream
performs fine-grained workload scheduling between CPU
and GPU to take advantage of both architectures, and it also
provides efficient mechanism for handling dynamic stream
queries. Our experimental results show that 1) on integrated ar-
chitectures, FineStream achieves an average 52% throughput
improvement and 36% lower latency over the state-of-the-art
stream processing engine; 2) compared to the stream process-
ing engine on the discrete architecture, FineStream on the
integrated architecture achieves 10.4x price-throughput ratio,
1.8x energy efficiency, and can enjoy lower latency benefits.

1 Introduction

Optimizing the performance of stream processing systems
has been a hot research topic due to the rigid requirement
on the event processing latency and throughput. Stream pro-
cessing on GPUs has been shown to be an effective method
to improve its performance [23, 33, 34, 41, 54, 62, 67]. GPUs
consist of a large amount of lightweight computing cores,
which are naturally suitable for data-parallel stream process-
ing. GPUs are often used as coprocessors that are connected
to CPUs through PCI-e [42]. Under such discrete architec-
tures, stream data need to be copied from the main memory to

GPU memory via PCI-e before GPU processing, but the low
bandwidth of PCI-e limits the performance of stream process-
ing on GPUs. Hence, stream processing on GPUs needs to be
carefully designed to hide the PCI-e overhead. For example,
prior works have explored pipelining the computation and
communication to hide the PCI-e transmission cost [34, 54].

Despite of various studies in previous stream processing
engines on general-purpose applications [5, 23, 25, 33, 54, 62],
relatively few studies focus on SQL-based relational stream
processing. Supporting relational stream processing involves
additional complexities, such as how to support window-
based query semantics and how to utilize the parallelism
with a small window or slide size efficiently. Existing engines,
such as Spark Streaming [57], struggle to support small win-
dow and slide sizes, while the state-of-the-art window-based
query engine, Saber [34], adopts a bulk-synchronous parallel
model [66] for hiding PCI-e transmission overhead.

In recent years, hardware vendors have released integrated
architectures, which completely remove PCI-e overhead. We
have seen CPU-GPU integrated architectures such as NVIDIA
Denver [13], AMD Kaveri [15], and Intel Skylake [27]. They
fuse CPUs and GPUs on the same chip, and let both CPUs
and GPUs share the same memory, thus avoiding the PCI-e
data transmission. Such integration poses new opportunities
for window-based streaming SQL queries from both hardware
and software perspectives.

First, different from the separate memory hierarchy of dis-
crete CPU-GPU architectures, the integrated architectures
provide unified physical memory. The input stream data can
be processed in the same memory for both CPUs and GPUs,
which eliminates the data transmission between two memory
hierarchies, thus eliminating the data copy via PCI-e.

Second, the integrated architecture makes it possible for
processing dynamic relational workloads via fine-grained co-
operations between CPUs and GPUs. A streaming query can
consist of multiple operators with varying performance fea-
tures on different processors. Furthermore, stream processing
often involves dynamic input workload, which affects opera-
tor performance behaviors as well. We can place operators on
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different devices with proper workloads in a fine-grained man-
ner, without worrying about transmission overhead between
CPUs and GPUs.

Based on the above analysis, we argue that stream process-
ing on integrated architectures can have much more desir-
able properties than that on discrete CPU-GPU architectures.
To fully exploit the benefits of integrated architectures for
stream processing, we propose a fine-grained stream process-
ing framework, called FineStream. Specifically, we propose
the following key techniques. First, a performance model is
proposed considering both operator topologies and different
architecture characteristics of integrated architectures. Sec-
ond, a light-weight scheduler is developed to efficiently assign
the operators of a query plan to different processors. Third,
online profiling with computing resource and topology adjust-
ment are involved for dynamic workloads.

We evaluate FineStream on two platforms, AMD A10-
7850K, and Ryzen 5 2400G. Experiments show that
FineStream achieves 52% throughput improvement and 36%
lower latency over the state-of-the-art CPU-GPU stream pro-
cessing engine on the integrated architecture. Compared to
the best single processor throughput, it achieves 88% perfor-
mance improvement.

We also compare stream processing on integrated archi-
tectures with that on discrete CPU-GPU architectures. Our
evaluation shows that FineStream on integrated architectures
achieves 10.4x price-throughput ratio, and 1.8x energy ef-
ficiency. Under certain circumstances, it is able to achieve
lower processing latency, compared to the state-of-the-art ex-
ecution on discrete architectures. This further validates the
large potential of exploring the integrated architectures for
data stream processing.

Overall, we make the following contributions:

• We propose the first fine-grained window-based rela-
tional stream processing framework that takes the advan-
tages of the special features of integrated architectures.

• We develop lightweight query plan adaptations for han-
dling dynamic workloads with the performance model
that considers both the operator and architecture charac-
teristics.

• We evaluate FineStream on a set of stream queries to
demonstrate the performance benefits over current ap-
proaches.

2 Background

2.1 Integrated Architecture
We show an architectural overview of the CPU-GPU inte-
grated architecture in Figure 1. The integrated architecture
consists of a CPU, a GPU, a shared memory management
unit, and system DRAM. CPUs and GPUs have their own

caches. Some models of integrated architectures, such as Intel
Haswell i7-4770R processor [3], integrate a shared last level
cache for both CPUs and GPUs. The shared memory man-
agement unit is responsible for scheduling accesses to system
DRAM by different devices. Compared to the discrete CPU-
GPU architecture, both CPUs and GPUs are integrated on the
same chip. The most attractive feature of such integration is
the shared main memory which is available to both devices.
With the shared main memory, CPUs and GPUs can have
more opportunities for fine-grained cooperation. The most
commonly used programming model for integrated architec-
tures is OpenCL [49], which regards the CPU and the GPU as
devices. Each device consists of several compute units (CUs),
which are the CPU and GPU cores in Figure 1.

System DRAM

CPU
core

…

CPU

CPU
core

CPU
core

GPU
core

…

GPU

GPU
core

GPU
core

Shared Memory Management Unit

CPU Cache GPU Cache

Figure 1: A general overview of the integrated architecture.

We show a comparison between the integrated and discrete
architectures (discrete GPUs) in Table 1. These architectures
are used in our evaluation (Section 7). Although the integrated
architectures have lower computation capacity than the dis-
crete architectures currently, the integrated architecture is a
potential trend for a future generation of processors. Hardware
vendors, including AMD [15], Intel [27] and NVIDIA [13],
all release their integrated architectures. Moreover, future inte-
grated architectures can be much more powerful, even can be a
competitive building block for exascale HPC systems [47,55],
and the insights and methods in this paper still can be applied.
Besides, the integrated architectures are attractive due to their
efficient power consumption [15, 60] and low price [31].

Table 1: Integrated architectures vs. discrete architectures.
Integrated Architectures Discrete Architectures

Architecture A10-7850K Ryzen5 2400G GTX 1080Ti V100
# cores 512+4 704+4 3584 5120

TFLOPS 0.9 1.7 11.3 14.1
bandwidth (GB/s) 25.6 38.4 484.4 900

price ($) 209 169 1100 8999
TDP (W) 95 65 250 300

The number of cores for each integrated architecture includes four CPU cores. For
discrete architectures, we only show the GPU device.

2.2 Stream Processing with SQL
Although various heterogeneous stream processing systems
have appeared [23, 33, 34, 41, 54, 62, 67], we find that most
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of these systems are used to process unstructured data, and
only one work, Saber [34], is developed for structured stream
processing on GPUs. Saber supports structured query lan-
guage (SQL) on stream data [6]. The benefits of supporting
SQL come from two aspects. First, with SQL, users can use
familiar SQL commands to access the required records, which
makes the system easy to use. Second, supporting SQL elimi-
nates the tedious programming operations about how to reach
a required record, which greatly expands the flexibility of
its usage. Based on the analysis, this work explores stream
processing with SQL on integrated architectures.

We consider supporting the basic SQL functions with
stream processing, as shown in Figure 2. According to [6],
SQL on stream processing consists of the following four ma-
jor concepts: 1) Data stream S, which is a sequence of tuples,
< t1,t2,...>, where ti is a tuple. A tuple is a finite ordered list
of elements, and each tuple has a timestamp. 2) Window w,
which refers to a finite sequence of tuples, which is the data
unit to be processed in a query. The window in stream has
two features: window size and window slide. Window size rep-
resents the size of the data unit to be processed, and window
slide denotes the sliding distance between two adjacent win-
dows. 3) Operators, which are the minimum processing units
for the data in a window. In this work, we support common
relational operators including projection, selection, aggrega-
tion, group-by, and join. 4) Queries, which are a form of data
processing, each of which consists of at least one operator and
is based on windows. Additionally, note that in real stream
processing systems such as Saber [34], data are processed in
batch granularity, instead of window granularity. A batch can
be a group of windows when the window size is small, or a
part of a window when the window size is extremely large.

tuple …

window w1

window w2

window size

window slide

data stream

…

…

query

results

operators

Figure 2: Stream processing with SQL.

3 Revisiting Stream Processing

We discuss the new opportunities (Section 3.1) and challenges
(Section 3.2) for stream processing on integrated architectures
in this section, which motivate this work.

3.1 Varying Operator-Device Preference

Opportunities: Due to the elimination of transmission cost
between CPU and GPU devices on integrated architectures,
we can assign operators to CPU and GPU devices in a fine-
grained manner according to their device-preference.

We analyze the operators in a query, and find that different
operators show various device preferences on integrated ar-
chitectures. Some operators achieve higher performance on
the CPU device, and others have higher performance on the
GPU device. We use a simple query of group-by and aggrega-
tion on the integrated architecture for illustration, as shown in
Figure 3. The GPU queue is used to sequentially execute the
queries on the GPU, while the CPU queue is used to execute
the related queries on the CPU. The window size is 256 tuples
and the window slide is 64. Each batch contains 64,000 tuples,
and each tuple is 32 bytes. The input data are synthetically
generated, which is described in Section 7.1. When the query
runs on the CPU, group-by takes about 18.2 ms and aggre-
gation takes about 5.2 ms. However, when the query runs on
the GPU, group-by takes about 6.7 ms and aggregation takes
about 5.8 ms.

CPU queue:

GPU queue:

time

operator 2
aggregation

operator 1
group-by

operator 1
group-by

operator 2
aggregation

query on CPU query on GPU

18.2 ms 5.2 ms

5.8 ms6.7 ms

Figure 3: An example of operator-device preference.

We further evaluate the performance of operators on a
single device in Table 2. Table 2 shows that using a single
type of device cannot achieve the optimal performance for
all operators. The aggregation includes the operators of sum,
count, and average, and they have similar performance. We
use sum as a representative for aggregation. From Table 2, we
can see that projection, selection, and group-by achieve better
performance on the GPU than on the CPU, while aggregation
and join achieve better performance on the CPU than on the
GPU. Additionally, projection shows similar performance
on CPU and GPU devices. Specifically, for join, the CPU
performance is about 6x the GPU performance. Such different
device preferences inspire us to perform fine-grained stream
processing on integrated architectures.

Integrated architectures eliminate data transmission cost
between CPU and GPU devices. This provides opportunities
for stream processing with operator-level fine-grained place-
ment. The operators that can fully utilize the GPU capacity
exhibit higher performance on GPUs than on CPUs, so these
operators shall be executed on GPUs. In contrast, the opera-
tors with low parallelism shall be executed on CPUs. Please
note that such fine-grained cooperations is inefficient on dis-
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Table 2: Performance (tuples/s) of operators on the CPU and
the GPU of the integrated architecture.

Operator CPU only (106) GPU only (106) Device choice
projection 14.2 14.3 GPU
selection 13.1 14.1 GPU

aggregation 14.7 13.5 CPU
group-by 8.1 12.4 GPU

join 0.7 0.1 CPU

crete CPU-GPU architectures due to transmission overhead.
For example, Saber [34], one of the state-of-the-art stream
processing engines utilizing the discrete CPU-GPU architec-
tures, is designed aiming to hide PCI-e overhead. It adopts
a bulk-synchronous parallel model, where all operators of a
query are scheduled to one processor to process a micro-batch
of data [53].

3.2 Fine-Grained Stream Processing

Challenges: A fine-grained stream processing that consid-
ers both architecture characteristics and operator preference
shall have better performance, but this involves several chal-
lenges, from both application and architecture perspectives.

Based on the analysis, we argue that stream processing on
integrated architectures can have much desirable properties
than that on discrete CPU-GPU architectures. Particularly,
this work introduces a concept of fine-grained stream process-
ing: co-running the operators to utilize the shared memory
on integrated architectures, and dispatching the operators on
devices with both architecture characteristics and operator
features considered.

However, enabling fine-grained stream processing on in-
tegrated architectures is complicated by the features of SQL
stream processing and integrated architectures. We summa-
rize three major challenges as follows.

Challenge 1: Application topology combined with ar-
chitectural characteristics. Application topology in stream
processing refers to the organization and execution order of
the operators in a SQL query. First, the relation among oper-
ators could be more complicated in practice. The operators
may be represented as a directed acyclic graph (DAG), in-
stead of a chain, which contains more parallel acceleration
opportunities. Second, with architectural characteristics con-
sidered, such as the CPU and GPU architectural differences,
the topology with computing resource distribution becomes
very complex. In such situations, how to perform fine-grained
operator placement for application topology on different de-
vices of integrated architectures becomes a challenge. Third,
to assist effective scheduling decisions, a performance model
is needed to predict the benefits from various perspectives.

Challenge 2: SQL query plan optimization with shared
main memory. First, a SQL query in stream processing can

consist of many operators, and the execution plan of these
operators may cause different bandwidth pressures and device
preferences. Second, in many cases, independent operators
may not consume all the memory bandwidth, but co-running
them together could exceed the bandwidth limit. We need to
analyze the memory bandwidth requirement of co-running.
Third, CPUs and GPUs have different preferred memory ac-
cess patterns. Current methods [5,23,25,33,34,54,62] do not
consider these complex situations of shared main memory in
integrated architectures.

Challenge 3: Adjustment for dynamic workload. Dur-
ing stream processing, stream data are changing dynamically
in distributions and arrival speeds, which is challenging to
adapt. First, workload change detection and computing re-
source adjustment need to be done in a lightweight manner,
and they are critical to performance. Second, the query plan
may also need to be updated adaptively, because the operator
placement strategy based on the initial state may not be suit-
able when the workload changes. Third, during adaptation,
online stream processing needs to be served efficiently. Re-
source adjustment and query plan adaptation on the fly may
incur runtime overhead, because we need to adjust not only
the operators in the DAG but also the hardware computing re-
sources to each operator. Additionally, the adjustment among
different streams also needs to be considered.

4 FineStream Overview

We propose a framework, called FineStream, for fine-grained
stream processing on integrated architectures. The overview
of FineStream is shown in Figure 4. FineStream consists of
three major components, including performance model, on-
line profiling, and dispatcher. The online profiling module
is used to analyze input batches and queries for useful infor-
mation, which is then fed into the performance model. The
performance model module uses the collected data to build
models for queries with both CPUs and GPUs to assist opera-
tor dispatching. The dispatcher module assigns stream data
to operators with proper processors according to the perfor-
mance model on the fly.

Next, we discuss the ideas in FineStream, including its
workflow, query plan generation, processing granularity, op-
erator mapping, and solutions to the challenges mentioned in
Section 3.2.

Workflow. The workflow of FineStream is as follows.
When the engine starts, it first processes several batches using
only the CPUs or the GPUs to gather useful data. Second,
based on these data, it builds a performance model for oper-
ators of a query on different devices. Third, after the perfor-
mance model is built, the dispatcher starts to work, and the
fine-grained stream processing begins. Each operator shall
be assigned to the cores of the CPU or the GPU for paral-
lel execution. Additionally, the workload could be dynamic.
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For dynamic workload, query plan adjustment and resource
reallocation need to be conducted.

…

batch

online
profiling

performance
model

op1 op2 op1

operators

dev dev dev

device mapping

dispatcher

results

…

streambatch

SQL

FineStream

Figure 4: FineStream overview.

Topology. The query plan can be represented as a DAG. In
this paper, we concentrate on relational queries. We show an
example in Figure 5, where OPi represents an operator. OP7
and OP11 can represent joins. We follow the terminology in
compiler domain [52], and call the operators from the begin-
ning or the operator after join to the operator that merges with
another operator as a branch. Hence, the query plan is also a
branch DAG. For example, the operators of OP1, OP2, and
OP3 form a branch in Figure 5. The main reason we use the
branch concept is for parallelism: operators within a branch
can be evaluated in a pipeline, and different branches can
be executed in parallel, which shall be detailed in Section 5.
The execution time in processing one batch is equal to the
traversal time from the beginning to the end of the DAG. Be-
cause branches can be processed in parallel, the branch with
the longest execution time dominates the execution time. We
call the operator path that determines the total execution time
as pathcritical , so the branch with the longest execution time
belongs to pathcritical . For example, we assume that branch2
has the longest execution time among the branches, its time
is tbranch2, and the execution time for OPi is tOP_i. OP7 and
OP11 can also be regarded as branches. Only when the out-
comes of OP3 and OP6 are available, then OP7 can proceed.
So do to the operators of OP7 and OP10 to OP11. Assuming
OP7 and OP11 are blocking join operators, the total execution
time for this query is the sum of tbranch2, tOP7, and tOP11.

OP1 OP2 OP3

OP4 OP5 OP6

OP8 OP9 OP10

OP7

OP11

OP1 OP2 … OP i

OP3 OP4 … OP j

OP5 OP6 … OP k

OP x

OP y

branch1

branch2

branch3

pathcritical

Figure 5: An example of query operators in DAG representa-
tion, where OPi represents an operator.

Operator Mapping. The fine-grained scheduling lies in
how to map the operators to the limited resources on inte-
grated architectures. In FineStream, we allow an operator to
use one or several cores of the CPU or the GPU device. When
the platform cannot provide enough resources for all the oper-
ators, some operators may share the same compute units. For
example, in Figure 5, OP1 and OP2 can share the same CPU
cores. If so, the input batches sequentially goes through OP1
and OP2 and no pipeline exists between two batches for OP1
and OP2.

Solutions to Challenges. FineStream addresses all the
challenges mentioned in Section 3.2. For the first challenge,
the performance model module estimates the overall perfor-
mance with the help of the online profiling module by sam-
pling on a small number of batches, and the dispatcher dy-
namically puts the operators on the preferred devices. For the
second challenge, we have considered the bandwidth factor
when building the performance model, which can be used to
guide the parallelism for operators with limited bandwidth
considered. For the third challenge, the online profiling checks
both the stream and the operators to measure the data inges-
tion rate, and FineStream responses to these situations with
different strategies based on the analysis for dynamic work-
loads. Next, we show the details of our system design.

5 Model for Parallelism Utilization

Guideline: A performance model is necessary for operator
placement in FineStream, especially for the complicated
operator relations in the DAG structure. The overhead of
building fine-grained performance model for a query is lim-
ited because the placement strategy from the model can be
reused for the continuous stream data.

We model the performance of executing a query in this sec-
tion. The operators of the input query are organized as a DAG.
In the performance model, we consider two kinds of paral-
lelism. First, for intra-batch parallelism, we consider branch
co-running, which means co-running operators in processing
one batch. Second, for inter-batch parallelism, we consider
batch pipeline, which means processing different batches in
pipelines.

5.1 Branch Co-Running
Independent branches can be executed in parallel. With lim-
ited computation resources and bandwidth, we build a model
for branch co-running behaviors in this part. We use Bmax
to denote the maximum bandwidth the platform can provide.
If the sum of bandwidth utilization from different parallel
branches, Bsum, exceeds Bmax, we assume that the through-
put degrades proportionally to the Bmax/Bsum of the through-
put with enough bandwidth [60]. To measure the bandwidth
utilization, generally, for n co-running tasks, we have n co-
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running stages, because tasks complete one by one. When
multiple tasks finish at the same time, the number of stages
decreases accordingly.

We use the example in Figure 5 for illustration. Assume that
the time for different branches is shown in Figure 6 (a). If we
co-run the three branches simultaneously, then the execution
can be partitioned into three stages with different overlapping
situations. We use tstage1, tstage2, and tstage3 to represent the
related stage time when the system has enough bandwidth.
Then, if the required bandwidth for stagei exceeds Bmax, the
related real execution time tstage_i’ also extends accordingly.
We define tstage_i’ in Equation 1. When the platform can pro-
vide the required bandwidth, ri is equal to one. Otherwise, ri
is the ratio of the required bandwidth divided by Bmax.

tstage3

OP1 OP2 OP3

OP4 OP5 OP6

OP8 OP9 OP10

OP7

OP11

branch1

branch2

branch3

pathcritical

timebranch 3

branch 2

branch 1

tstage1 tstage2 tstage3

timebranch 3

branch 2

branch 1

tstage1 tstage2

branch 3

(a) Branch parallelism. (b) Branch scheduling optimization.

Figure 6: An example of branch parallelism and optimization.

tstage_i
′ = ri · tstage_i (1)

To estimate the time for processing a batch in the critical
path, generally for the branch DAG, we perform topology sort
to organize the branches into different layers, and then we co-
run branches on layer granularity. In each layer, we perform
the above branch co-running. Then, the total execution time
is the sum of time of all layers, as shown in Equation 2.

ttotal =

nlayer

∑
j=0

nstage

∑
i=0

tstage_i,layer_ j
′ (2)

The throughput is the number of tuples divided by the
execution time. Assume the number of tuples in a batch is m,
then, the throughput is shown in Equation 3.

throughputbranchCoRun =
m

ttotal
(3)

Optimization. We can perform branch scheduling for op-
timization, which has two major benefits. First, by moving
branches from the stage with fully occupied bandwidth utiliza-
tion to the stage with surplus bandwidth, the bandwidth can
be better utilized. For example, in Figure 6 (b), assume that in
stage1, the required bandwidth exceeds Bmax, but the sum of
the required bandwidth of branch2 and branch3 is lower than
Bmax, then we can move the execution of branch3 after the
execution of branch1 for better bandwidth utilization. Second,
the system may not have enough computation resources for all
branches so that we can reschedule branches for better compu-
tation resource utilization. In stage1 of Figure 6 (a), when the

platform cannot provide enough computing resources for all
the three branches, we can perform the scheduling in Figure 6
(b). Additionally, We can perform batch pipeline between
operators in each branch, which shall be discussed next.

5.2 Batch Pipeline
We can also partition the DAG into phases, and perform co-
running in pipeline between phases for processing different
batches. For simplicity, in this part, we assume that the num-
ber of phases in the DAG is two. Please note that when the
platform has enough resources, the pipeline for operators can
be deeper. We show a simple example in Figure 7 (a). The
operators in phase1 and the operators in phase2 need to be
mapped into different compute units, so that these two phases
can co-run in the pipeline. Figure 7 (b) shows the execution
flow in pipeline. When FineStream completes the processing
for batch1 in phase1 and starts to process batch1 in phase2,
FineStream can start to process batch2 in phase1 simultane-
ously. Phase1 and phase2 can co-run because they rely on
different compute units.

OP3

OP6

OP10

OP7

OP11

phase 1 phase 2

STG2 
B1

STG1 B1stage 1:

stage 2:

time

STG2 
B2

STG1 B2

STG2 
Bn

STG1 Bn

…

…

PH i: phase i B i:    batch i
OP1 OP2

OP4 OP5

OP8 OP9
PH1 B1 PH1 B2 …

PH2 B1 PH2 B2

time

(a) Phase partitioning. (b) Batch pipeline.

Figure 7: An example of partitioning phases for batch
pipeline.

We need to estimate the bandwidth of two overlapping
phases, so that we can further estimate the batch pipeline
throughput. The time for a phase, tphase_i, is the sum of the
execution time of the operators in the phase for processing
a batch. We use tphase1 to denote the time for phase1 while
tphase2 for phase2. When two batches are being processed in
different phases in the engine, FineStream tries to maximize
the overlapping of tphase1 and tphase2 of the two batches. How-
ever, the overlapping can be affected by memory bandwidth
utilization. The online profiling in Section 6.3 collects the
size of memory accesses si,dev (including read and write) and
the execution time ti,dev for each operator. The bandwidth of
the two overlapping phases is described as Equation 4.

bandwidthoverlap = MIN(Bmax, ∑
m
i=0 si,dev
tphase1

+
∑

n
i=m+1 si,dev

tphase2
)

(4)
When bandwidthoverlap does not reach Bmax, the execution

time for processing n batches, tnBatches, is shown in Equation 5.

tnBatches = n ·MAX(tphase1, tphase2)+MIN(tphase1, tphase2) (5)
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When bandwidthoverlap reaches Bmax, the execution time
of co-running two phases in the pipeline on different batches
is longer than any of their independent execution time. We
assume that the independent execution time of the longer
phase is tl and the independent time for the shorter phase is
ts. Then, the overlapping ratio for the two phases rol p is ts
divided by tl . Assuming the total size of the memory accesses
for the longer phase is sl , and the total size for the shorter
phase is ss, then the execution time of the overlapping interval,
tol p, is shown in Equation 6.

tol p =
ss + rol p · sl

bandwidthoverlap
(6)

To estimate the time of the rest part in the longer phase, we
assume that the bandwidth of the independent execution of
the longer phase is bandwidthl . Then, the execution time trest
is shown in Equation 7.

trest =
(1− rol p) · sl

bandwidthl
(7)

Then, when bandwidth Bmax is reached, the execution time
tnBatches to process n batches is shown in Equation 8.

tnBatches = n · (tol p + trest) (8)

We assume that a batch contains m tuples, and then, the
throughput can be expressed by Equation 9. When bandwidth
is sufficient, tnBatches is described as Equation 5; otherwise,
Equation 8.

throughputbatchPipeline =
m ·n

tnBatches
(9)

Optimization. Branch co-running can also be conducted
in batch pipeline. For example, in Figure 7, the branches in
phase1 can be corun when the system can provide sufficient
computing resources and bandwidth. The only thing we need
to do is to integrate the branch co-running technique in the
potential phases.

5.3 Handling Dynamic Workload
In branch co-running, the hardware resource binded to each
branch is based on the characteristics of both the operator
and the workload. During workload migration, the workload
pressure for each branch may be different from the original
state. Hence, the static computing resource allocation may
not be suitable for dynamic workload.

A possible solution is to redistribute computing resources
to operators in each branch according to the performance
model. However, this solution has the following two draw-
backs. First, only adjusting the hardware resources on differ-
ent branches may not be able to maintain the performance,
because query plan topology may not fit the current stream-
ing application. In such cases, the query plan needs to be

reoptimized for system performance. Second, resource re-
distribution incurs overhead. Therefore, efficient resource
reallocation and query plan adjustment are necessary for
FineStream handling dynamic workload.

Light-Weight Resource Reallocation. In FineStream, we
use a light-weight dynamic resource reallocation strategy.
When the workload ingestion rate of a branch decreases, we
can calculate the reduced ratio, and assume that such propor-
tion of computing resources in that branch can be transferred
to the other branches. We use an example in Figure 8 for
illustration. In Figure 8 (a), 90% workload after operator OP1
flow to OP2. When the workload state changes to the state in
Figure 8 (b), part of the computing resource associated with
OP2 shall be assigned to OP3 accordingly.

OP3

OP1

OP290%

10%

OP3

OP1

OP2
10%

90%

(a) 90% workload goes to OP2. (b) 90% workload goes to OP3.

Shared memory

GPU 
CUs

CPU 
CUs

Integrated 
architectures

OP3

OP1

OP210%

90%

Shared memory

CPU 
CUs

GPU 
CUs

Integrated 
architectures

Figure 8: An example of adjustment for dynamic workload.

In detail, for the ingestion-rate-falling branch (data arrival
rate of this branch is decreasing) [30], we assume that the
initial ingestion rate is rinit , while the current ingestion rate is
rcur. Then, the computing resource that shall be reallocated
to the other branches is shown in Equation 10. This adap-
tive strategy is very light-weight, because we can monitor
the ingestion rate during batch loading and redistribute the
proportion of reduced computing resources to the branch that
has a higher ingestion rate. In the case of Figure 8 (b), we can
keep limited hardware resource in OP2 and redistribute the
rest to OP3 after processing the current batch.

resourceredistribute_i =
rinit − rcurr

rinit
· resourceOPi (10)

Query Plan Adjustment. With reference to [30],
FineStream generates not only the query plan that soon will
be used in the stream processing, but also several possible
alternatives. During stream processing, FineStream monitors
the size of intermediate results. If the performance degrades
and the size of intermediate results varies greatly, FineStream
shall switch to another alternative query plan topology. In the
implementation, FineStream generates three additional plans
by default, and picks them based on the performance model.

6 Implementation Details

6.1 How FineStream Works
We present the system workflow in Figure 9. In Figure 9,
thread1 is used to cache input data, while thread2 is used to
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process the cached data. The detailed workflow is as follows.
First, when FineStream starts a new query, the dispatcher
executes the query on the CPU for batch1 and then on the
GPU for batch2. Second, during these single-device execu-
tions, FineStream conducts online profiling, during which
the operator-related data that are used to build the perfor-
mance model are obtained, including the CPU and GPU
performance, and bandwidth utilization. Third, with these
data, FineStream builds the performance model considering
branch co-running and batch pipeline. Fourth, after building
the model, FineStream generates several query plans with
detailed resource distribution. With the generated query plan,
the dispatcher performs fine-grained scheduling for process-
ing the following batches. When dynamic workload is de-
tected, FineStream performs related adjustment mentioned
in Section 5.3. For the operators in FineStream, we reuse the
operator code from OmniDB [64]. Please note that the goal
of this work is to provide a fine-grained stream processing
method on integrated architectures. The same methodology
can also be applied for using other OpenCL processing engine
such as Voodoo [45].
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Figure 9: FineStream workflow.

Additionally, when users change the window size of a query
on the fly, FineStream updates the window size parameter
after the related batch processing is completed, and then con-
tinues to run with performance detection. If the performance
decreases below a given value (70% of the original perfor-
mance by default), FineStream re-determines the query plan
with computing resource based on the parameters and the
performance model.

6.2 Dispatcher
The dispatcher of FineStream is a module for assigning stream
data to the related operators with hardware resources. The dis-
patcher has two functions. First, it splits the stream data into
batches with a fixed size. Second, it sends the batches to the
corresponding operators with proper hardware resources for
execution. The goal of the dispatcher is to schedule operator
tasks to the appropriate devices to fully utilize the capacity of
the integrated architecture.

Algorithm 1 is the pseudocode of the dispatcher. When
a stream is firstly presented in the engine, FineStream con-
ducts branch co-running and batch pipeline according to the

performance model mentioned in Section 5 (Lines 2 to 5).
FineStream also detects dynamic workload (Lines 6 to 15).
If dynamic workload is detected, FineStream conducts the
related resource reallocation. If such reallocation does not
help, it further conducts query plan adjustment.

Algorithm 1: Scheduling Algorithm in FineStream
1 Function dispatch(batch,resource,model):
2 if taskFirstRun then
3 branchCoRun(resource,model)
4 batchPipeline(resource,model)
5 taskFirstRun = f alse

// Handling dynamic workload and query plan optimization
6 if detectDynamicWorkload() then
7 resourceReallocate()
8 if resourceChanged == true then
9 if performanceDegrade() then

10 ad justQueryPlan()
11 queryChanged = true

12 resourceChanged = true
13 if queryChanged == true then
14 resourceChanged = f alse
15 queryChanged = f alse

6.3 Online Profiling
The purpose of online profiling is to collect useful perfor-
mance data to support building the performance model.

In online profiling, we have two concerns. The first is what
data to generate in this module. This is decided by the perfor-
mance model. These data include the data size, execution time,
bandwidth utilization, and throughput for each operator on
devices. The second is, to generate the data, what information
we shall collect from stream processing.

FineStream performs online profiling for operators from
memory bandwidth and computation perspectives.

Memory Bandwidth Perspective. Based on the above
analysis, we use bandwidth, defined as the transmitted data
size divided by the execution time, to depict the characteris-
tics from data perspective of an operator. The transmitted data
for an operator consists of input and output. The input relates
to the batch while the output relates to both the operator and
the batch. We define the bandwidth of the operator i on de-
vice dev in Equation 11. The parameters sinput_i and sout put_i
denote the estimated input and the output sizes of the operator
i, and ti,dev represents the execution time of the operator i on
device dev.

bandwidthi,dev =
sinput_i + sout put_i

ti,dev
(11)

Computation Perspective. To depict the characteristics
from the computation perspective, we use throughputi,dev,
which is defined as the total number of processed tuples ntuples
divided by the time ti,dev for operator i on device dev. All these
values can be obtained from online profiling.
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Table 3: The queries used in evaluation.
Query Detail

Q1 select timestamp, category, sum(cpu) as totalCPU from TaskEvents [range 256 slide 1] group by category

Q2 select timestamp, jobID, avg(cpu) as avgCPU from TaskEvents [range 256 slide 1] where eventType == 1 group by jobId

Q3 select timestamp, eventType, userId, max(disk) as maxDisk from TaskEvents [range 256 slide 1] group by eventType, userId

Q4 select timestamp, avg (value) as globalAvgLoad from SmartGridStr [range 512 slide 1]

Q5 select timestamp, plug, household, house, avg(value) as localAvgLoad from SmartGridStr [range 512 slide 1] group by plug,

household, house

Q6 (select L.timestamp, L.plug, L.household, L.house from LocalLoadStr [range 1 slide 1] as L, GlobalLoadStr [range 1 slide 1] as

G where L.house == G.house and L.localAvgLoad >G.globalAvgLoad) as R - select timestamp, house, count(*) from R group by house

Q7 ( select timestamp, vehicle, speed, highway, lane, direction, (position/5280) as segment from PosSpeedStr [range unbounded] )

as SegSpeedStr - select distinct L.timestamp, L.vehicle, L.speed, L.highway, L.lane, L.direction, L.segment from SegSpeedStr

[range 30 slide 1] as A, SegSpeedStr [partition by vehicle rows 1] as L where A.vehicle == L.vehicle

Q8 select timestamp, vehicle, count(direction) from PosSpeedStr [range 256 slide 1] group by vehicle

Q9 select timestamp, max(speed), highway, lane, direction from PosSpeedStr [range 256 slide 1] group by highway,lane,direction

7 Evaluation

7.1 Methodology

The baseline method used in our comparison is Saber [34],
while our method is denoted as “FineStream”. Saber is the
state-of-the-art window-based stream processing engine for
discrete architectures. It adopts a bulk-synchronous parallel
model [66]. The whole query execution on a batch is dis-
tributed to a device, the GPU or the CPU, without further
distributing operators of a query to different devices. The
original CPU operators in Saber are written in Java, and we
further rewrite the CPU operators in Saber in OpenCL for
higher efficiency. Our comparisons to Saber examine whether
our fine-grained method delivers better performance. To val-
idate the co-running benefits of the two devices, we also
measure the performance using only the CPU and the per-
formance using only the GPU, denoted as “CPU-only” and
“GPU-only”. Further, to understand the advantage of using
the integrated architecture to accelerate stream processing, we
compare FineStream on integrated architectures with Saber
on discrete CPU-GPU architectures.

Platforms. We perform experiments on four platforms, two
integrated platforms and two discrete platforms. The first in-
tegrated platform uses the integrated architecture AMD A10-
7850K [15], and it has 32 GB memory. The second integrated
platform uses the integrated architecture Ryzen 5 2400G,
which is the latest integrated architecture, and this platform
has 32 GB memory. The first discrete platform is equipped
with an Intel i7-8700K CPU and an NVIDIA GeForce GTX
1080Ti GPU, and along with 32 GB memory. The second dis-
crete platform is equipped with two Intel E5-2640 v4 CPUs
and an NVIDIA V100-32GB GPU, and has 264 GB memory.

Datasets. We use four datasets in the evaluation. The first
dataset is Google compute cluster monitoring [2], which em-
ulates a cluster management scenario. The second dataset is
anomaly detection in smart grids [68], which is about detec-
tion in energy consumption from different devices of a smart

electricity grid. The third dataset is linear road benchmark [7],
which models a network of toll roads. These traces come from
real-world applications, and are widely used in previous stud-
ies such as [19, 34, 39]. The fourth dataset is a synthetically
generated dataset [34] for evaluating independent operators,
where each tuple consists of a 64-bit timestamp and six 32-bit
attributes drawn from a uniform distribution. To overfeed the
system and test its performance capacity, we load the data
from memory. This method avoids network being bottleneck.
In practice, the system obtains stream data via network.

Benchmarks. We use nine queries to evaluate the overall
performance of the fine-grained stream processing engine on
the integrated architectures. Similar benchmarks have been
used in [34]. The details of the nine queries are shown in
Table 3. Q1, Q2, and Q3 are conducted on the Google compute
cluster monitoring dataset. Q4, Q5, and Q6 are for the dataset
of anomaly detection in smart grids. Q7, Q8, and Q9 are for
the dataset from the linear road benchmark.

Dynamic Workload Generation. We use the datasets and
benchmarks to generate dynamic workload. For the first
dataset of cluster monitoring, the seventh attribute of cate-
gory gradually changes from type 1 to type 2 within 10,000
batches. We use the query Q1 for illustration, and we denote
it as T1. Similar evaluations are also conducted on the second
dataset of smart grid with the query Q5, which is denoted as
T2, and the third dataset of linear road benchmark with the
query Q8, which is denoted as T3.

7.2 Performance Comparison

Throughput. We explore the throughput of FineStream for
the nine queries. Figure 10 shows the processing throughput
of the best single device, Saber, and FineStream for these
queries on both the A10-7850K and Ryzen 5 2400G plat-
forms. Please note that the y-axis of the figure is in log scale.
We have the following observations. First, on the A10-7850K
platform, FineStream achieves 88% throughput improvement
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over the best single device performance on average; com-
pared to Saber, FineStream achieves 52% throughput improve-
ment. Because of the efficient CPU and GPU co-running,
FineStream nearly doubles the performance compared to the
method of using only a single device. Because FineStream
adopts the continuous operator model where each operator
could be scheduled on its preferred device, FineStream uti-
lizes the integrated architecture better than Saber that uses the
bulk-synchronous parallel model. Such result clearly shows
the advantage of fine-grained stream processing on the inte-
grated architecture. Second, on the Ryzen 5 2400G platform,
all hardware configurations have been upgraded in compar-
ison with A10-7850K, especially the CPUs; the CPU-only
throughput on Ryzen 5 2400G is much higher than that on
A10-7850K. Moreover, Saber achieves a 56% throughput
improvement compared to the throughput of the best single
device, and FineStream is still 14% higher than Saber on
this platform. Similar phenomena have also been observed
in [58–60].
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Figure 10: Throughput of different queries.

Latency. Figure 11 reports the latency of different queries
on the integrated architectures. In this work, latency is defined
as the end-to-end time from the time a query starts to the time
it ends. FineStream has the lowest latency among these meth-
ods. First, on the A10-7850K platform, FineStream’s latency
is 10% lower than that of the best single device, and 36%
lower than the latency of Saber. Second, on Ryzen 5 2400G
platform, it is 2% lower than that of the best single device, and
9% lower than that of Saber. The reason is that FineStream
considers device preference for operators and assigns the op-
erators to their suitable devices. In this way, each batch can be
processed in a more efficient manner, leading to lower latency.
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Profiling. We
show the rela-
tionship between
throughput and
latency of both
FineStream and
Saber in Figure 12.
Figure 12 shows
that queries with
high throughput
usually have low latency, and vice versa.
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We further study the CPU and GPU utilization of Saber
and FineStream, and use the A10-7850K platform for illus-
tration, as shown in Figure 13. In most cases, FineStream
utilizes the GPU device better on the integrated architecture.
As for Q4, the CPU processes most of the workload. On aver-
age, FineStream improves 23% GPU utilization compared to
Saber, and have roughly the same CPU utilization as Saber.
Since FineStream achieves better throughput and latency than
Saber, such utilization results indicate that FineStream gener-
ates effective strategies in determining device preferences for
individual operators.
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7.3 Comparison with Discrete Architectures
In this part, we compare FineStream on the integrated archi-
tectures and Saber on the discrete architectures from three
perspectives: performance, price, and energy-efficiency.
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Figure 14: Latency comparison of
different operators.

Performance
Comparison. The
current GPU on the
integrated architec-
ture is less powerful
than the discrete
GPU, as mentioned
in Section 2.1. The
discrete GPUs ex-
hibit 1.8x to 5.7x
higher throughput
than the integrated
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architectures, due to the more computational power of
discrete GPUs. However, the integrated architecture demon-
strates lower processing latency compared to the discrete
architecture when the data transmission cost between the host
memory and GPU memory in the workload is significant. For
example, the latencies for pro jection, selection, aggregation,
group-by, and join are 0.6, 1.5, 1.0, 10.6, and 1924.5 ms on
Ryzen 5 2400G platform, while 1.1, 1.2, 1.2, 1.6, and 7600.1
ms on GTX 1080Ti platform; these operators are distributed
in Figure 14, where join (JOIN), pro jection (PROJ), and
aggregation (AGG) achieve lower latency on the integrated
architecture, while selection (SELT), and group-by (GRPBY)
prefer the discrete architecture. The x-axis represents the
ratio of mcompute/(swrite+sread) where mcompute denotes the
kernel computation workload size, and twrite and sread denote
the data transmission sizes from the host memory to the GPU
memory and from the GPU memory to the host memory
via PCI-e. For further explanation, to execute a kernel on
discrete GPUs, the execution time ttotal includes 1) the time
twrite of data transmission from the host memory to the GPU
memory via PCI-e, 2) the time tcompute for data processing
kernel execution, and 3) the time tread of data transmission
from the GPU memory to the host memory. As for executing
a kernel on the integrated architecture, although its tcompute
is longer than that on discrete GPUs, its twrite and tread can
be avoided. For the queries in Table 3, the data movement
overhead on discrete architectures ranges from 31 to 62%.

Price-Throughput Ratio Comparison. FineStream on in-
tegrated architectures shows a high price-throughput ratio,
compared to Saber on the discrete architectures. The price of
the 1080Ti discrete architecture is about 7x higher than that
of the A10-7850K integrated architecture, and the price of the
V100 discrete architecture is about 64x higher than that of
the Ryzen 5 2400G integrated architecture. Figure 15 shows
the comparison of their price-throughput ratio. On average,
FineStream on the integrated architectures outperforms Saber
on the discrete architectures by 10.4x.
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Figure 15: Comparison of price-throughput ratio.

Energy Efficiency Comparison. We also analyze the en-
ergy efficiency of FineStream and Saber. The Thermal Design
Power (TDP) is 95W on A10-7850K, and 65W on Ryzen
5 2400G. For the 1080Ti platform, the TDP of the Intel i7-
8700K CPU and NVIDIA GTX 1080Ti GPU are 95W and

250W, respectively. For the V100 platform, the TDP of the
Intel E5-2640 v4 CPU and NVIDIA V100 GPU are 90W and
300W, respectively. Similar to [61], we use performance per
Watt to define energy efficiency. On average, FineStream on
the integrated architectures is 1.8x energy-efficient than Saber
on the discrete architectures.

7.4 Handling Dynamic Workload
In this section, we discuss how to handle dynamic work-
loads. To demonstrate the capability of FineStream to han-
dle dynamic workload, we evaluate FineStream on the dy-
namic workloads mentioned in Section 7.1. On average,
FineStream achieves a performance of 323,727 tuples per sec-
ond, which outperforms the static method (we denote “static”
for FineStream without adapting to dynamic workload) by
28.6%, as shown in Table 4.

Table 4: Throughput of the queries on dynamic workloads.
Dynamic A10-7850K (105 tuples/s) Ryzen 5 2400G (105 tuples/s)
Workload Static FineStream Static FineStream

T1 4.2 5.1 4.4 5.1
T2 0.8 1.2 1.1 1.5
T3 1.9 2.8 2.7 3.7

We use T1 as an example, and show the detailed throughput
along with the number of batches in Figure 16. In the timeline
process, the static method decreases due to the improper hard-
ware resource distribution. As for FineStream, the hardware
computing resources can be dynamically adjusted according
to the data distribution, so the performance does not decline
with the changes.
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Figure 16: Throughput of T1 on dynamic workloads.

7.5 Detailed Analysis
Performance Model Accuracy. In stream processing, after
each batch is processed, we use the measured batch process-
ing speed to correct our model. We use the example of Q1 for
illustration, as shown in Figure 17. We use the percent devia-
tion to measure the accuracy of our performance model. The
percent deviation is defined as the absolute value of the real
throughput minus the estimated throughput, divided by the
real throughput. The smaller the percent deviation is, the more
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accurate the predicted result is. The deviation decreases as
the number of processed batches increases. After 20 batches
are processed, we can reduce the deviation to less than 10%.
Please note that in stream processing scenarios, input tuples
are continuously coming, so the time for correcting perfor-
mance prediction can be ignored in stream processing. For
dynamic workload, the accuracy also depends on the intensity
of workload changes.
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Figure 17: Deviation of Q1.

Runtime Overhead
Analysis. FineStream in-
curs runtime overhead
in the batch processing
phase from two aspects.
First, it detects whether
the input stream be-
longs to dynamic work-
load, which causes time
overhead. Second, the
scheduling also takes time. In our evaluation, we observe that
the time overhead accounts for less than 2% of the processing
time, which can be ignored in stream processing.

8 Related Work

Parallel stream processing [4, 10, 12, 21, 28, 29, 34, 43, 46, 63],
query processing [9, 14, 16, 20, 22, 56], and heterogeneous
systems [11, 17, 24, 26, 32, 35–38, 45, 48, 50] are hot research
topics in recent years. Different from these works, FineStream
targets sliding window-based stream processing, which fo-
cuses on window handling with SQL and dynamic adjustment.
GPUs have massive threads and high bandwidth, and have

emerged to be one of the most promising heterogeneous ac-
celerators to speedup stream processing. Verner et al. [54]
presented a stream processing algorithm considering various
latency and throughput requirements on GPUs. Alghabi et
al. [5] developed a framework for stateful stream data pro-
cessing on multiple GPUs. De Matteis et al. [25] developed
Gasser system for offloading operators on GPUs. Pinnecke
et al. [44] studied how to efficiently process large windows
on GPUs. Chen et al. [23] extended the popular stream pro-
cessing system, Storm [1], to GPU platforms. Augonnet et
al. [8] explored data-aware task scheduling for multi-devices,
which can be integrated into this work. FineStream differs
from those previous works in two aspects: firstly on integrated
architectures, and secondly for SQL streaming processing.

The closest work to FineStream is Saber [34], which aims
to utilize discrete CPU-GPU architectures. Saber [34] adopts
a bulk-synchronous parallel model [53, 66], where the whole
query (with multiple operators) on each batch of input data
is dispatched on one device. Such a mechanism naturally
minimizes the communication overhead among operators in-
side the same query. It is hence suitable in discrete CPU-
GPU architectures, where PCI-e overhead is significant and
shall be avoided as much as possible. However, it may re-

sult in suboptimality in integrated architectures for mainly
two reasons. First, it overlooks the performance difference
between different devices for each operator. Second, the
communication overhead between the CPU and the GPU
in integrated architectures is negligible. Targeting at inte-
grated architectures, FineStream adopts continuous operator
model [53, 66], where each operator of a query can be inde-
pendently placed at a device. We further build a performance
model to guide operator-device placement optimization. It is
noteworthy that our fine-grained operator placement is dif-
ferent from classical placement strategies for general stream
processing [18, 19, 40, 51, 65] for their different design goals.
In particular, most prior works aim at reducing communi-
cation overhead among operators, which is not an issue in
FineStream. Instead, FineStream needs to take device prefer-
ence into consideration during placement optimization, which
has not been considered before.

9 Conclusion

Stream processing has shown significant performance bene-
fits on GPUs. However, the data transmission via PCI-e hin-
ders its further performance improvement. This paper revisits
window-based stream processing on the promising CPU-GPU
integrated architectures, and with CPUs and GPUs integrated
on the same chip, the data transmission overhead is eliminated.
Furthermore, such integration opens up new opportunities for
fine-grained cooperation between different devices, and we de-
velop a framework called FineStream for fine-grained stream
processing on the integrated architecture. This study shows
that integrated CPU-GPU architectures can be more desirable
alternative architectures for low-latency and high-throughput
data strream processing, in comparison with discrete archi-
tectures. Experiments show that FineStream can improve the
performance by 52% over the state-of-the-art method on the
integrated architecture. Compared to the stream processing
engine on the discrete architecture, FineStream on the inte-
grated architecture achieves 10.4x price-throughput ratio, 1.8x
energy efficiency, and can enjoy lower latency benefits.
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