
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

A Case Study of Processing-in-Memory in
off-the-Shelf Systems

Joel Nider, Craig Mustard, Andrada Zoltan, John Ramsden, Larry Liu,
Jacob Grossbard, and Mohammad Dashti, University of British Columbia;
Romaric Jodin, Alexandre Ghiti, and Jordi Chauzi, UPMEM SAS; Alexandra

Fedorova, University of British Columbia
https://www.usenix.org/conference/atc21/presentation/nider

A Case Study of Processing-in-Memory in off-the-Shelf Systems

Joel Nider1, Craig Mustard1, Andrada Zoltan1, John Ramsden1, Larry Liu1, Jacob Grossbard1, Mohammad
Dashti1, Romaric Jodin2, Alexandre Ghiti2, Jordi Chauzi2, and Alexandra (Sasha) Fedorova1

1University of British Columbia
2UPMEM SAS

Abstract
We evaluate a new processing-in-memory (PIM) architec-

ture from UPMEM that was built and deployed in an off-
the-shelf server. Systems designed to perform computing
in or near memory have been proposed for decades to over-
come the proverbial memory wall, yet most never made it
past blueprints or simulations. When the hardware is actually
built and integrated into a fully functioning system, it must
address realistic constraints that may be overlooked in a sim-
ulation. Evaluating a real implementation can reveal valuable
insights. Our experiments on five commonly used applica-
tions highlight the main strength of this architecture: comput-
ing capability and the internal memory bandwidth scale with
memory size. This property helps some applications defy the
von-Neumann bottleneck, while for others, architectural limi-
tations stand in the way of reaching the hardware potential.
Our analysis explains why.

1 Introduction

The memory wall has plagued computer systems for decades.
Also known as the von Neumann bottleneck, it occurs in sys-
tems where the CPU is connected to the main memory via a
limited channel, constraining the bandwidth and stretching
the latency of data accesses. For decades, computer scientists
have pursued the ideas of in-memory and near-memory com-
puting, aiming to bring computation closer to data. Yet most
of the proposed hardware never made it past simulation or
proprietary prototypes, so some questions about this technol-
ogy could not be answered. When we obtained early access
to soon-to-be commercially available DRAM with general-
purpose processing capabilities, we recognized a unique op-
portunity to better understand its limitations when integrated
into existing systems. Most solutions proposed in the past
required specialized hardware that was incompatible in some
way with currently deployed systems [2, 3, 9, 14, 16]. The
hardware we evaluate was designed specifically to be used
as a drop-in replacement for conventional DRAM, which has

imposed some limitations that are not present in many of the
simulated architectures.

UPMEM’s DRAM DIMMs include general-purpose pro-
cessors, called DRAM Processing Units (DPU) [5]. Each
64MB slice of DRAM has a dedicated DPU, so computing re-
sources scale with the size of memory. Playing to the strengths
of this hardware, we ported five applications that require high
memory bandwidth and whose computational needs increase
with the size of the data. We observed that, indeed, appli-
cation throughput scaled with data size, but scaling was not
always the best that this hardware could achieve. The main
reasons were the difficulty of accessing data located inside
DPU-equipped DRAM from a host CPU without making a
copy, the limited processing power of the DPUs, and the
granularity at which the DPUs are controlled.

The main contribution of our work is understanding the
limitations of PIM when it is integrated into off-the-shelf
systems. We approach it via a case study of a particular
implementation. We are not aware of any similar hardware
that we could access, so a comparison to other architectures
was outside the scope of this work. Although a comparison
to other accelerators was not our goal either, we did compare
with GPUs where it helped deepen our analysis.

2 Architecture

Many PIM architectures were proposed in the past [2, 3, 6–8,
10, 12, 21, 27, 28, 30, 32], ranging from logic gates embedded
in each memory cell up to massive arrays of parallel proces-
sors that are located close to the memory. They all share the
goals of overcoming the limitations of memory bandwidth
but differ vastly in design. Nguyen et al. [22] introduce a
classification system for various designs based on the dis-
tance of the compute units from the memory. We study spe-
cific hardware from the COMPUTE-OUT-MEMORY-NEAR
(COM-N) model. This model includes compute logic that is
located outside of the memory arrays but inside the memory
package (same or different silicon die). This is sometimes
called CIM (compute-in-memory) but is more widely known

USENIX Association 2021 USENIX Annual Technical Conference 855

Figure 1: DPU Architecture

as PIM (processing-in-memory). After our study was con-
cluded, Samsung announced the production of similar PIM
hardware (called FIMDRAM) that also falls into the COM-N
model [15]. While we could not perform an in-depth com-
parison, some similarities are apparent from the published
design. These common design points are likely to appear in
new designs as well and the lessons we learned from studying
UPMEM-hardware will be generally applicable to this class
of PIM.

Organization In the architecture we study, DRAM is or-
ganized into ranks (two ranks per DIMM), and each rank
contains eight memory chips. Each DRAM chip includes
eight DRAM Processing Units (DPUs). Each DPU is coupled
with a 64MB slice of DRAM. There are 64 DPUs per rank
and 128 DPUs per 8GB memory DIMM. Since the DPUs
and DRAM are built on the same silicon die, introducing the
DPUs comes at the cost of some DRAM capacity. With this
design, the sum of DPUs and DRAM is limited by the silicon
area on the die and the process density (number of transistors
per unit area). Our experimental system has 36GB of DPU
DRAM and 576 DPUs.

DPU Capabilities A DPU is a simple general-purpose pro-
cessor. UPMEM’s design only supports integer operations
(no floating-point hardware). Each DPU has exclusive ac-
cess to its slice of DRAM over a private bus. The more total
DRAM there is, the more DPUs there are. In other words, we
get an additional unit of computation, and an additional bus,
with each additional unit of memory – computing capacity
and intra-DIMM bandwidth scale with the size of memory.
Figure 1 shows a schematic view of a single DPU and its
periphery. Before a DPU can compute on the data, it must
copy it from DRAM to a 64KB private SRAM buffer, called
the working memory. The copy is performed with an explicit,
blocking DMA instruction. The DMA engine can copy up
to 2KB in a single operation but the copy time increases lin-
early with the size. To hide DMA latency, each DPU has 24
hardware threads, called tasklets, that can be scheduled for
execution simultaneously. Because it is an interleaved multi-
threading (IMT) design [31], only one tasklet can advance at
each cycle. When a tasklet is blocked on a DMA operation,
other tasklets can still make progress.

DPU Speed Processing capabilities of DPUs are well be-
low that of a common host CPU. DPUs have a simple, in-
order design, and are clocked at anywhere from 266MHz (in
our experimental system), to 500MHz (projected in commer-
cial offerings). This was necessary to fit within the power
envelope of commodity systems.

DPU communication In DRAM there are no communica-
tion channels between individual slices of memory dedicated
to DPUs. Thus, DPUs cannot share data, other than by copy-
ing it via the host. Communication between DPUs on differ-
ent chips would require additional pins in the package which
would change the form factor from standard DRAM. Creat-
ing a communication bus between DPUs on the same chip is
theoretically possible, but severely restricted by the number
of available metal layers. Therefore, we cannot expect any
PIM designs in the COM-N model to have any DPU-to-DPU
communication until these problems can be solved. This con-
straint implies that programs running on DPUs must shard
data across DPUs ahead of the execution and use algorithms
that don’t require data sharing.

Interleaving At the chip level, interleaving dictates the
ordering of bytes as they are written into DRAM. In the
DIMMs in our test system, each DRAM chip connects to the
DDR4 bus by an 8-bit interface. 8 chips together form the
64-bit wide bus. When a 64-byte cache line is committed
to memory, the data is interleaved across DRAM chips at
byte granularity, the first byte going into chip 0, the second
byte into chip 1, etc. So when the write is done, the first
chip receives bytes 0, 8, 16, ..., 56. Interleaving at this level
is used to hide read and write latency by activating multiple
chips simultaneously. Interleaving is transparent to the host
since the data is reordered appropriately in both directions
(i.e., during reads and writes). But a DPU, which can only
access data in its own slice, only sees what is written to that
particular chip (i.e., every nth byte of the data). This property
makes it difficult to access the data by the host CPU and the
DPU in the same location. Unless a program running on the
DPU can be modified to operate on non-contiguous data, we
must make a separate copy, transposing it in the process, so
that each DPU receives a contiguous portion of the data.

Transposition UPMEM’s SDK counteracts the interleav-
ing by transposing the data. While the cost of the transposition
is small (the current SDK provides an efficient implementa-
tion that uses SIMD extensions), the cost of data copy, which
requires going over the DRAM bus, is not. For applications
that can place their dataset into the DPU memory and com-
pute on it using only DPUs, the one-time cost of the copy
can be negligible, but for applications where the data is short-
lived or both the DPU and host CPU must access it, frequent
copying will stress the memory channel – the very bottleneck
this architecture aims to avoid.

Control granularity Accessing multiple chips in each bus
cycle also means it is natural to schedule DPUs across those
chips as a group. With the current SDK implementation, a

856 2021 USENIX Annual Technical Conference USENIX Association

full rank must be scheduled as a single unit. We can only send
a command to an entire rank of DPUs and cannot launch a
DPU or read its memory while another DPU in the same rank
is executing. Similarly, the host cannot access any memory in
a rank if any DPU in that rank is executing. In practice, this
results in treating DPU-equipped memory as an accelerator,
rather than part of main RAM. The host typically keeps
programs and data in the “normal” DRAM (i.e., host DRAM),
copies data for processing into the DPU DRAM, and copies
back the results. Finer-grained execution groups will likely
improve the performance of algorithms that "stream" data
such as grep.

3 Evaluation

3.1 Workloads
Considering DPU architecture properties we chose programs
that need more computational resources with the increasing
data size, that could be easily parallelized and where data
sharing is minimal.

The SDK for the DPU architecture includes a C compiler
and libraries with functions to load and launch DPUs, copy
and transpose the data, etc. While we could write the code
in a familiar language, the main challenges had to do with
memory management (as the DPU needs to copy data from
DRAM into the working memory prior to processing it), and
with efficiently controlling ranks of DPUs.

Snappy Snappy is a light-weight compression algorithm
designed to process data faster than other algorithms, such
as gzip, but at the cost of a lower compression ratio [11].
Snappy divides the original file into blocks of a fixed size
(typically 64KB) and compresses each block individually.
The original implementation is designed for sequential (i.e.,
single-threaded) processing. The file format concatenates
compressed blocks head to tail, without any separation marker.
The result is that to decompress block n, the program must
first decompress blocks 0 .. n−1. To enable parallelism,
we changed the compressed file format by prepending each
block with its compressed size. This small change enables the
host program to quickly locate the start of each compressed
block without having to decompress the previous blocks. We
also modified the header by adding the decompressed block
size. That enables us to experiment with different block sizes.
Snappy is bandwidth-intensive because of the small amount of
processing, especially during decompression. The majority of
the time is spent copying literal strings or previously decoded
strings.

Hyperdimensional computing Hyperdimensional Com-
puting (HDC) [13] is used in artificial intelligence to model
the behaviour of large numbers of neurons. It relies on vectors
with high dimensionality (at least 10,000 dimensions), called
hypervectors, to classify data and find patterns. Our HDC
application performs classification of raw electromyography

(EMG) signals into specific hand gestures [25]. We built
upon a prior reference implementation [20]. The classifica-
tion works by computing the Hamming distance between a
previously encoded input hypervector and previously trained
vectors. Our implementation distributes the raw signal data
among DPUs, which then encode it into hypervectors and
perform the classification.

AES Encryption The Advanced Encryption Standard
(AES) is a symmetric-key algorithm designed to be highly se-
cure and run efficiently on a variety of hardware. Our analysis
focuses on AES-128, using the implementation by Rijmen,
Bosselaers, and Barreto found in OpenSSL [26]. Encryption
is an ideal problem; the data can be divided into small individ-
ual blocks, the algorithm can operate in parallel, and the data
access pattern makes it simple to optimize DMA transfers.
AES can be operated in a variety of modes. We use ECB
(electronic code book) mode which ensures each block can
be processed individually without dependencies on the other
blocks.

JSON filtering JSON is a flexible and human-readable
format for storing and exchanging data. Due to its ASCII
representation, parsing is notoriously slow [17, 19, 29]. When
analytics systems filter records in JSON, they parse each one
and check the filter condition. Parsing is performed for all
records, even for those not meeting the filter criteria. Instead,
Sparser [24] showed that it is better to filter records before
parsing them by running string comparisons over raw (un-
parsed) JSON. Raw filtering is highly parallel and memory-
intensive [9], and hence promising for our study. We modified
Sparser [23] to offload raw filtering to DPUs, while the host
performs the rest of the parsing.

Grep Grep [1] is a command-line utility for searching plain-
text for lines that match a regular expression. We implement
a subset of grep, which searches only for exact text matches.
Our design uses the DPUs in a work pool by preparing files
in small batches, and starting the search as soon as enough
DPUs are ready to perform the work.

To address the challenge of DPUs needing to be controlled
in large groups we must balance the work across all DPUs in
the rank. By balancing the work, we minimize the difference
in running time between the fastest DPU and slowest DPU,
which minimizes the idle time in the rank while waiting for
the slower DPUs. Preparing the work on the host consumes
a significant portion of the time so it is more important to
prepare the files quickly rather than efficiently packing them
into DPUs. To fill the rank as evenly as possible within the
time constraints, files are assigned to DPUs in a round-robin
fashion in the order they appear in the input. We do not spend
the time to sort the files by size, and even limit the number
of files that can be processed by a single DPU to save time
during preparation. A maximum of 256 files was determined
empirically to have the best results.

Our baseline for performance comparison is a single host

USENIX Association 2021 USENIX Annual Technical Conference 857

CPU1 since our focus is to understand when the DPU archi-
tecture overcomes the von Neumann bottleneck and when it
does not.

3.2 Memory bandwidth scaling

In the DPU architecture, each additional slice of DRAM gets
its own DPU along with the working memory and the DMA
channel. Herein lies its main strength: scaling computing ca-
pacity and intra-DIMM bandwidth with the size of memory.
To demonstrate, we ran a simple program where all DPUs
iterate over the data in DRAM, copying every byte from their
respective DRAM slices into the working memory. As shown
in Fig. 2, the data processing bandwidth increases with the
size of the data, reaching roughly 200GB/s for 36GB worth
of DRAM (approximately 350MB/s per DPU). For a system
with 128GB of DRAM and DPUs clocked at 500MHz (which
is the target for commercial release) the aggregate bandwidth
attained by all DPUs would reach 2TB/s.

Figure 2: Memory bandwidth scales with memory capacity.

For applications whose compute and bandwidth needs grow
with the size of the data, scaling of compute and bandwidth
resources with memory has a direct and positive impact on
performance. E.g., Fig. 3 shows the throughput of Snappy
compression as the file size (and the number of DPUs sharing
the work) increase. We use the optimal number of DPUs for
each file size – i.e., using more DPUs yields no additional
speedup. The input data resides in host DRAM; the experi-
ment copies the data to DPU DRAM, allocates and launches
the DPUs to run compression, and copies the compressed
data back to host DRAM. As the file size grows so does the
throughput – a direct result of compute capacity and internal
bandwidth scaling with additional memory.

Breaking down the runtime, we observe that the execution
time on DPUs (Run in Fig. 4) remains roughly the same even
as we increase the file size, because more DPUs are doing the
work. Again, this is the effect of scaling compute resources
with data size. The DPU execution time does increase for
512MB and 1GB file sizes, because as we reach the limits
of our experimental hardware, each DPU gets more data to

1Our host machine is a commodity server with an Intel(R)Xeon(R) Silver
4110 CPU @ 2.10GHz with 64GB of conventional DDR4 DRAM.

Figure 3: Snappy compression throughput

Figure 4: Runtime breakdown for compression

process. The non-scalable components of runtime in Fig. 4,
Copy In, Copy Out and Setup, are discussed in §3.3.

A final experiment illustrating the strength of scaling in-
volves a comparison with the GPU2, an accelerator that shares
similarities with DPUs (massive parallelism, high memory
bandwidth), but does not have the property of scaling compu-
tational resources with memory. Fig. 5 shows the throughput
relative to a host CPU (same as in the DPU experiments) of
snappy compression as the file size grows. Contrary to the
DPU architecture, the GPU scaling is flat and the throughput
does not surpass that of the host CPU by more than 5×. This
coincides with the internal memory bandwidth of the GPU,
which is approximately 5× higher than that of the CPU.

Where each DPU has a dedicated working memory and a
DMA channel, all GPU cores within an SM (streaming multi-
processor) share an L1 cache. This data-intensive workload
with a random access pattern caused thrashing in the small
64KB L1 cache. Memory fetching became the bottleneck and
as a result, we obtained the best performance by launching
kernels consisting of a single thread per compute block (and
hence one thread per SM) to reduce contention for the cache.
The input file fit in the GPU memory, so there were no fetches

2We used an RTX 2070 GPU with 8GB of GDDR6 and 448GB/s global
memory bandwidth. There are 36 SMs, with 64 CUDA cores per SM, clocked
at 1.4GHz, There is a 64KB L1 cache per SM, and 4MB L2 cache shared by
all SMs.

858 2021 USENIX Annual Technical Conference USENIX Association

Figure 5: Snappy compression on GPUs

over the PCIe bus once processing started. In other words, the
GPU fell victim to a variant of the von Neumann bottleneck.
In workloads where memory bandwidth is not the main limi-
tation, DPUs will not reach the throughput of a GPU due to
their less powerful execution engine – a limitation we discuss
in §3.4.

3.3 Data copy

As we discussed in §2, the need for de-interleaving (transpos-
ing) data for DPUs means that it is difficult to avoid making
copies when data needs to be accessed by both DPUs and
host CPUs. For applications where DPUs can be used exclu-
sively, the data can be copied to DPU memory just once and
reside there for the rest of the runtime, making copy overhead
negligible. In programs where data is ephemeral or must be
accessed by both the host CPU and DPUs, frequent copying
will be subject to memory channel limitations – the very von
Neumann bottleneck PIM aims to address.

The compression runtime breakdown presented in the previ-
ous section (Fig. 4) illustrates this point. The DPU execution
time remains roughly constant as data size increases, because
each DPU has a dedicated DMA channel to its DRAM slice.
In contrast, the time to copy input data to DPU memory and
copy the output back increases with the file size and is limited
by the DRAM channel.

Setup overhead in compression does not scale, because
dividing up the work requires sequential parsing of the input
file. This is a property of the workload and implementation,
and not fundamental to the architecture. Copy overhead, on
the other hand, is fundamental to the system and is the reason
why the compression throughput in Fig 3 grows sublinearly
with the increasing number of DPUs.

HDC is less affected by the copy-in overhead than Snappy
and has negligible copy-out cost due to the small dataset.
Overall, copying takes about 10% of the total runtime, and
thus HDC enjoys better scaling, as shown in Figure 6. HDC
and other AI applications, where DPUs can repeatedly per-
form inference on long-lived data that remains in DPU mem-
ory are therefore well-positioned to circumvent the memory
channel bottleneck.

Figure 6: HDC speedup over the host as file size increases

Figure 7: Encryption throughput relative to a single host CPU.

3.4 DPU Speed
Encryption provides an excellent illustration of a scenario
when DPU processing power becomes a limitation. Figure 7
shows encryption throughput (bytes per second) relative to a
single host CPU as the amount of data increases. We show
a separate curve for each number of DPUs, to emphasize
that processing power matters. Both Snappy and HDC re-
quired fewer DPUs for smaller datasets and more DPUs for
larger data sets, but compute-hungry encryption relishes the
highest number of DPUs we can muster, no matter the data
size. Further, the far superior performance on the host with
AES-NI [4] acceleration confirms that general-purpose DPUs
cannot compete with specialized instruction sets.

Another example where DPU processing power was less
impressive compared to other available accelerators was
snappy decompression (figures omitted for brevity). On the
DPU, this workload performed very similarly to compression.
On the GPU, in contrast with compression, L1 cache was
not the bottleneck: decompression works with smaller input
block sizes and is largely write-intensive. As a result, the
GPU showed similar scaling trends as on the DPU and outper-
formed the host CPU by up to 24×, while DPUs’ advantage
was at most 8×.

3.5 Communication and control granularity
Compliance with the DDR interface and software limitations
in the current SDK makes it inefficient to control DPUs one
at a time: as long as a single DPU in the rank is busy, all

USENIX Association 2021 USENIX Annual Technical Conference 859

Figure 8: Speedup of grep over the host with varying ranks
and tasklets.

others are inaccessible. This means that the program must
decide how it will divide the data between DPUs in a rank
and launch them all at once. While this is a trivial decision
for embarrassingly parallel workloads, other workloads might
under-utilize the hardware as a result. The fact that DPUs
cannot communicate and steal work from one another makes
matters worse. Our experience with grep demonstrates these
challenges.

Figure 8 shows the throughput relative to a single host
CPU of grep executed on the 875MB Linux source tree for
the varying number of ranks. The throughput gain relative
to the host is modest, and there is no advantage from using
more than two ranks (128 DPUs). The reason is that it is very
difficult to distribute the work evenly between DPUs ahead of
the launch. Input source files vary in size and even organizing
them into equally-sized buckets per DPU does not guarantee
that the processing time on all DPUs will remain similar. As
a result, grep used the hardware inefficiently: the ratio of
execution times on the fastest and slowest DPUs was 116×,
indicating the presence of stragglers that held up the entire
rank. In contrast, JSON filtering, a workload very similar to
grep but where dividing the work evenly was easy, enjoyed
the fastest/slowest execution ratio of 1 (no stragglers) and
similar scaling properties as the rest of the workloads (figure
omitted for brevity).

3.6 System cost

We conclude with the analysis of system cost, showing that
for applications with high bandwidth requirements, a system
that uses DPU memory is cheaper than the one without it.

With a memory-bound workload, increasing the number of
processors without increasing the memory bandwidth does
not improve performance by a significant amount [3, 18, 33];
we need a CPU with a high number of memory channels that
can supply the cores with data and avoid starvation. CPUs
are designed with a wide range of cores but do not include
additional memory channels for a higher number of cores.
Therefore, we must use more sockets and faster memory to
scale up the memory bandwidth in a CPU-only system. Table
1 shows an estimated price comparison of system configura-
tions with the maximum possible memory bandwidth with

off-the-shelf Intel systems (1.6TB/s) assuming Snappy com-
pression as the representative workload. We use the nominal
price of $60 for an 8GB DIMM and $300 for an 8GB PIM
module [5]. The costs shown include CPU, memory and
PIM (where applicable). We assume DDR4-2400 (19.2 GB/s)
with a Xeon 4110 ($500) for all configurations except the last,
which uses DDR-3200 (25.6 GB/s – 33% more bandwidth)
and a Xeon 8380 ($8100). With our conservative estimations,
a CPU-only system is less expensive for applications below
500GB/s. However when scaling up, a CPU-only configura-
tion is approximately 3.8× more expensive to attain the same
Snappy compression throughput.

DRAM PIM Snappy Cost Cost
throughput per MB/s

Low bandwidth requirements
48GB - 512MB/s $860 $1.68
48GB 32GB 512MB/s $2160 $4.21

High bandwidth requirements
48GB 448GB 7168MB/s $17660 $2.46
448GB - 7263MB/s $68640 $9.45

Table 1: System cost per MB/s for Snappy compression.

4 Conclusion

Memory-bound applications are limited by the conventional
memory hierarchy, and adding more CPUs does not improve
performance substantially. We have shown several real-world
applications that can be accelerated by PIM by scaling mem-
ory bandwidth with compute resources. PIM shares many
attributes (such as massive parallelism) with other accelera-
tors but the distribution of processing units inside the memory
gives it a unique advantage in certain cases. The architecture
we evaluated has some limitations that prevent exploiting the
full capabilities of the hardware, which remain as challenges
for future designs. Costly data transfers which must be per-
formed in order to share data between the host CPU and PIM
memory adds significant overhead to processing time but can
be mitigated by reusing data in-place. Despite the limitations,
we find that PIM can be effective when applied to the correct
class of problems by scaling the processing power with the
size of the dataset.

Acknowledgements

Thank you to our shepherd, Heiner Litz, for his helpful com-
ments and suggestions to improve this paper. A special thank
you to Vincent Palatin for his patience and support explaining
the details of this new hardware.

860 2021 USENIX Annual Technical Conference USENIX Association

Availability

All source code for the projects described in the paper can
be found at https://github.com/UBC-ECE-Sasha.
The UPMEM SDK is publicly available at
https://www.upmem.com/developer/.

References

[1] Tony Abou-Assaleh and Wei Ai. Survey of global regu-
lar expression print (grep) tools. In Technical Report,
2004.

[2] Sandeep R Agrawal, Sam Idicula, Arun Ragha-
van, Evangelos Vlachos, Venkatraman Govindaraju,
Venkatanathan Varadarajan, Cagri Balkesen, Georgios
Giannikis, Charlie Roth, Nipun Agarwal, and et al. A
many-core architecture for in-memory data processing.
In Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-50 ’17,
page 245–258, New York, NY, USA, 2017. Association
for Computing Machinery.

[3] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur
Mutlu, and Kiyoung Choi. A scalable processing-
in-memory accelerator for parallel graph processing.
In Proceedings of the 42nd Annual International Sym-
posium on Computer Architecture, ISCA ’15, page
105–117, New York, NY, USA, 2015. Association for
Computing Machinery.

[4] Kahraman Akdemir, Martin Dixon, Wajdi Feghali,
Patrick Fay, Vinodh Gopal, Jim Guilford, Erdinc Oz-
turk, Gil Wolrich, and Ronen Zohar. Breakthrough AES
performance with Intel® AES new instructions. In Intel
Whitepaper. Intel, 2010.

[5] F. Devaux. The true processing in memory accelerator.
In 2019 IEEE Hot Chips 31 Symposium (HCS), pages
1–24, 2019.

[6] Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele,
Tim Barrett, Jeff LaCoss, John Granacki, Jaewook Shin,
Chun Chen, Chang Woo Kang, Ihn Kim, and Gokhan
Daglikoca. The architecture of the diva processing-in-
memory chip. In Proceedings of the 16th International
Conference on Supercomputing, ICS ’02, page 14–25,
New York, NY, USA, 2002. Association for Computing
Machinery.

[7] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff.
Computedram: In-memory compute using off-the-shelf
drams. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO
’52, page 100–113, New York, NY, USA, 2019. Associ-
ation for Computing Machinery.

[8] M. Gao and C. Kozyrakis. Hrl: Efficient and flexible
reconfigurable logic for near-data processing. In 2016
IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 126–137, March
2016.

[9] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna,
and O. Mutlu. Processing-in-memory: A workload-
driven perspective. IBM Journal of Research and De-
velopment, 63(6):3:1–3:19, 2019.

[10] M. Gokhale, B. Holmes, and K. Iobst. Processing
in memory: the terasys massively parallel pim array.
Computer, 28(4):23–31, April 1995.

[11] Google. Snappy - a fast compressor/decompressor.
Goole Inc., 2020.

[12] Roman Kaplan, Leonid Yavits, and Ran Ginosar. From
processing-in-memory to processing-in-storage. In Su-
percomput. Front. Innov. : Int. J. 4, 2017.

[13] Geethan Karunaratne, Manuel Le Gallo, Giovanni
Cherubini, Luca Benini, Abbas Rahimi, and Abu Se-
bastian. In-memory hyperdimensional computing. In
Nature Electronics, 2020.

[14] Liu Ke, Udit Gupta, Carole-Jean Wu, Benjamin Young-
jae Cho, Mark Hempstead, Brandon Reagen, Xuan
Zhang, David Brooks, Vikas Chandra, Utku Diril, Amin
Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S.
Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim
Naumov, Martin Schatz, Mikhail Smelyanskiy, and Xi-
aodong Wang. Recnmp: Accelerating personalized
recommendation with near-memory processing, 2019.

[15] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-
Hyuk Kwon, Je Min Ryu, Jong-Pil Son, O Seongil, Hak-
Soo Yu, Haesuk Lee, Soo Young Kim, Youngmin Cho,
Jin Guk Kim, Jongyoon Choi, Hyun-Sung Shin, Jin Kim,
BengSeng Phuah, HyoungMin Kim, Myeong Jun Song,
Ahn Choi, Daeho Kim, SooYoung Kim, Eun-Bong Kim,
David Wang, Shinhaeng Kang, Yuhwan Ro, Seungwoo
Seo, JoonHo Song, Jaeyoun Youn, Kyomin Sohn, and
Nam Sung Kim. 25.4 a 20nm 6gb function-in-memory
dram, based on hbm2 with a 1.2tflops programmable
computing unit using bank-level parallelism, for ma-
chine learning applications. In 2021 IEEE International
Solid- State Circuits Conference (ISSCC), volume 64,
pages 350–352, 2021.

[16] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. Tensor-
dimm: A practical near-memory processing architecture
for embeddings and tensor operations in deep learning.
In Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO ’52,
page 740–753, New York, NY, USA, 2019. Association
for Computing Machinery.

USENIX Association 2021 USENIX Annual Technical Conference 861

[17] Geoff Langdale and Daniel Lemire. Parsing gigabytes
of json per second. The VLDB Journal, 28(6):941–960,
2019.

[18] Dominique Lavenier, Charles Deltel, David Furodet,
and Jean-François Roy. BLAST on UPMEM. Research
Report RR-8878, INRIA Rennes - Bretagne Atlantique,
March 2016.

[19] Yinan Li, Nikos R. Katsipoulakis, Badrish Chan-
dramouli, Jonathan Goldstein, and Donald Kossmann.
Mison: A fast json parser for data analytics. Proc.
VLDB Endow., 10(10):1118–1129, June 2017.

[20] F. Montagna, A. Rahimi, S. Benatti, D. Rossi, and
L. Benini. Pulp-hd: Accelerating brain-inspired high-
dimensional computing on a parallel ultra-low power
platform. In 2018 55th ACM/ESDA/IEEE Design Au-
tomation Conference (DAC), pages 1–6, 2018.

[21] Amir Morad, Leonid Yavits, Shahar Kvatinsky, and
Ran Ginosar. Resistive gp-simd processing-in-memory.
ACM Trans. Archit. Code Optim., 12(4), January 2016.

[22] Hoang Anh Du Nguyen, Jintao Yu, Muath Abu Leb-
deh, Mottaqiallah Taouil, Said Hamdioui, and Francky
Catthoor. A classification of memory-centric comput-
ing. J. Emerg. Technol. Comput. Syst., 16(2), January
2020.

[23] Shoumik Palkar, Firas Abuzaid, and Justin Azoff.
Sparser Source Code.

[24] Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. Filter before you parse: Faster analytics on raw
data with sparser. Proceedings of the VLDB Endowment,
11(11), 2018.

[25] A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M.
Rabaey. Hyperdimensional biosignal processing: A
case study for emg-based hand gesture recognition. In
2016 IEEE International Conference on Rebooting Com-
puting (ICRC), pages 1–8, 2016.

[26] Vincent Rijmen, Antoon Bosselaers, and Paulo Bar-
reto. Optimised ansi c code for the rijndael cipher
(now aes), 2000. https://github.com/openssl/
openssl/blob/master/crypto/aes/aes_core.c.

[27] Patrick Siegl, Rainer Buchty, and Mladen Berekovic.
Data-centric computing frontiers: A survey on
processing-in-memory. In Proceedings of the Second
International Symposium on Memory Systems, MEM-
SYS ’16, page 295–308, New York, NY, USA, 2016.
Association for Computing Machinery.

[28] H. S. Stone. A logic-in-memory computer. IEEE
Transactions on Computers, C-19(1):73–78, Jan 1970.

[29] Tencent. RapidJSON. https://rapidjson.org/.

[30] K. Wang, K. Angstadt, C. Bo, N. Brunelle, E. Sadredini,
T. Tracy, J. Wadden, M. Stan, and K. Skadron. An
overview of micron’s automata processor. In 2016 Inter-
national Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS), pages 1–3, Oct
2016.

[31] W. Weber and A. Gupta. Exploring the benefits of mul-
tiple hardware contexts in a multiprocessor architecture:
Preliminary results. In The 16th Annual International
Symposium on Computer Architecture, pages 273–280,
May 1989.

[32] Dongping Zhang, Nuwan Jayasena, Alexander Lya-
shevsky, Joseph L. Greathouse, Lifan Xu, and Michael
Ignatowski. Top-pim: Throughput-oriented pro-
grammable processing in memory. In Proceedings of
the 23rd International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’14, page
85–98, New York, NY, USA, 2014. Association for
Computing Machinery.

[33] Keira Zhou, Jack Wadden, Jeffrey J. Fox, Ke Wang,
Donald E. Brown, and Kevin Skadron. Regular ex-
pression acceleration on the micron automata processor:
Brill tagging as a case study. In Proceedings of the 2015
IEEE International Conference on Big Data (Big Data),
BIG DATA ’15, page 355–360, USA, 2015. IEEE Com-
puter Society.

862 2021 USENIX Annual Technical Conference USENIX Association

https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
https://rapidjson.org/

	Introduction
	Architecture
	Evaluation
	Workloads
	Memory bandwidth scaling
	Data copy
	DPU Speed
	Communication and control granularity
	System cost

	Conclusion

