
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

MapperX: Adaptive Metadata Maintenance for
Fast Crash Recovery of DM-Cache Based Hybrid

Storage Devices
Lujia Yin, NUDT; Li Wang, Didi Chuxing; Yiming Zhang, NiceX Lab, NUDT;

Yuxing Peng, NUDT
https://www.usenix.org/conference/atc21/presentation/yin

MapperX: Adaptive Metadata Maintenance for Fast Crash Recovery of
DM-Cache Based Hybrid Storage Devices

Lujia Yin
ylj1992nudt@gmail.com

NUDT

Li Wang
laurence.liwang@gmail.com

Didi Chuxing

Yiming Zhang
zym@nicexlab.com (Corresponding)

NiceX Lab, NUDT

Yuxing Peng
pengyuxing@aliyun.com

NUDT

Abstract
DM-cache is a component of the device mapper of Linux

kernel, which has been widely used to map SSDs and HDDs

onto higher-level virtual block devices that take fast SSDs as

a cache for slow HDDs to achieve high I/O performance at

low monetary cost. While enjoying the benefit of persistent

caching where SSDs accelerate normal I/O without affecting

durability, the current design of DM-cache suffers from

long crash recovery times (at the scale of hours) and low

availability. This is because its metadata of dirty bits has to

be asynchronously persisted for high I/O performance, which

consequently causes all cached data on SSDs to be assumed

dirty and to be recovered after the system is restarted.

This paper presents MapperX, a novel extension to DM-

cache that uses an on-disk adaptive bit-tree (ABT) to syn-
chronously maintain the metadata of dirty bits in a hierarchi-

cal manner. Leveraging spatial locality of block writes, Map-

perX achieves controlled metadata persistence overhead with

fast crash recovery by adaptively adding/deleting leaves in

the ABT where different levels represent the states of blocks

with different granularity. We have implemented MapperX

for Linux DM-cache module. Experimental results show

that the MapperX based hybrid storage device outperforms

the original DM-cache based hybrid device by orders of

magnitude in crash recovery times while only introducing

negligible metadata persistence overhead.

1 Introduction

SSDs (solid state drives) are preferable to HDDs (hard

disk drives) in building cloud storage systems [11, 31, 33,

35, 43, 44, 51, 65, 66] as SSDs significantly outperform

HDDs in random small I/O [13, 14, 26, 27, 40] which is

dominant in the cloud [44, 48]. Since currently SSDs are

still much more expensive than HDDs, in recent years we see

a trend of adopting HDD-SSD hybrid storage for high I/O

performance at low monetary cost. For instance, URSA [38]

is a distributed block storage system which stores primary

replicas on SSDs and replicates backup replicas on HDDs;

and SSHD [28] integrates a small SSD inside a large HDD

of which the SSD acts as a cache.

As the demand of HDD-SSD hybrid storage increases,

Linux kernel has supported users to combine HDDs and

SSDs to jointly provide virtual block storage service. DM-

cache [5] is a component of the device mapper [4] in the

kernel, which has been widely used in industry to map SSDs

and HDDs onto higher-level virtual block devices that take

fast SSDs as a cache for slow HDDs. DM-cache records

the mapping between SSDs and HDDs for each cached

block in its metadata. When DM-cache adopts the default

writeback mode, a block write will go only to the SSD

cache and get acknowledged after being marked dirty, so

that the dirty block could be demoted from the SSD cache

to the HDD later in a batch for accelerating random small

I/O. Linux kernel also provides other modules (Bcache [3]

and Flashcache [9]) which have similar functionalities with

DM-cache.

While enjoying the performance benefit of persistent

caching without affecting data durability [68], in the current

design of DM-cache and its variations the metadata of dirty

bits has to be asynchronously persisted (with a hard-coded

period of one second), otherwise the synchronous update

overhead of the metadata for each write would be over-

whelming. Unfortunately, asynchronous metadata update

causes all cached data on SSDs to be assumed dirty once

the system crashes and gets restarted, which results in long

crash recovery times and consequently low availability. For

example, in our production storage cluster we use DM-

cache to combine SSDs with HDDs for hybrid block storage,

and it will take more than two hours (depending on the

locality of workloads) to recover from a crash even if

most cached blocks are clean. The low availability caused

by asynchronous metadata update prevents Linux kernel’s

hybrid storage mechanisms from being widely applied in

availability-sensitive scenarios.

To address this problem, in this paper we present Map-

perX, a novel extension to DM-cache that uses an on-

USENIX Association 2021 USENIX Annual Technical Conference 705

disk adaptive bit-tree (ABT) to synchronously maintain the

metadata of dirty bits in a hierarchical manner. Workloads in

the cloud usually have adequate write locality [36, 38, 48],

which can be exploited to use one bit to represent the state

of a range of consecutive blocks and thus effectively reduce

the number of actual persistence operations for synchronous

metadata update. Leveraging spatial locality of block writes,

MapperX achieves controlled metadata persistence overhead

with fast crash recovery by adaptively adding/deleting leaves

at different levels in the ABT, which represent the states of

blocks with different granularity.

We have implemented MapperX for Linux DM-cache

module. Experimental results show that for workloads with

certain localities the MapperX based hybrid storage device

outperforms the original DM-cache based hybrid device by

orders of magnitude in crash recovery times while only

introducing negligible metadata persistence overhead.

The rest of this paper is organized as follows. Section 2

introduces the background and problem of DM-cache. Sec-

tion 3 presents the design of MapperX. Section 4 evaluates

the performance of MapperX and compares it with the

original DM-cache. Section 5 discusses related work. And

finally Section 6 concludes the paper.

2 Background

2.1 DM-Cache Overview
DM-cache is a component of the Linux kernel’s device map-

per, a volume management framework that allows various

mappings to be created between physical and virtual block

devices. DM-cache allows one or more fast flash-based

SSDs (cache devices) to act as a cache for one or more slower

mechanical HDDs (origin devices). In this section we briefly

introduce the basic caching mechanism of DM-cache.

Like most cache solutions, DM-cache has three oper-

ating modes, namely, writeback, writethrough, and

passthrough, among which only the default writeback

mode can accelerate small writes (by asynchronously per-

sisting SSD-cached data to HDDs). In this paper we focus on

DM-cache’s writeback mode. Linux provides DM-cache

with various (plug-in) cache policy modules, such as multi-

queue (MQ) and stochastic multi-queue (SMQ), to determine

which blocks (and when) should be migrated from an HDD

to an SSD (a.k.a. promoted) or from an SSD to an HDD

(a.k.a. demoted). The cache policy is orthogonal to this

paper, and we simply adopt the default SMQ policy which

performs the best for most workloads.

DM-cache can use either the SSD cache device or a sep-

arate metadata device to store its metadata, which includes

the mapping (between the cached blocks on SSDs and the

original blocks on HDDs) and the dirty bits, as well as other

policy-related metadata such as per-block hit counts. DM-

cache adopts a fixed (but configurable before cache creation)

W

W

Figure 1: DM-cache maps HDDs and SSDs onto higher level

virtual block devices.

block size typically between 32KB and 1MB.

Consider a small write to a virtual DM-cache device in the

writeback mode.

If the target block is already in the SSD cache, then as

shown in Fig. 1, (i) the new data (W) is written to the SSD,

(ii) the corresponding bit of the block is set dirty in memory,

and (iii) the write is acknowledged. The cached block

will be asynchronously persisted to the HDD according to

the cache policy. There are two kinds of metadata: the

metadata for the cached block’s mapping (between SSD and

HDD) already exists and thus needs no persistence; and the

metadata for the block’s dirty bit has to be asynchronously
persisted (one persistence per second by default), because

once being synchronously persisted this update will be on

the critical path of writing W which would greatly affect

the performance of cached writes, as demonstrated in the

next subsection. In original DM-cache the persistence of

dirty bits is not for crash recovery but for (e.g., battery-

backed) graceful shutdown which happens after dirty bits

are (incrementally) persisted, so that up-to-date dirty-bit

metadata can be read after reboot.

If the target block is not yet in the cache, then the process-

ing is slightly complex: when the write is not aligned with a

block, the block needs to be first promoted to the cache with

the first kind of (mapping) metadata being persisted, after

which the processing is the same as cached block writes.

Note that the mapping metadata must be synchronously

updated, in which case the synchronous update of the dirty-

bit metadata is less harmful because the number of metadata

writes only increases from one to two. In contrast, if the

mapping metadata needs no update then the number of

metadata writes sharply increases from zero to one. Mapping

metadata update is largely decided by the locality of the

workloads together with the replacement policy. Generally

speaking, higher locality of writes causes less changes of

mapping metadata which makes synchronous dirty-bit per-

706 2021 USENIX Annual Technical Conference USENIX Association

Figure 2: Synchronous updates of dirty bits severely affect

the I/O performance, evaluated using one HDD + one SSD.

sistence have higher negative impact on the performance of

cached writes, and vice versa.

2.2 The Main Drawback of DM-Cache
To demonstrate the runtime performance problem of per-

sisting dirty bit for each write, we compare the IOPS of

DM-cache with synchronous and asynchronous updates,

respectively. We use fio to perform random writes (rw

= randwrite) and evaluate the IOPS (writes per second)

with iodepth=16, using various cache block sizes ranging

from 64 KB to 256 KB. The fio write sizes are the same

as the catch block sizes. The result (Fig. 2) shows that the

performance is severely affected when adopting synchronous

update for dirty-bit metadata, causing several times IOPS

degradation. The high overhead prevents synchronous up-

date of dirty-bit metadata from being adopted by DM-cache.

Unfortunately, asynchronous metadata update causes all
cached data on SSDs to be assumed dirty once the system

crashes and gets restarted, which results in long crash

recovery times and consequently low availability. For ex-

ample, in our production block storage system where we

use DM-cache to combine multiple SSDs with multiple

HDDs on each storage machine, it takes more than two

hours (depending on the workloads) to recover from a power

failure (by demoting all cached blocks) even if most blocks

are clean. The low availability (caused by asynchronous

metadata update) prevents Linux’s HDD-SSD hybrid cache

mechanisms (like DM-cache) from being widely applied in

availability-sensitive scenarios.

3 MapperX Design

3.1 Synchronous Metadata Update
The timing of dirty-bit metadata update is a dilemma for

HDD-SSD hybrid devices. The asynchronous update me-

chanism periodically updates dirty bits for not affecting

normal writes but suffers from long crash recovery time

(since all SSD-cached blocks have to be assumed dirty and

get recovered even if most of them are clean); while the

Figure 3: MapperX maintains an on-disk adaptive bit-tree

(ABT), a summary of the complete bit-tree (CBT) of which

the leaves represent the states of all HDD blocks. Black

nodes represent dirty = true. ABT is synchronously updated

for each write, but most updates do not need persistence to

SSD since one bit represents a set of consecutive blocks.

synchronous update mechanism keeps all dirty bits up-to-

date for fast crash recovery but greatly increases the latency

of cached writes. Although the-state-of-the-art caching

solution (DM-cache) adopts asynchronous update for high

I/O performance, in this paper we propose to take the

synchronous update mechanism for fast crash recovery.

The challenge is that there is no trade-offs for the timing

of dirty-bit metadata update, because once the metadata is

asynchronously updated even only one outdated bit state

would require demotion of all cached blocks to ensure data

durability after crash recovery. To address this challenge, our

key idea is to adjust the granularity, instead of the timing,

of dirty-bit metadata update to smoothly trade off between

normal I/O performance and crash recovery time.

Workloads in the cloud usually have adequate write local-

ity which can be leveraged to use one bit to represent the

state of a range of consecutive blocks, as long as we can

(roughly) know the effective range of the bit. Note that false

positives of the effective range are not critical: if one clean

block is wrongly included in the effective range of a dirty bit,

the price is simply an unnecessary demotion of that block in

crash recovery.

There is an in-memory bitmap that precisely records the

state of every block. We first extend the in-memory bitmap to

a (logical) hierarchical complete bit-tree or CBT (as shown

in Fig. 3(left)), where the leaves are the bits of the bitmap and

each inner node is the disjunction of its direct children. Then,

MapperX maintains a summary of the CBT on the metadata

device, which we refer to as on-disk adaptive bit-tree (ABT),

as shown in Fig. 3(right). The ABT is synchronously

updated for each write request, but most updates do not

cause disk writes for metadata persistence, as discussed

below. Each inner node of the ABT represents a range

of consecutive blocks, and thus only the first dirty block

within the range causes a write to the metadata device and

subsequent writes of blocks in the range need no persistence.

Initially, the ABT only has a root node representing the states

of all cache blocks, which will change from clean to dirty

after the first block write.

MapperX proposes a synchronous ABT update mecha-

USENIX Association 2021 USENIX Annual Technical Conference 707

Algorithm 1 Synchronous bit-tree update of MapperX

1: procedure BITTREEUPDATE(Block b, Adaptive bit-

tree abt)
2: Update in-memory bitmap by b
3: Calculate affected inner nodes of complete bit-tree

(cbt) � Dirty if any child dirty, clean if all children clean

4: if b causes leaf node L of abt to become dirty then
5: Update abt on disk according to cbt
6: end if
7: return SUCCESS

8: end procedure

9: procedure PERIODICADJUST(Period p, SLA n, Adap-

tive bit-tree abt)
10: W ← total number of client writes during p
11: N ← total number of metadata writes during p
12: if N/W ≥ 1/10n then � Too many metadata writes

13: parents ← all direct parents of the leaves in abt
14: target parent ← the parent from parents which

has experienced the most metadata writes during p
15: Delete all children of target parent in abt
16: else
17: target lea f ← the leaf from all leaf nodes of abt

which has experienced the least metadata writes in p
18: Generate d children for target lea f in abt and

set their states according to cbt � d is the degree of abt
19: end if
20: return SUCCESS

21: end procedure

nism (Algorithm 1), which can adaptively adjust the meta-

data persistence frequency. The basic idea is to control the

effective range of the corresponding bits of the leaves (i.e.,

the granularity of metadata update) by adding/deleting leaves

in the ABT. Leaves at higher levels (farther from the root) in

the ABT represent the states of a smaller range of blocks

and thus increasing the levels of the ABT will increase the

metadata persistence overhead while reducing the expected

recovery time, and vice versa. When adding child leaves to

an existing leaf node, the information about which children

are dirty can be obtained from the logical CBT (calculated

from the in-memory bitmap).

Since the user-perceived I/O performance is usually de-

scribed as tail latencies, e.g., 99.9th percentile latency guar-

antee requires only one out of 1000 writes can be affected

by dirty-bit metadata update, we use the number of nines (n)

of the SLA (service-level agreement) to control the summary

levels of the ABT.

The BITTREEUPDATE procedure first updates the in-

memory bitmap and calculates the affected nodes in the

complete bit-tree (Lines 2∼3). Then, if the current block

write causes a leaf node to change from clean to dirty, we

will persist the updated ABT (Lines 4∼6).

Figure 4: Example of a virtual ABT (degree d = 2, level m =
4) stored in a flat bit array for the actual ABT (Fig. 3(left)).
For dm−1 = 8 leaves (representing 8 blocks), there are totally

∑m−1
i=0 di = dm−1

d−1 = 15 nodes in the tree, which can be stored

using 15 bits (0010 1000 0000 000).

The PERIODICADJUST procedure decides whether to add

or delete leaf nodes in the ABT according to the statistics of

the last period (p). The period is configurable and by default

set as one second. If there are too many metadata writes com-

pared to the SLA in p, then we will remove all the children

of the parent that has experienced the most metadata writes

during p (Lines 12∼15). Otherwise we will add children to

the leaf node that has experienced the least metadata writes

during p (Lines 16∼18). Similar to the original DM-cache,

MapperX can synchronously or asynchronously update the

ABT (without add/deleting leaves) when the dirty blocks are

demoted to the HDD.

3.2 Fast Crash Recovery
Since the ABT is synchronously updated for every write

request, the leaf nodes in the ABT has no false negatives

for dirty states. That is, when a leaf is not dirty, each of

the blocks it represents are guaranteed to be not dirty and we

can safely skip these blocks in crash recovery. Therefore, the

recovery procedure of MapperX-based DM-cache devices is

straightforward: for each dirty leaf L of the ABT, demote all

SSD-cached blocks of L to the HDD.

3.3 Implementation
We have implemented MapperX on CentOS 7 by aug-

menting the original DM-cache with BITTREEUPDATE and

PERIODICADJUST in Algorithm 1, and realizing the in-

memory CBT and the on-disk ABT structures in Fig. 3.

In order not to introduce extra storage overhead, we reuse

DM-cache’s four-byte dirty-bit metadata structure of each

cached block, of which DM-cache uses only the last two bits

(a dirty bit and a valid bit) leaving the first 30 bits available

for MapperX. We organize the first 30 bits of all cached

blocks’ metadata structures into a flat bit array. To minimize

the update overhead of adding/deleting leaves, we store ABT

as the virtual ABT or V-ABT (Fig. 4) which has the same

numbers of levels and leaves as the CBT but where only the

ABT’s dirty leaves are 1 and all other inner/leaf nodes are 0.

We use the flat bit array for statically representing the states

of all inner/leaf nodes in the V-ABT (each bit for one node

started from the root in a breadth-first manner).

708 2021 USENIX Annual Technical Conference USENIX Association

Figure 5: MapperX (β = 0.01,0.001,0.0001) vs. DM-cache

(normal) in mean latency.

Figure 6: MapperX (β = 0.01,0.001,0.0001) vs. DM-cache

(normal) in tail latency.

4 Evaluation

Our test machine has an Intel gold 6240 36-core 2.60GHz

CPU and 64GB RAM, running CentOS 7. The machine

has one SATA 7200RPM 2TB HDD and one NVMe 400GB

SSD. We configure the DM-cache virtual block device with

1TB HDD storage device, 128GB SSD cache device, and

1GB SSD metadata device. The client runs the fio bench-

mark tool [8] to perform random writes (rw=randwrite)

that all hit the SSD cache for three hundred seconds. Note

that cache miss should be avoided in this test because other-

wise the poor performance of HDD storage would dominate

the overall performance making MapperX and DM-cache

have no difference.

4.1 Micro Benchmarks
We first compare the latency of random writes of MapperX

and DM-cache. The cache block size (bs) is 64KB ∼ 256KB,

and the fio write block size is equal to the cache block size.

The degree of the tree is d = 4. We evaluate the latency using

one fio thread with iodepth = 1. We use β to represent

the expected ratio of metadata writes to all writes (i.e., β =
1/10n where n is the SLA) and set β = 0.01,0.001,0.0001,

respectively. We set max level = 7 (maximum number

of levels), which limits the ABT to have dmax level = 16K

leaves each representing 1024, 512, and 256 blocks for bs
= 64KB, 128KB, and 256KB (for the 1TB HDD storage),

Figure 7: MapperX (β = 0.01,0.001,0.0001) vs. DM-cache

(normal) in IOPS (writes per sec).

Figure 8: Recovery times of MapperX (β =
0.01,0.001,0.0001) relative to DM-cache for MSR traces.

respectively. The original DM-cache adopts asynchronous

metadata update (which equals to set max level = 1). The

results are shown in Fig. 5 and Fig. 6 respectively for the

mean and tail latencies. The results show that the latency

overhead of MapperX slightly increases as β increases from

0.0001 to 0.01, but the overhead is small compared to the

original DM-cache.

We compare the IOPS (number of writes per second) of

random writes of MapperX and DM-cache. The config-

uration is the same as that in the latency test except that

we use one fio thread with iodepth = 16. The result is

shown in Fig. 7, where MapperX has similar IOPS with DM-

cache, which proves that the IOPS overhead of MapperX is

small compared to the original DM-cache. Note that higher

latency does not necessarily cause lower throughput (and

vice versa), because NVMe SSD supports high parallelism

which enables it to mask I/O delays with parallel I/O requests

flying over the wire and waiting in the pipeline.

4.2 Trace-Driven Evaluation
We compare the recovery performance of MapperX (bs =
128) and the original DM-cache, using the public I/O

traces from Microsoft Research [1] that capture block-level

I/O (below the filesystem cache) of various desktop/server

applications running for one week. The result is shown in

Fig. 8, where the original DM-cache has to recover all the

cached blocks because of its asynchronous dirty-bit metadata

USENIX Association 2021 USENIX Annual Technical Conference 709

update. In contrast, MapperX only needs to recover much

fewer blocks owing to its synchronous dirty-bit metadata

update. For example, the recovery time of MapperX with

β = 0.01 for the proj trace is only 0.6% that of DM-cache.

Generally speaking, less locality leads to fewer ABT levels,

fewer normal-time ABT updates, and longer crash recovery

time (due to higher false-positive rates), with the design of

the original DM-cache at the extreme end.

5 Related Work & Discussion

DM-cache [5], Bcache [3] and Flashcache [9] are Linux

kernel modules which are used to combine fast SSDs with

slow HDDs as a virtual block device. The difference is that

Bcache utilizes a btree cache structure, while Flashcache’s

cache is structured as a set-associative hash table. LVM-

cache [12] is built on top of DM-cache using logical volumes

to avoid calculation of block offsets and sizes. DM-cache

can also be used as the client-side local storage for caching

of virtual machines in storage area networks (SANs).

DM-cache and its variations asynchronously update dirty

bits and thus cannot recover from crashes with up-to-date

dirty-bit information. Consequently, all cached blocks on

SSD have to be assumed dirty, which makes cached blocks

have to be written to HDD. In contrast, MapperX uses ABT

to synchronously update dirty bits, providing flexibility of

whether to write dirty data to HDD on recovery. Since

recovery from crashes takes time, it is natural for MapperX

to take a little more time (usually several minutes depending

on the volume of dirty data) for demotion.

In addition to DM-cache/LVM-cache/Bcache/Flashcache

provided by Linux kernel, several SSD-HDD hybrid designs

use SSD as a cache layer. For example, Nitro [37] designs

a capacity-optimized SSD cache for primary storage. Solid

State Hybrid Drives (SSHD [28]) integrate an SSD inside

a traditional HDD and realize SSD cache in a way similar

to Nitro. URSA [38] is a distributed block storage system

which stores primary replicas on SSDs and replicates backup

replicas on HDDs. Griffin [60] designs a hybrid storage

device that uses HDDs as a write cache for SSDs to extend

SSD lifetimes. Compared to these studies, MapperX mainly

focuses on the tradeoff between normal write performance

and recovery times, using the ABT to adaptively adjust the

range represented by the leaves.

Journal [38] based metadata write is inefficient [63] for

DM-cache because of expensive write ordering [22]. For

consistency, journal-based solutions always impose ordering

constraint on writes (e.g., data → sync → metadata → sync)

[21], which both increases latency and decreases throughput.

In DM-cache and MapperX, if the blocks are already in the

cache then the writes need not update the mapping metadata,

so they only need one SSD write for DM-cache (Fig. 1) and

(if ABT unchanged) for MapperX.

Log-structured solutions [24] are inefficient for DM-

cache, because log-style writing always causes changes of

the SSD-HDD mapping metadata (due to new block allo-

cation) which has to be updated even for cache-hit write

requests. In contrast, this can be avoided by DM-cache

and MapperX for cache-hit write requests when mapping

metadata keeps unchanged, where only one metadata write

is needed (Fig. 1). Moreover, garbage collection (GC) [49]

for old versions is expensive for log-structured systems.

Hardware-based, out-of-band solutions [17] require spe-

cial hardware and driver supports with high programming

complexity, and recently-emerging open-channel SSDs [7]

are not readily available. As far as we know, large cloud

providers that own millions of SSDs only have a few thou-

sands SSDs with open-channel customization support. Fur-

ther, synchronous update of SSD page states can be viewed

as a special case of ABT where each leaf represents a page.

This is inefficient for workloads with good locality where

page states frequently change: writing a page back to HDD

requires to synchronously change its state (clean) on SSD,

which can be avoided by ABT if the higher-level node state

keeps unchanged (dirty). On the other hand, NVM (non-

volatile memory) [6] based solutions [15, 19, 20, 62, 71]

are promising but expensive. NVM is still uncommon in the

cloud, and the relatively-small NVM is expected to be used

in more critical scenarios.

6 Conclusion

This paper presents MapperX, a novel extension to DM-

cache that uses an on-disk bit-tree to synchronously persist

the dirty-bit metadata in a hierarchical manner. Experimental

results show that MapperX significantly outperforms DM-

cache in crash recovery times while only introducing negli-

gible metadata write overhead. In our future work, we will

apply EC [34, 39, 45, 55, 70] for ABT, study the impact of

MapperX on durability and consistency [30, 32, 46, 52, 58],

apply ABT in distributed file systems [21, 23, 29, 36, 50,

53, 56, 59] and object storage systems [2, 16, 47, 64, 67],

apply bloom filters [25, 42, 57, 61, 69] and compression

[18, 41, 54] in ABT, and improve ABT’s adjustment policy.

The source code of MapperX is available at [10].

Acknowledgement

We would like to thank Amy Tai, our shepherd, and the

anonymous reviewers for their insightful comments. We

thank Shun Gai for helping in the experiments, and we

thank the Didi Cloud Storage Team for their discussion.

Lujia Yin and Li Wang are co-primary authors. Lujia Yin

implemented some parts of MapperX when he was an intern

at Didi Chuxing. This research is supported by the Na-

tional Key R&D Program of China (2018YFB2101102) and

the National Natural Science Foundation of China (NSFC

61772541, 61872376 and 61932001).

710 2021 USENIX Annual Technical Conference USENIX Association

References
[1] http://iotta.snia.org/traces/388.

[2] https://aws.amazon.com/s3/.

[3] https://bcache.evilpiepirate.org/.

[4] https://en.wikipedia.org/wiki/Device_mapper.

[5] https://en.wikipedia.org/wiki/Dm-cache.

[6] https://en.wikipedia.org/wiki/Non-volatile_memory.

[7] https://en.wikipedia.org/wiki/Open-channel_SSD.

[8] https://fio.readthedocs.io/en/latest/.

[9] https://github.com/facebookarchive/flashcache.

[10] https://github.com/nicexlab/mapperx.

[11] https://hadoop.apache.org/docs/r1.2.1/hdfs_design.

html.

[12] https://man7.org/linux/man-pages/man7/lvmcache.7.

html.

[13] ANAND, A., MUTHUKRISHNAN, C., KAPPES, S., AKELLA, A.,

AND NATH, S. Cheap and large cams for high performance data-

intensive networked systems. In NSDI (2010), USENIX Association,

pp. 433–448.

[14] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M., PHAN-

ISHAYEE, A., TAN, L., AND VASUDEVAN, V. Fawn: a fast array

of wimpy nodes. In SOSP (2009), J. N. Matthews and T. E. Anderson,

Eds., ACM, pp. 1–14.

[15] ANDERSON, T. E., CANINI, M., KIM, J., KOSTIĆ, D., KWON, Y.,

PETER, S., REDA, W., SCHUH, H. N., AND WITCHEL, E. Assise:

Performance and availability via client-local NVM in a distributed file

system. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20) (Nov. 2020), USENIX Association,

pp. 1011–1027.

[16] BEAVER, D., KUMAR, S., LI, H. C., SOBEL, J., AND VAJGEL,

P. Finding a needle in haystack: Facebook’s photo storage. In

Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation (Berkeley, CA, USA, 2010), OSDI’10,

USENIX Association, pp. 47–60.

[17] BJØRLING, M., GONZALEZ, J., AND BONNET, P. Lightnvm: The

linux open-channel SSD subsystem. In 15th USENIX Conference
on File and Storage Technologies (FAST 17) (Santa Clara, CA, Feb.

2017), USENIX Association, pp. 359–374.

[18] BORSTNIK, U., VANDEVONDELE, J., WEBER, V., AND HUTTER,

J. Sparse matrix multiplication: The distributed block-compressed

sparse row library. Parallel Comput. 40, 5-6 (2014), 47–58.

[19] CHEN, Y., LU, Y., CHEN, P., AND SHU, J. Efficient and consistent

NVMM cache for ssd-based file system. IEEE Trans. Computers 68,

8 (2019), 1147–1158.

[20] CHENG, W., LI, C., ZENG, L., QIAN, Y., LI, X., AND

BRINKMANN, A. Nvmm-oriented hierarchical persistent client

caching for lustre. ACM Trans. Storage 17, 1 (2021), 6:1–6:22.

[21] CHIDAMBARAM, V., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,

AND ARPACI-DUSSEAU, R. H. Optimistic crash consistency. In

Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (2013), ACM, pp. 228–243.

[22] CHIDAMBARAM, V., SHARMA, T., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. Consistency without ordering. In Usenix
Conference on File and Storage Technologies (2012).

[23] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK, E., LEE,

B., BURGER, D., AND COETZEE, D. Better i/o through byte-

addressable, persistent memory. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles (2009), ACM,

pp. 133–146.

[24] DAI, Y., XU, Y., GANESAN, A., ALAGAPPAN, R., KROTH, B.,

ARPACI-DUSSEAU, A., AND ARPACI-DUSSEAU, R. From wisckey

to bourbon: A learned index for log-structured merge trees. In 14th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 20) (Nov. 2020), USENIX Association, pp. 155–171.

[25] DAI, Z., AND SHRIVASTAVA, A. Adaptive learned bloom filter

(ada-bf): Efficient utilization of the classifier with application to

real-time information filtering on the web. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual (2020), H. Larochelle, M. Ranzato, R. Hadsell,

M. Balcan, and H. Lin, Eds.

[26] DEBNATH, B., SENGUPTA, S., AND LI, J. Skimpystash: Ram space

skimpy key-value store on flash-based storage. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of
Data (New York, NY, USA, 2011), SIGMOD ’11, ACM, pp. 25–36.

[27] DEBNATH, B. K., SENGUPTA, S., AND LI, J. Flashstore: High

throughput persistent key-value store. PVLDB 3, 2 (2010), 1414–

1425.

[28] DORDEVIC, B., TIMCENKO, V., AND RAKAS, S. B. Sshd: Modeling

and performance analysis. INFOTEH-JAHORINA 15, 3 (2016), 526–

529.

[29] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file

system. In SOSP (2003), pp. 29–43.

[30] GRAY, C., AND CHERITON, D. Leases: An efficient fault-tolerant

mechanism for distributed file cache consistency. In Proceedings of
the Twelfth ACM Symposium on Operating Systems Principles (New

York, NY, USA, 1989), SOSP ’89, ACM, pp. 202–210.

[31] HARTER, T., BORTHAKUR, D., DONG, S., AIYER, A., TANG, L.,

ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Analysis

of hdfs under hbase: A facebook messages case study. In Proceedings
of the 12th USENIX Conference on File and Storage Technologies
(FAST 14) (2014), pp. 199–212.

[32] HERLIHY, M. P., AND WING, J. M. Linearizability: A correctness

condition for concurrent objects. ACM Trans. Program. Lang. Syst.
12, 3 (July 1990), 463–492.

[33] HILDEBRAND, D., AND HONEYMAN, P. Exporting storage systems

in a scalable manner with pnfs. In 22nd IEEE/13th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST’05)
(2005), IEEE, pp. 18–27.

[34] KOSAIAN, J., RASHMI, K. V., AND VENKATARAMAN, S. Parity

models: erasure-coded resilience for prediction serving systems. In

Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019
(2019), T. Brecht and C. Williamson, Eds., ACM, pp. 30–46.

[35] LEE, E. K., AND THEKKATH, C. A. Petal: Distributed virtual disks.

In ACM SIGPLAN Notices (1996), vol. 31, ACM, pp. 84–92.

[36] LEUNG, A. W., PASUPATHY, S., GOODSON, G. R., AND MILLER,

E. L. Measurement and analysis of large-scale network file system

workloads. In USENIX annual technical conference (2008), vol. 1,

pp. 2–5.

[37] LI, C., SHILANE, P., DOUGLIS, F., SHIM, H., SMALDONE, S., AND

WALLACE, G. Nitro: A capacity-optimized ssd cache for primary

storage. In USENIX Annual Technical Conference (2014), pp. 501–

512.

[38] LI, H., ZHANG, Y., LI, D., ZHANG, Z., LIU, S., HUANG, P., QIN,

Z., CHEN, K., AND XIONG, Y. Ursa: Hybrid block storage for

cloud-scale virtual disks. In Proceedings of the Fourteenth EuroSys
Conference 2019 (2019), ACM, p. 15.

[39] LI, H., ZHANG, Y., ZHANG, Z., LIU, S., LI, D., LIU, X., AND

PENG, Y. Parix: speculative partial writes in erasure-coded systems.

In 2017 USENIX Annual Technical Conference (USENIX ATC 17)
(2017), USENIX Association, pp. 581–587.

USENIX Association 2021 USENIX Annual Technical Conference 711

[40] LIM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. Silt: A

memory-efficient, high-performance key-value store. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples (2011), ACM, pp. 1–13.

[41] LIU, Y., AND SCHMIDT, B. Lightspmv: Faster cuda-compatible

sparse matrix-vector multiplication using compressed sparse rows. J.
Signal Process. Syst. 90, 1 (2018), 69–86.

[42] LU, J., WAN, Y., LI, Y., ZHANG, C., DAI, H., WANG, Y., ZHANG,

G., AND LIU, B. Ultra-fast bloom filters using SIMD techniques.

IEEE Trans. Parallel Distributed Syst. 30, 4 (2019), 953–964.

[43] MEYER, D. T., AGGARWAL, G., CULLY, B., LEFEBVRE, G.,

FEELEY, M. J., HUTCHINSON, N. C., AND WARFIELD, A. Parallax:

virtual disks for virtual machines. In ACM SIGOPS Operating Systems
Review (2008), vol. 42, ACM, pp. 41–54.

[44] MICKENS, J., NIGHTINGALE, E. B., ELSON, J., GEHRING, D.,

FAN, B., KADAV, A., CHIDAMBARAM, V., KHAN, O., AND

NAREDDY, K. Blizzard: Fast, cloud-scale block storage for cloud-

oblivious applications. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14) (2014), pp. 257–273.

[45] MITRA, S., PANTA, R. K., RA, M., AND BAGCHI, S. Partial-

parallel-repair (PPR): a distributed technique for repairing erasure

coded storage. In Proceedings of the Eleventh European Conference
on Computer Systems, EuroSys 2016, London, United Kingdom,
April 18-21, 2016 (2016), C. Cadar, P. R. Pietzuch, K. Keeton, and

R. Rodrigues, Eds., ACM, pp. 30:1–30:16.

[46] MOHAN, J., MARTINEZ, A., PONNAPALLI, S., RAJU, P., AND

CHIDAMBARAM, V. Finding crash-consistency bugs with bounded

black-box crash testing. In 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018 (2018), A. C. Arpaci-Dusseau and G. Voelker,

Eds., USENIX Association, pp. 33–50.

[47] MURALIDHAR, S., LLOYD, W., ROY, S., HILL, C., LIN, E.,

LIU, W., PAN, S., SHANKAR, S., SIVAKUMAR, V., TANG, L.,

AND KUMAR, S. F4: Facebook’s warm blob storage system. In

Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation (Berkeley, CA, USA, 2014), OSDI’14,

USENIX Association, pp. 383–398.

[48] NARAYANAN, D., DONNELLY, A., AND ROWSTRON, A. Write off-

loading: Practical power management for enterprise storage. ACM
Transactions on Storage (TOS) 4, 3 (2008), 10.

[49] NGUYEN, K., FANG, L., XU, G., DEMSKY, B., LU, S., ALAMIAN,

S., AND MUTLU, O. Yak: A high-performance big-data-friendly

garbage collector. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16) (Savannah, GA, Nov. 2016),

USENIX Association, pp. 349–365.

[50] NIAZI, S., ISMAIL, M., HARIDI, S., DOWLING, J., GROHSS-

CHMIEDT, S., AND RONSTRÖM, M. Hopsfs: Scaling hierarchical file

system metadata using newsql databases. In 15th USENIX Conference
on File and Storage Technologies (FAST 17) (2017), pp. 89–104.

00091.

[51] NIGHTINGALE, E. B., ELSON, J., FAN, J., HOFMANN, O., HOW-

ELL, J., , AND SUZUE, Y. Flat datacenter storage. In OSDI (2012).

[52] ONGARO, D., AND OUSTERHOUT, J. In search of an understandable

consensus algorithm. In Proceedings of the 2014 USENIX Confer-
ence on USENIX Annual Technical Conference (Berkeley, CA, USA,

2014), USENIX ATC’14, USENIX Association, pp. 305–320.

[53] PAN, S., STAVRINOS, T., ZHANG, Y., SIKARIA, A., ZAKHAROV, P.,

SHARMA, A., P, S. S., SHUEY, M., WAREING, R., GANGAPURAM,

M., CAO, G., PRESEAU, C., SINGH, P., PATIEJUNAS, K., TIPTON,

J. R., KATZ-BASSETT, E., AND LLOYD, W. Facebook’s Tectonic

Filesystem: Efficiency from Exascale. In 19th USENIX Conference
on File and Storage Technologies (FAST 21) (Feb. 2021), USENIX

Association, pp. 217–231. 00000.

[54] PLIGOUROUDIS, M., NUNO, R. A. G., AND KAZMIERSKI, T.

Modified compressed sparse row format for accelerated fpga-based

sparse matrix multiplication. In IEEE International Symposium on
Circuits and Systems, ISCAS 2020, Sevilla, Spain, October 10-21,
2020 (2020), IEEE, pp. 1–5.

[55] RASHMI, K. V., CHOWDHURY, M., KOSAIAN, J., STOICA, I., AND

RAMCHANDRAN, K. Ec-cache: Load-balanced, low-latency cluster

caching with online erasure coding. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savan-
nah, GA, USA, November 2-4, 2016 (2016), K. Keeton and T. Roscoe,

Eds., USENIX Association, pp. 401–417.

[56] REN, K., ZHENG, Q., PATIL, S., AND GIBSON, G. IndexFS: Scaling

file system metadata performance with stateless caching and bulk

insertion. In SC’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(2014), IEEE, pp. 237–248. 00136.

[57] SANTIAGO, L., VERONA, L. D., RANGEL, F. M., DE FARIA, F. F.,

MENASCHÉ, D. S., CAARLS, W., JR., M. B., KUNDU, S., LIMA,

P. M. V., AND FRANÇA, F. M. G. Weightless neural networks as

memory segmented bloom filters. Neurocomputing 416 (2020), 292–

304.

[58] SHI, X., PRUETT, S., DOHERTY, K., HAN, J., PETROV, D., CAR-

RIG, J., HUGG, J., AND BRONSON, N. Flighttracker: Consistency

across read-optimized online stores at facebook. In 14th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2020, Virtual Event, November 4-6, 2020 (2020), USENIX Associa-

tion, pp. 407–423.

[59] SHVACHKO, K. V. Hdfs scalability: The limits to growth. ; login::
the magazine of USENIX & SAGE 35, 2 (2010), 6–16.

[60] SOUNDARARAJAN, G., PRABHAKARAN, V., BALAKRISHNAN, M.,

AND WOBBER, T. Extending ssd lifetimes with disk-based write

caches. In FAST (2010), vol. 10, pp. 101–114.

[61] STANCIU, V. D., VAN STEEN, M., DOBRE, C., AND PETER, A.

Privacy-preserving crowd-monitoring using bloom filters and homo-

morphic encryption. In EdgeSys@EuroSys 2021: 4th International
Workshop on Edge Systems, Analytics and Networking, Online Event,
United Kingdom, April 26, 2021 (2021), A. Y. Ding and R. Mortier,

Eds., ACM, pp. 37–42.

[62] VENKATESAN, V., WEI, Q., AND TAY, Y. C. Ex-tmem: Extending

transcendent memory with non-volatile memory for virtual machines.

In 2014 IEEE International Conference on High Performance Com-
puting, HPCC/CSS/ICESS 2014 (2014), IEEE, pp. 966–973.

[63] WANG, L., XUE, J., LIAO, X., WEN, Y., AND CHEN, M. LCCFS:

a lightweight distributed file system for cloud computing without

journaling and metadata services. Sci. China Inf. Sci. 62, 7 (2019),

72101:1–72101:14.

[64] WANG, L., ZHANG, Y., XU, J., AND XUE, G. MAPX: controlled

data migration in the expansion of decentralized object-based storage

systems. In 18th USENIX Conference on File and Storage Tech-
nologies, FAST 2020, Santa Clara, CA, USA, February 24-27, 2020
(2020), S. H. Noh and B. Welch, Eds., USENIX Association, pp. 1–

11.

[65] WANG, Y., KAPRITSOS, M., REN, Z., MAHAJAN, P., KIRUBANAN-

DAM, J., ALVISI, L., AND DAHLIN, M. Robustness in the salus

scalable block store. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13) (2013), pp. 357–370.

[66] WARFIELD, A., ROSS, R., FRASER, K., LIMPACH, C., AND HAND,

S. Parallax: Managing storage for a million machines. In HotOS
(2005).

[67] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D., AND

MALTZAHN, C. Ceph: A scalable, high-performance distributed file

system. In Proceedings of the 7th symposium on Operating systems
design and implementation (2006), pp. 307–320.

712 2021 USENIX Annual Technical Conference USENIX Association

[68] ZHANG, Y., GUO, C., LI, D., CHU, R., WU, H., AND XIONG,

Y. Cubicring: Enabling one-hop failure detection and recovery for

distributed in-memory storage systems. In NSDI (2015), pp. 529–542.

[69] ZHANG, Y., LI, D., CHEN, L., AND LU, X. Collaborative search in

large-scale unstructured peer-to-peer networks. In 2007 International
Conference on Parallel Processing (ICPP 2007), September 10-14,
2007, Xi-An, China (2007), IEEE Computer Society, p. 7.

[70] ZHANG, Y., LI, H., LIU, S., XU, J., AND XUE, G. PBS: an

efficient erasure-coded block storage system based on speculative

partial writes. ACM Trans. Storage 16, 1 (2020), 6:1–6:25.

[71] ZHU, G., LU, K., WANG, X., ZHANG, Y., ZHANG, P., AND

MITTAL, S. Swapx: An nvm-based hierarchical swapping framework.

IEEE Access 5 (2017), 16383–16392.

USENIX Association 2021 USENIX Annual Technical Conference 713

