
Proactive Energy-Aware Adaptive 
Video Streaming on Mobile Devices

Jiayi Meng, Qiang Xu, Y. Charlie Hu
Purdue University



Modern Mobile Apps are Power Hungry
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Case Study: 360° Video Streaming on YouTube 
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Methodology:
• Streamed 6 Youtube videos with different resolutions and frame rates on Pixel 2 over 802.11ac
• Measured power using Monsoon power monitor

Streaming videos @4K/60 
draws 580 mA

33.1%



Energy-aware App Adaption

• Definition: App dynamically adjusts data fidelity to meet a user-
specified goal for battery duration [SOSP’99]

• Example scenarios
• Video streaming apps: adapt video quality to support a 4-hour plane ride 

with 60% battery level drop
• Navigation apps: adapt filtering level of a map to support a 2-hour drive 

with 40% battery level drop
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References:
[1] Energy-aware adaptation for mobile applications [SOSP’99]



Outline

• Limitations of classic energy-aware adaptation
• Key observation
• Proactive energy-aware adaptation
• Case study: 360° video streaming
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Classic Energy-aware App Adaptation: 
System-level
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[Powerscope’99, Quanto’08]

Pre-trained per-hardware-
component power modeling 
[Ecosystem’02, Cinder’11]

Halting or throttling app threads, 
processes or resource containers 

[Ecosystem’02, Cinder’11]

Triggering app fidelity 
adaptation 

[SOSP’99, Nemesis’01]

References:
[1] Energy-aware adaptation for mobile applications [SOSP’99]
[2] Powerscope: A tool for profiling the energy usage of mobile applications [WMCSA’99]
[3] Energy is just another resource: Energy accounting and energy pricing in the nemesis os [HotOS’01]

[4] Ecosystem: Managing energy as a first class operating system resource [ASPLOS’02]
[5] Quanto: Tracking energy in networked embedded systems [OSDI’08]
[6] Energy management in mobile devices with the cinder operating system [Eurosys’11]
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Characteristics of Classic Energy-aware 
App Adaptation
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• Reactive 
• OS treats app as black-box and informs it to adapt after energy 

deviation from the pre-specified budget happens
• Disintegrated
• OS monitors the app energy drain, while app performs adaptation

• Implication
• The app does not know how much app fidelity it should adapt in the 

next time interval



Reactive Adaptation Causes Oscillation
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Key Observation: Modern Apps Have 
Proactive Built-in Adaptation
• Built-in adaptation: Apps proactively adapt data fidelity to network 

dynamics or other system constraints to optimize QoE

• Examples
• Adaptive bitrate (ABR) in video streaming systems: DASH
• Adaptive offloading computation to edge servers for deep learning 

enhanced tasks, such as video analytics: Sysmac [1]

References:
[1] https://industrial.omron.eu/en/products/sysmac-platform

https://industrial.omron.eu/en/products/sysmac-platform


Key Idea: Proactive Energy-aware Adaptation

• The energy-drain budget can be seamlessly integrated into the 
built-in proactive QoE adaptation of the app

• Advantage
• App energy drain adaptation is no longer an “after-effect” and hence likely 

to reduce the oscillation in app adaptation and improve the app QoE
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Outline

• Limitations of classic energy-aware adaptation
• Key observation
• Proactive energy-aware adaptation
• Case study: 360° video streaming
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Video Client Video Server

Request: 
next video chunk  at bitrate r

Response: 
video content

InputOutput

1 sec/s

Animation borrowed from Te-Yuan Huang (SIGCOMM ‘14) http://conferences.sigcomm.org/sigcomm/2014/doc/slides/38.pdf
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ABR Problem Formulation [Sigcomm’15]
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References:
[1] A control theoretic approach for dynamic adaptive video streaming over http [Sigcomm’15]



Model Predictive Control (MPC) Algorithm 
[Sigcomm’15]
• Goal: decide the video chunk 

quality to be fetched next 𝐹! by 
predicting QoE of next N chunks

𝑚𝑎𝑥"!,…,"!"#$% %
!

!%&'(

𝑄𝑜𝐸)

subject to buffer and network dynamics
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References:
[1] A control theoretic approach for dynamic adaptive video streaming over http [Sigcomm’15]

How to integrate energy budget into 
the built-in app adaptation logic?



Energy-aware QoE Maximization Problem for ABR
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subject to buffer and network dynamics

and total energy constraint

User-specified energy budget: total energy budget 𝐸! over a fixed 
amount of time 𝑇" à power budget 𝑃! = 𝐸!/ 𝑇"

max%𝑄𝑜𝐸)

E.g. 𝐸! : 50% battery level drop; 𝑇" : 4-hour plane ride 



Proactive Energy-aware ABR
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Challenges of Proactive Energy-aware ABR

• How to predict power consumption for each adaptation candidate?

• How to incorporate energy budget into its QoE optimization logic?
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Proactive Energy-aware ABR
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subject to buffer and network dynamics

and 𝐸% +⋯+ 𝐸%&'() < 𝑁 ) 𝑃! ) 𝛿𝑡

max%𝑄𝑜𝐸)

𝐸# predicted energy for chunk k 
𝑁 number of chunks to predict
𝑃! power budget
𝛿𝑡 per-chunk interval duration 



Exploiting Energy Surplus in Proactive 
Energy-aware ABR 
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subject to buffer and network dynamics
and 𝐸% +⋯+ 𝐸%&'() < 𝑁 ) 𝑃! ) 𝛿𝑡 + 𝑬𝒔

max%𝑄𝑜𝐸)

𝐸# predicted energy for chunk k 
𝑁 number of chunks to predict
𝑃! power budget
𝛿𝑡 per-chunk interval duration 
𝑬𝒔 energy surplus so far

• App energy drain is cumulative and elastic over time and thus energy 
deficit/surplus (𝑬𝒔) is accumulated



Energy-aware QoE Maximization
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LA(1): 
look ahead 1

LA(1)+LB: 
look ahead 1 and look 

back

LA(N)+LB: 
look ahead N and look 

back

max0𝑄𝑜𝐸0

subject to buffer and 
network dynamics and

𝐸% < 1 ) 𝑃! ) 𝛿𝑡

max0𝑄𝑜𝐸0
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𝐸% < 1 ) 𝑃! ) 𝛿𝑡 + 𝑬𝒔
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Trace-driven Evaluation

• Network-trace datasets: Ytrace and FCC 
• Devices: Pixel 2 and Moto Z3
• Two types of power budgets: 

• Low power budget: 20th-percentile per-interval power draw
• High power budget: average power draw over the streaming session
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Impact of Different Proactive Design Options 
under Low Power Budget on Pixel 2 
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LA(N)+LB saves 29.10% power than Default and 
achieves the highest QoE among the three proactive designs.
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Performance Comparison between Reactive 
and Proactive Approaches 
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RA: reactive approach
LA(N)+LB: proactively looking ahead 

N chunks and looking back
+S: adding a smoothing control 

LA(N)+LB+S has 44.8% higher 
QoE than RA+S



QoE Breakdown Comparison between 
Reactive and Proactive Approaches 
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LA(N)+LB+S shows significant benefits over RA+S because of 
reduced quality switching



Generalization

• Supporting multiple apps competing for the energy budget
• User provides input on how the total energy budget should be split
• Or a global energy-aware controller jointly optimizes QoE of 

concurrently running apps 
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Summary

• Classic reactive energy-aware app adaptation can lead to app fidelity oscillation 
which can negatively affect user-perceived QoE.

• We observe the built-in QoE optimization frameworks of modern mobile apps 
naturally lend themselves to proactive energy-aware app adaptation.

• We showcase how to integrate user-specified energy budget with the built-in 
app adaptation logic of MPC-based ABR system, which has been open-sourced.

• Proactive energy-aware video streaming improves QoE by 44.8% (Pixel 2) and 
19.2% (Moto Z3) over the reactive approach under low power budget.
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Thanks!
Please feel free to contact us (meng72@purdue.edu), if you have further 
questions. J
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Backup
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Challenges of Proactive Energy-aware ABR

• How to predict power consumption for each adaptation candidate?

• How to incorporate energy budget into its QoE optimization logic?
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Function-wise Power Prediction

• Key idea: cluster hardware components processing the common 
video chunk at each time interval 

à each cluster corresponds to one high-level app function

• Functions for 360° video streaming:
• Video decoding and displaying function
• Network transmission function
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Challenges of Proactive Energy-aware ABR

• How to predict power consumption for each adaptation candidate?

• How to incorporate energy budget into its QoE optimization logic?
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Accuracy of Function-wise Power Modeling
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Function-wise power predictor achieves low mean per-interval 
energy prediction error of 4.87% (Pixel 2) and 5.86% (Moto Z3).
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Performance of Proactive Approaches 
under Low Power Budget on Pixel 2 
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LA(N)+LB saves 29.10% power than Default and 
achieves the highest QoE among the three proactive designs.
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QoE Breakdown of Proactive Approaches 
under Low Power Budget on Pixel 2
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Performance of Proactive Approaches 
under High Power Budget on Pixel 2 
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The penalty of proactive energy-aware adaptation is really small, 
compared to the energy-oblivious default ABR.
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