
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Explore Data Placement Algorithm for
Balanced Recovery Load Distribution

Yingdi Shan, Zhongguancun Laboratory and Tsinghua University;
Kang Chen and Yongwei Wu, Tsinghua University

https://www.usenix.org/conference/atc23/presentation/shan

Explore Data Placement Algorithm for Balanced Recovery Load Distribution

Yingdi Shan1,2, Kang Chen2 and Yongwei Wu2

1Zhongguancun Laboratory
2Tsinghua University

Abstract
In distributed storage systems, the ability to recover from
failures is critical for ensuring reliability. To improve recovery
speed, these systems often distribute the recovery task across
multiple disks and recover data units in parallel. However, the
use of fine-grained data units for better load balancing can
increase the risk of data loss.

This paper systematically analyzes the recovery load dis-
tribution problem and proposes a new data placement algo-
rithm that can achieve load balancing without employing fine-
grained data units. The problem of finding an optimal data
placement for recovery load balancing is formally defined and
shown to be NP-hard. A greedy data placement algorithm is
presented, and experimental results demonstrate its superior
performance compared to conventional techniques, with up to
2.4 times faster recovery. Furthermore, the algorithm supports
low-overhead system expansion.

1 Introduction
In distributed storage systems, data is divided into smaller
units called data units, which are grouped together in a place-
ment group for reliability. For example, Google File System
(GFS) [6] uses 64MB chunks as data units and replicates each
chunk three times to form a placement group. The technique
of erasure coding [7, 14, 18] can be utilized to calculate the
parity of data units that have been grouped together to form a
placement group, thereby providing another method for data
reliability. If a single node fails in the storage system, the lost
data units on that node must be repaired and distributed to
other nodes, a process known as recovery. In this context, the
term node is used to refer to an entity within the distributed
system, which can be either a whole server or a single disk.
Since there are many data units on a single node and different
data units on the same node may belong to different place-
ment groups, these storage systems can perform recovery in
parallel, improving recovery speed [12, 13, 21]. Parallelized
recovery has the potential to increase recovery speed so that
it is limited by the cluster’s bandwidth rather than the band-
width of an individual node, improving the overall reliability
of the storage system.

However, parallelized recovery does not necessarily imply
faster recovery. An imbalance in the distribution of recovery
load among various nodes can lead to congestion in certain
nodes and prolonged recovery times. Imbalanced recovery

loads can also negatively impact the performance of certain
nodes, as they may have to devote a significant amount of
their bandwidth to recovery.

To address these issues, distributed storage systems of-
ten employ fine-grained data units to balance the recovery
load [6, 20]. By distributing a sufficient number of data units
across various nodes, the recovery load can be evenly dis-
tributed through randomization [13]. However, this approach
to fine-grained recovery, while effective in load balancing,
also increases the risk that any placement group in the cluster
fails [1–4, 9, 22]. Furthermore, the utilization of fine-grained
data units can result in an uptick in overhead for the manage-
ment of metadata.

This paper presents a novel data placement algorithm de-
signed to achieve a more balanced recovery performance
without the need for fine-grained data units. Data placement,
which refers to the mapping of data units to disks, is chal-
lenging to design as it impacts data distribution and system
scaling. Therefore, an effective data placement algorithm that
can balance the recovery load should not have any negative
impact on these perspectives.

To create a data placement algorithm for balancing the
recovery load, this paper begins by formally defining the opti-
mal recovery load distribution problem as selecting a set of
nodes to minimize the weight of the edge with the highest
weight in the recovery load graph. We then prove that this
problem is NP-hard by showing that it can be transformed
into a maximum independent set problem in polynomial time.

The paper then proposes a data placement algorithm based
on a greedy strategy that is able to compute a more balanced
data placement for recovery load distribution. The algorithm
also supports low-overhead system expansion. Experiments
demonstrate that the use of this data placement algorithm can
improve the storage system’s recovery performance by 1.7-2.4
times compared to the original data placement algorithm.

The contributions of this paper include:

• We formally define the optimal recovery load distribu-
tion problem. Following this, the paper proves that the
problem is NP-hard.

• We propose a greedy data placement algorithm for ef-
ficient recovery. It is experimentally demonstrated that
the algorithm is able to provide a more balanced recov-
ery load distribution. The algorithm can support low-
overhead system expansion.

USENIX Association 2023 USENIX Annual Technical Conference 233

2 Problem Definition and Analysis

2.1 Repair Load Matrix
The utilization of both replication and erasure coding tech-
niques serves as a means to guarantee reliability in data stor-
age systems. Various erasure codes exist, each having dis-
tinct read patterns. For instance, LRC (Local Reconstruction
Codes) [7] utilize a minimal number of nodes for repair, while
regenerating codes [5, 18] necessitate the read of data from a
larger number of nodes but only a fraction of the information
from each node. To harmonize these techniques, the repair
load matrix is employed as a means to describe the repair
process for both replication and erasure coding.

The repair load matrix is a matrix that represents the cost
required to repair a failed node. In scenarios where I/O is
the system bottleneck, the cost typically refers to I/O ex-
penses, and nodes are often interpreted as individual disks.
Conversely, when network bandwidth is the system’s bottle-
neck, the cost usually denotes network expenditures, with
nodes commonly referring to whole servers.

Let us denote the cardinality of a placement group as n.
Correspondingly, the repair load matrix is represented by an
n×n matrix W . The element Wi, j within this matrix signifies
the cost incurred to retrieve data from the jth node in the
placement group when the ith node within the same group
encounters a failure. For example, the repair load matrix for a
(k = 3,r = 1) Reed-Solomon (RS) code [14] is given below,
and it shows that when any node fails, data needs to be read
from all other nodes, and the cost of reading data from any
other node is 1.

W =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


In the context of an RS code where the redundancy param-

eter r is greater than 1, there exists a multitude of plausible
options for the repair load matrix W . This is contingent upon
which nodes are selected for data reading during the recovery
process. Any such selection can appropriately serve as the
repair load matrix for the system.

For a (k = 4,r = 2, l = 2) LRC code, the repair load matrix
can be written as

W =



0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 1 0 1 0 0
0 0 0 1 1 0 0 0
1 1 0 1 1 0 0 0
1 1 0 1 1 0 0 0


In this matrix, when repairing a data node or local parity

node, the LRC needs to read data from k
l nodes in the same

group in order to reconstruct the original data. When a global
parity node requires repair, the LRC must read all data nodes’
contents.

2.2 Recovery Load Graph
The repair load matrix defines the repair process for a sin-
gle placement group within a distributed storage system. In
contrast, the recovery load graph (or recovery load matrix)
characterizes the recovery load on each node in the event of
a failure within the system. This is achieved by summing
the repair load for each placement group. The recovery load
graph is defined mathematically as follows:

Definition 1 (Recovery Load Graph). Let W be the repair
load matrix defined above. Suppose there are N nodes in
the storage system, and the storage system has S placement
groups, denoted P1,P2, . . . ,PS. Each placement group Pi is
an array with length n, where each value, denoted by Pi,k,
represents a node id. If Pt,k = i, then we define Index(Pt , i)= k.
The recovery load graph corresponding to this storage system
is G = (V,E), where V is the set of points in the graph with
cardinality N, representing the nodes in the system, and E is
the set of edges in the graph. Let Ei, j denote the edge weight
between node i and node j, representing the load of reading
data from node j when node i fails. Let [i ∈ P] return 1 if i ∈ P
and 0 otherwise. The edge weight is calculated as follows:

Ei, j =
S

∑
t=1

[i ∈ Pt] · [j ∈ Pt] ·WIndex(Pt ,i),Index(Pt , j) (1)

……

Figure 1: Recover Load Graph

2.3 Optimal Recovery Load Distribution
In this paper, we consider a system in which each placement
group comprises an equal quantity of data. Placement groups
that are not at capacity, as they consume a minimal amount of
storage space, are disregarded. Upon the arrival of new data,
the system must determine an appropriate placement group to
accommodate it. The objective is to minimize the imbalanced
recovery load upon the addition of a new placement group to
the system. An alternative approach to this problem would be
to determine the optimal recovery load distribution by con-
sidering all placement groups simultaneously, as opposed to
incrementally identifying a single placement group. However,
such an approach may significantly restrict the system’s abil-
ity to add or remove a node, as it is hard to predict these events
in advance.

234 2023 USENIX Annual Technical Conference USENIX Association

An optimal distribution of recovery loads should strive to
minimize the maximum recovery load after the integration of
a new placement group. The definition of the optimal recovery
load distribution problem is given below:

Definition 2 (Optimal Recovery Load Distribution Problem).
Given a recovery load graph G = (V,E), the optimal recov-
ery load distribution problem is to construct an array P of
length n such that all its elements belong to V , and the cor-
responding set of edges E ′, where E ′

i, j = Ei, j +[i ∈ P] · [j ∈
P] ·WIndex(P,i),Index(P, j), such that the maximum value in the
edge set E ′ is minimized. The optimal recovery load corre-
sponding to graph G is:

min
P

max
i, j∈V

E ′
i, j (2)

As shown in Figure 1, when node i and node j have a
common placement group, the edge weight between them
needs to be added to the repair cost corresponding to the
repair load matrix. The optimal recovery load distribution
problem then becomes a problem of selecting n nodes from
the N nodes in graph G, such that the highest edge weight in
the graph is minimized after the weights are added.

2.4 Complexity Analysis and Proof
In this section, we prove that the optimal recovery load distri-
bution problem is NP-hard by reducing a known NP-complete
problem, the maximum independent set problem [8], to it
within polynomial complexity.

Definition 3 (Maximum Independent Set Problem). Given
a graph G = (V,E) and an integer n, let N(i) represent the
set of neighbor nodes of node i. The decision form of the
maximum independent set problem is to determine whether
there exists a set P ⊆V with cardinality not less than n such
that ∀i ∈ P, N(i)∩P = /0.

As shown in Figure 2, an independent set of a graph is a
set of nodes such that no two nodes in the set have an edge
between them. The red nodes in Figure 2 form an independent
set of the graph because there are no edges between any two
colored nodes. The maximum independent set problem is to
find an independent set of cardinality not less than n in the
graph.

Figure 2: Maximum independent set problem

Lemma 1. The maximum independent set problem can be
reduced to the optimal recovery load distribution problem in
polynomial time.

Proof. We consider the following problem for an arbitrary
graph G = (V,E): Given the recovery load graph G′ = G =
(V,E), where W is a repair load matrix with all entries equal
to 1 except for the diagonal entries. The recovery load edge
weight Ei, j = 1 when there is an edge in G from node i to node
j. The goal is to find a placement group P that minimizes the
maximum value in the updated edge set E ′ of graph G′ after
the integration of a new placement group.

We prove that the problem of finding the maximum inde-
pendent set of graph G can be reduced to solving the optimal
recovery load problem. Specifically, we show that the cardi-
nality of the independent set of graph G is not less than n if
and only if there exists a placement group P with cardinality
n such that the optimal recovery load of graph G′ is 1.

If there exists an independent set of cardinality not less
than n in graph G, we can simply select n nodes from the
independent set and place the new placement group on these
n nodes in G′. Denote this set of n nodes as p. Since these n
nodes are not adjacent to each other, Ei, j = 0 and E ′

i, j = 1 for
any node i and node j that belongs to p. Any other edges in E ′

remain the same as in E, which are no larger than 1. Therefore,
the edge with the largest weight in E ′ will not exceed 1. As a
result, the optimal recovery load corresponding to graph G′ is
1.

Conversely, if the optimal recovery load corresponding to
graph G′ is 1, we assume that there is no independent set of
cardinality not less than n in graph G. This means that we can
arbitrarily select n nodes from the graph G, and at least two
of these n nodes are adjacent. Then, if we select the same set
from the graph G′, the maximum edge weight of the edge Ei, j
in this set is 1. After the integration of the new placement, the
edge weight of the edge E ′

i, j is at least 2 because W is a repair
load matrix with all entries equal to 1 except for the diagonal
entries, which suggests that the optimal recovery load for this
graph is at least 2. This contradicts the premise, so it follows
that there must exist an independent set of cardinality not less
than n in the graph G = (V,E).

Additionally, the reduction of the problem has a complexity
of O(|E|), as each edge of the graph G can be transformed
into an edge in the recovery load graph by visiting it once.
Thus, the problem of finding the maximum independent set
can be efficiently reduced to the problem of determining the
optimal recovery load distribution in polynomial time.

Since the maximum independent set problem is an NP-
complete problem [8], it follows from Lemma 1 that the
optimal recovery load distribution problem is an NP-hard
problem.

3 Algorithm Design
3.1 Data Placement Algorithm
This section presents a data placement algorithm based on a
greedy strategy for the NP-hard problem of optimal recovery

USENIX Association 2023 USENIX Annual Technical Conference 235

load distribution. The algorithm aims to select nodes for a
placement group of size n from a set of N nodes by choosing,
at each step, the node whose sum of recovery costs to other
nodes in the current group is smallest. While this method may
not necessarily result in the optimal recovery load distribution,
it can help to balance the recovery load.

The pseudocode for the algorithm is provided in Algo-
rithm 1. This algorithm is responsible for mapping placement
groups to nodes, and it is called to obtain the placement group
P whenever a new placement group needs to be added to the
storage system. The input to the algorithm is the current re-
covery load graph G(V,E). The weight WV (v) of a vertex v is
defined as the sum of the weights of its adjacent edges, that is,
WV (v) = ∑e∈neighbor(v) E(e). D(v) is the number of data units
on the node. Capital letters, such as V0, represent sets, while
lowercase letters, such as v1, represent members of a set. For
example, V0 is a set of vertices and v0 is a vertex within that
set. The function Pick is used to randomly select a member
from a set. The output of the algorithm is a placement group
P.

Algorithm 1: Greedy Data Placement Algorithm
Input :G(V,E)
Output :P

1 v0 = Pick({v |WV (v) = minv′∈V (WV (v′))});
2 P = {v0};
3 while |P|< n do
4 Vcandidates = V −P;
5 V0 = Vcandidates −{v | violates criteria};
6 V1 =

{v | D(v)≤ (minv0∈V0D(v0)) · (1+ ε)∧ v ∈V0} ;
7 V2 =

{v | ∑v′∈P Ev,v′ = minv1∈V1(∑v′∈P Ev1,v′)∧v ∈V1};

8 vnext = Pick(V2);
9 P = P∪{vnext};

10 Update weight in G;

The proposed data placement algorithm based on the
greedy strategy must exclude certain nodes from being placed
in the same placement group. For example, nodes in the same
placement group should not be on the same server or cabinet
in order to reduce the risk of data loss due to systemic failures.
Line 5 of the algorithm demonstrates how the candidate set
V0 is constructed based on this rule.

Heuristic rules are used to find the most suitable next node
for the current placement group. This algorithm first selects
the node with the smallest edge weight sum as the initial
node. This process is shown by lines 1 to 2 of the algorithm.
In order to achieve a uniform distribution of data, in line 6,
V1 is defined as a vertex whose number of data units does
not exceed (1+ ε) times the minimum number of data units
in the current storage system. Since the data is difficult to
achieve absolute uniform distribution, this algorithm uses

an adjustable parameter ε to limit the uniformity of the data
placement.

To distribute the recovery load more evenly among nodes,
V2 is defined as the set of nodes with the smallest sum of
recovery costs to other nodes in the current replacement group
in the event of a failure, as shown in line 7 of the algorithm.
Finally, a vertex vnext is chosen from V2 as the next candidate
for the placement group and added to the set P. This process
continues until n members have been added to the set P, after
which the corresponding weights in G can be updated.

When a node represents a server instead of a disk, data units
for each node in the group require assignment to a specific
disk. This assignment can be efficiently achieved through a
round-robin strategy.

3.2 Target Node Selection
When a single node fails and requires recovery, the data stored
on it must be redistributed to other nodes in order to maintain
the reliability of the system. During this process, it is crucial
to select nodes to receive the data units from the failed node in
a manner that ensures even distribution of recovered data and
maintains balance in the recovery load. The algorithm in Al-
gorithm 2 can be used to select the location of data units to be
redistributed to other nodes during the recovery process. This

Algorithm 2: Target Node Selection for Recovey
Input :G(V,E), placement group P, failure node F
Output :v

1 V0 = V −{v | violates criteria};
2 V1 = {v | D(v)≤ (minv0∈V0D(v0)) · (1+ ε)∧ v ∈V0} ;
3 V2 = {v | ∑v′∈P Ev,v′ = minv1∈V1(∑v′∈P Ev1,v′)∧v ∈V1};
4 V3 = {v | Ev,F = minv2∈V2Ev2,F ∧ v ∈V2};
5 v = Pick(V3);
6 Update weight in G;

algorithm first excludes nodes that do not meet certain criteria
as in Algorithm 1. Next, the algorithm looks for nodes with
used storage space within a certain range in order to achieve
a balanced distribution of data, as described in line 2. The
algorithm then selects nodes that will help maintain recovery
load balance after the faulty node is removed, as shown in
line 3. Finally, the algorithm aims to evenly distribute the load
during recovery; therefore, if the previous conditions are met,
it will select the node with the least connection weight to the
failed node, as shown in line 4.

Since each node may store multiple data units, Algorithm 2
must be run for each placement group to determine the target
nodes.

3.3 System Expansion
When adding new nodes to the system, the graph G must
be updated to include the nodes corresponding to these new
devices. The system can then continue to call the algorithm

236 2023 USENIX Annual Technical Conference USENIX Association

in Algorithms 1 to automatically add new placement groups
containing the new nodes to the storage system, ensuring
that the recovery load remains as small as possible without
requiring any data migration.

However, when adding multiple nodes at once, using the
algorithm in Algorithms 1 directly can result in all the new
placement groups being placed on the same batch of newly
added nodes. This can lead to an imbalanced recovery load,
with a concentration of recovery load and writing load on
the newly added devices, even as more placement groups are
added. To address this issue, the algorithm should control the
rate at which data is placed on the new nodes during system
expansion.

To do this, the new nodes can be placed in a separate collec-
tion. Each time the system is expanded, the user can specify
a parameter c to control the placement rate of data on the new
devices. When calculating data placement, at most c nodes
will be selected from this collection, with the remaining n− c
devices being selected from other devices according to the
algorithm in Algorithm 1. Once the number of data units
on a node within the collection matches the number of data
units on the node with the least amount of data outside of this
collection, the node can be removed from the collection.

4 Evaluation
4.1 Evaluation Setup
In the context of our evaluation, we designate each individ-
ual disk as a node within the system. We carry out both
micro-benchmark experiments and overall performance test-
ing to assess performance. The micro-benchmark experi-
ments, performed outside of an actual storage system, specifi-
cally evaluate the variability in recovery load distribution and
data distribution. Instead of executing actual recovery, micro-
benchmark experiments provide an analysis of the recovery
load distribution, which are complementary to our overall
performance evaluation.

For the overall performance test, we employ a cluster of 16
servers, with each server boasting dual Intel Xeon E5 2643 v4
CPUs, 128GB of 2133 MHz DDR4 memory, a 512GB SATA3
SSD, and six 8TB 7200rpm SAS HDDs. The six HDDs are
independent and not grouped by a RAID. All servers run on
the CentOS 7.8 operating system. The servers are networked
via a 56Gbps Infiniband connection, with an MTU size of
65520, enabling us to better utilize the high-bandwidth net-
work in our evaluation. We set the value of ε to 0.02 for all
experiments to maintain a consistent testing environment.

4.2 Micro Benchmark
We conduct micro-benchmark experiments to see how our
algorithms can help to improve recovery load balance. In all
experiments, N is set to 100, and RS(10,4) code is employed
for each placement group.

Data Distribution. Figure 3a measures the uniformity of
data distribution for different data placement algorithms by

(a) Data Distribution (b) Recovery Load Distribution

Figure 3: The variance of data distribution and recovery load
distribution.

calculating the variance of the number of data units. It can
be seen that the greedy data placement algorithm is far more
uniform than the random data placement algorithm.

Recovery Load Distribution Figure 3b presents the recov-
ery load distribution of the system when utilizing different
data placement algorithms. The data depicted in the figure
demonstrates that the recovery load is more evenly distributed
when using a greedy data placement algorithm as compared
to random data placement.

(a) Add a disk (b) Add two disks

Figure 4: The variance of the recovery load after system ex-
pansion.

Recovery Load Distribution for System Expansion We
evaluate the effects of system expansion on recovery load
distribution. In this experiment, the variable c is set to 1. The
results are illustrated in Figure 4a and Figure 4b. Specifically,
Figure 4a represents the scenario where an additional disk is
added to the system when there are 500 placement groups
stored, while Figure 4b illustrates the situation where two
additional disks are added simultaneously.

The data illustrated in Figure 4a demonstrates that while
the greedy algorithm may initially create a temporary imbal-
ance in recovery load after system expansion, the recovery
load returns to a normal state as more placement groups are
integrated. This phenomenon arises due to the recovery load
on newly introduced disks being zero initially, resulting in a
sharp uptick in the variability of the recovery load distribution.
However, as these new disks become populated with data, the
recovery load re-establishes its balance.

Conversely, Figure 4b illustrates that simultaneous addition
of multiple disks leads to a more pronounced imbalance in the

USENIX Association 2023 USENIX Annual Technical Conference 237

Table 1: The average recovery time of different data placement
algorithms.

Codes Random Greedy Improvement

RS code 554s 273s 2.1x
LRC 460s 192s 2.4x

Clay code 240s 141s 1.7x

recovery load of the storage system and that it takes longer
for the system to return to normal.

4.3 Overall Performance
This experiment measures the recovery performance using dif-
ferent data placement algorithms and different erasure codes,
including RS code, LRC, and Clay Code [18]. To achieve
this, 96 hard disks were distributed across 16 machines, with
each data unit set at a size of 10GB and a total of 175 place-
ment groups in the system. The algorithms are integrated into
the RCStor storage system [16], as it provides high recovery
performance and various erasure codes. Prior to measuring
recovery, data of approximately 256GB was placed on each
disk, resulting in a total data size of 24.4TB. The recovery
process was initiated manually by shutting down a disk, and
the time required for recovery completion was recorded. To
gauge the maximum recovery bandwidth, we initiated the
recovery of all failed placement groups simultaneously. It
should be noted that during recovery, the data from the failed
disks was reconstructed on other functioning disks. We en-
sured there was no bandwidth cap for the recovery process.
Additionally, the recovery was carried out at a time when the
system was not in use, to avoid any operational interruptions.
We conducted 10 trials to ascertain the average recovery time.
The experimental results are presented in Table 1.

The data in Table 1 illustrates that the use of a greedy data
placement algorithm can significantly enhance the recovery
performance for various erasure codes. Specifically, the re-
covery performance is found to be 1.7-2.4 times greater than
that of the random data distribution algorithm.

We have also evaluated the influence of randomness on
recovery time. Our findings suggest that when utilizing the
greedy data placement algorithm, the impact of randomness
fluctuates within a range of ±10%. However, with the random
data placement algorithm, this variability increases to ±20%.

5 Related Work
Copyset [4] proposes to reduce the probability of data loss by
reducing the number of distinct placement groups, which are
referred to as copysets. In contrast, the focus of our paper is
to ensure recovery load balance given a predetermined small
number of placement groups. This number is approximately
the same as the number of copysets, contingent upon parame-
ter configurations. In essence, we tackle the issue of data loss

by balancing the recovery load given a fixed number of place-
ment groups. This aspect marks a departure from the Copyset
paper, which does not focus on recovery load balancing.

PDL [23] is a data placement algorithm that reduces im-
balances in inter-cabinet network communication. Selec-
tiveEC [24] maintains load balance during recovery by dy-
namically selecting nodes for reading and writing through
bipartite graph matching. However, they only reduce recov-
ery load imbalance for the network and cannot guarantee the
balance of load when accessing disks.

RAID-based data placement algorithms [11, 15, 17, 19, 26]
are designed for use with disk arrays, which are not appropri-
ate for use in distributed storage systems. RAID+ [25] and
D3 [10] use orthogonal Latin squares to distribute data and
ensure load balance for disk array recovery, but they lack scal-
ability and can only be applied to arrays with tens or hundreds
of disks. They also do not support dynamic system expansion.

Overall, existing data placement algorithms struggle to si-
multaneously provide load balancing for recovery, scalability
and low migration overhead.

6 Discussion
In a storage system capable of tolerating multiple failures,
resulting in numerous potential repair load matrices, a practi-
cal advantage may arise from dynamically selecting recovery
sources, taking into account observed loads and stragglers.
This dynamic selection aligns with our algorithm and could
involve dynamically choosing k nodes from each placement
group for data recovery, excluding stragglers, to minimize the
maximal recovery load. The future challenge lies in develop-
ing an efficient algorithm for this process or devising other
methods to account for the impacts of such dynamism.

7 Conclusion
This paper proposes a data placement algorithm based on a
greedy strategy that can provide a more balanced recovery
load distribution. Experiments show that using the data place-
ment algorithm can improve the recovery performance of the
storage system to 1.7-2.4 times compared to the random data
placement algorithm.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Nathan
Bronson, for their valuable comments and helpful suggestions.
The authors from Tsinghua University are all in the Depart-
ment of Computer Science and Technology, Beijing National
Research Center for Information Science and Technology
(BNRist), Tsinghua University, China. This work is supported
by National Key Research & Development Program of China
(2022YFB4502004), Natural Science Foundation of China
(62141216, 61877035) and Tsinghua University Initiative Sci-
entific Research Program.

238 2023 USENIX Annual Technical Conference USENIX Association

References

[1] Medha Bhadkamkar, Jorge Guerra, Luis Useche, Sam
Burnett, Jason Liptak, Raju Rangaswami, and Vage-
lis Hristidis. BORG: Block-reORGanization for self-
optimizing storage systems. In 7th USENIX Conference
on File and Storage Technologies (FAST ’09), pages
183–196, 2009.

[2] André Brinkmann, Kay Salzwedel, and Christian Schei-
deler. Efficient, distributed data placement strategies for
storage area networks. In Proceedings of the twelfth
annual ACM symposium on Parallel algorithms and
architectures (SPAA ’00), pages 119–128, 2000.

[3] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen,
Emil Sit, Hakim Weatherspoon, M. Frans Kaashoek,
John Kubiatowicz, and Robert Morris. Efficient replica
maintenance for distributed storage systems. In Pro-
ceedings of the 3rd Symposium on Networked Systems
Design and Implementation (NSDI ’06), pages 45–58,
2006.

[4] Asaf Cidon, Stephen Rumble, Ryan Stutsman, Sachin
Katti, John Ousterhout, and Mendel Rosenblum. Copy-
sets: Reducing the frequency of data loss in cloud stor-
age. In Proceedings of the 2013 USENIX Conference on
Annual Technical Conference (USENIX ATC ’13), pages
37–48, 2013.

[5] Alexandros G Dimakis, P Brighten Godfrey, Yunnan
Wu, Martin J Wainwright, and Kannan Ramchandran.
Network coding for distributed storage systems. IEEE
Transactions on Information Theory, 56(9):4539–4551,
2010.

[6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The google file system. In Proceedings of the
nineteenth ACM symposium on Operating systems prin-
ciples (SOSP ’03), pages 29–43, 2003.

[7] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus,
Brad Calder, Parikshit Gopalan, Jin Li, Sergey Yekhanin,
et al. Erasure coding in windows azure storage. In 2012
USENIX Annual Technical Conference (USENIX ATC
’12), pages 15–26, 2012.

[8] Richard M Karp. Reducibility among combinatorial
problems. In Complexity of computer computations,
pages 85–103. Springer, 1972.

[9] Jack YB Lee and John CS Lui. Automatic recovery from
disk failure in continuous-media servers. IEEE Trans-
actions on Parallel and Distributed Systems (TPDS),
13(5):499–515, 2002.

[10] Zhipeng Li, Min Lv, Yinlong Xu, Yongkun Li, and Lian-
gliang Xu. D3: Deterministic data distribution for ef-
ficient data reconstruction in erasure-coded distributed
storage systems. In 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS ’19),
pages 545–556. IEEE, 2019.

[11] Alberto Miranda and Toni Cortes. Raid: Online raid
upgrades using dynamic hot data reorganization. In 12th
USENIX Conference on File and Storage Technologies
(FAST ’14), pages 133–146, 2014.

[12] Edmund B Nightingale, Jeremy Elson, Jinliang Fan,
Owen Hofmann, Jon Howell, and Yutaka Suzue. Flat
datacenter storage. In 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’12),
pages 1–15, 2012.

[13] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego On-
garo, Seo Jin Park, Henry Qin, Mendel Rosenblum, et al.
The ramcloud storage system. ACM Transactions on
Computer Systems (TOCS), 33(3):1–55, 2015.

[14] Irving S Reed and Gustave Solomon. Polynomial codes
over certain finite fields. Journal of the society for in-
dustrial and applied mathematics, 8(2):300–304, 1960.

[15] Beomjoo Seo and Roger Zimmermann. Efficient disk
replacement and data migration algorithms for large
disk subsystems. ACM Transactions on Storage (TOS),
1(3):316–345, 2005.

[16] Yingdi Shan, Kang Chen, Tuoyu Gong, Lidong Zhou,
Tai Zhou, and Yongwei Wu. Geometric partitioning:
Explore the boundary of optimal erasure code repair.
In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles (SOSP ’21), page
457–471, 2021.

[17] Lei Tian, Dan Feng, Hong Jiang, Ke Zhou, Lingfang
Zeng, Jianxi Chen, Zhikun Wang, and Zhenlei Song.
PRO: A popularity-based multi-threaded reconstruction
optimization for RAID-Structured storage systems. In
5th USENIX Conference on File and Storage Technolo-
gies (FAST ’07), pages 301–314, 2007.

[18] Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik,
Ganesh Kini, Elita Lobo, Birenjith Sasidharan, P Vijay
Kumar, Alexandar Barg, Min Ye, Srinivasan Narayana-
murthy, et al. Clay codes: moulding MDS codes to yield
an MSR code. In 16th USENIX Conference on File and
Storage Technologies (FAST ’18), pages 139–154, 2018.

[19] Jiguang Wan, Jibin Wang, Changsheng Xie, and Qing
Yang. S2raid: Parallel raid architecture for fast data re-
covery. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 25(6):1638–1647, 2013.

USENIX Association 2023 USENIX Annual Technical Conference 239

[20] Li Wang, Yiming Zhang, Jiawei Xu, and Guangtao Xue.
MAPX: Controlled data migration in the expansion of
decentralized Object-Based storage systems. In 18th
USENIX Conference on File and Storage Technologies
(FAST ’20), pages 1–11, 2020.

[21] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th symposium on Operating systems design and
implementation (OSDI ’06), pages 307–320, 2006.

[22] Qin Xin, Ethan L Miller, and SJ Thomas JE Schwarz.
Evaluation of distributed recovery in large-scale storage
systems. In 13th IEEE International Symposium on
High performance Distributed Computing (HPDC ’04),
pages 172–181, 2004.

[23] Liangliang Xu, Min Lv, Zhipeng Li, Cheng Li, and Yin-
long Xu. PDL: A data layout towards fast failure recov-
ery for erasure-coded distributed storage systems. In
IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pages 736–745, 2020.

[24] Liangliang Xu, Min Lyu, Qiliang Li, Lingjiang Xie, and
Yinlong Xu. SelectiveEC: Selective reconstruction in
erasure-coded storage systems. In 12th USENIX Work-
shop on Hot Topics in Storage and File Systems (Hot-
Storage ’20), 2020.

[25] Guangyan Zhang, Zican Huang, Xiaosong Ma, Songlin
Yang, Zhufan Wang, and Weimin Zheng. RAID+: De-
terministic and balanced data distribution for large disk
enclosures. In 16th USENIX Conference on File and
Storage Technologies (FAST ’18), pages 279–294, 2018.

[26] Weimin Zheng and Guangyan Zhang. FastScale: Accel-
erate RAID scaling by minimizing data migration. In
9th USENIX Conference on File and Storage Technolo-
gies (FAST ’11), pages 149–161, 2011.

240 2023 USENIX Annual Technical Conference USENIX Association

	Introduction
	Problem Definition and Analysis
	Repair Load Matrix
	Recovery Load Graph
	Optimal Recovery Load Distribution
	Complexity Analysis and Proof

	Algorithm Design
	Data Placement Algorithm
	Target Node Selection
	System Expansion

	Evaluation
	Evaluation Setup
	Micro Benchmark
	Overall Performance

	Related Work
	Discussion
	Conclusion

