Overcoming the Memory Wall
with CXL-Enabled SSDs

Shao-Peng Yang', Minjae Kim?, Sanghyun Nam?, Juhyung Park?,
Jin-yong Choi*, Eyee Hyun Nam?*, Eunji Lee?, Sungjin Lee? Bryan S. Kim®

'Syracuse University, 2DGIST, *Soongsil University, ‘FADU Inc.

Syracuse University 4R HGisTD SOONGSIL

© ! atalab

College of Engineering i‘ ’ Data-intensive Computing Systems Laboratory ‘s ' . UNIVERSITY F ’\ D U
& Computer Science K 1897

éf' 2023 USENIX Annual Technical Conference

lllllll

What is the memory wall?

1.3x / year 14.1x / year
AL HW Memory === Al Model Size
1012 GShartb 4TB
SPS@ LaMDA -
10" 4 C e E400GB
§ TPUvs3 Microsoft 80GB) 8eGB) |
) 10 (32GB) [
g 107 3 = 40GB
5 5
Q“ 9 1 i
5 10 3 - 4GB
T+ ALB ER,b & ELECTRA
10° 4 o L 400MB
2018 2019 2020 2021 2022

Year

1Z¢€

GPU Memory S

Compute Express Link (CXL) and CXL-flash

Processor

e CXL enables direct memory access DDR
between CPU and endpoints 7T
e Samsung Memory-semantic SSD’
and CXL-SSD?
are examples of CXL-flash

1 Memory-Semantic SSD. https://samsungmsl.com/ms-ssd/. [
2 Myoungsoo Jung. Hello bytes, bye blocks: PCle storage meets compute express link for I
memory expansion (CXL-SSD). In HotStorage '22, page 45-51. Association for Computing [
Machinery, 2022. https://doi.ora/10.1145/3538643.3539745. |

I

https://samsungmsl.com/ms-ssd/
https://doi.org/10.1145/3538643.3539745

Can flash memory handle the intensity of
memory requests?

Challenge #1 - granularity mismatch

64B f = = = = =)

Processor

CXL-flash

Challenge #2 - microsecond latency

Processor Processor
Latency VS Latency
~10s ns > 1us

DRAM CXL-flash

Challenge #3 - limited endurance

Processor

CXL-flash

Wear-out

Control Gate

Floating Gate
_ < N\ -

T\/A//

Source

Drain

Contributions

e CXL-flash design tools
o Physical memory tracer
o CXL-flash simulator
e Design space of CXL-flash
o QOptimization techniques
e Analysis on CXL-flash performance
o Effectiveness of algorithms
o System-level change

Outline

e Memory Tracing

e Design of CXL-flash
e Evaluation and Observations

e Final Thoughts

Virtual vs physical memory trace

X10

VPN

S 7 VS B
0 2 0 2
Access Order x 1()7 Access Order x 1()7
Matrix mult. (V) Matrix mult. (P)

Overview of physical memory tracer

e Independent of hardware or tools
e C(Capture physical memory accesses instead of virtual ones

Valgrind Simulated

(Y [Virtual | 11 Memory
Apulicati Instrument Cache |; Requests
pplication : . 1
ation Trace |Simulator L4
|) |))

ranslatiOrJ

Linux r— Page j Kernel Record *
Kernel | Fault | > VPN-PEN Physical
L _ J Mapping Memory

Trace
1

Physical memory tracing tool

Application

5 il
Valgrind Simulated
[Virtual 11 Memory
Instrument Cache |; Requests
| ation Trace |Simulator]| | L4
L Translatio
i Page ¥ Kernel St v
—>| il [—=—-%| VPN-PFN Physical
L Mapping Memory
‘ ’ Trace

1 Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dynamic
binary instrumentation. In Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI '07, page 89—-100. Association
for Computing Machinery, 2007. https://doi.org/10.1145/1250734.1250746.

12

https://doi.org/10.1145/1250734.1250746

Outline

e Memory Tracing

e Design of CXL-flash

e Evaluation and Observations

e Final Thoughts

13

Overview of our design

e Integration of existing techniques
e Experiments with synthetic workloads

Host
Requests

Indexin
inae _9_]

= 3
§ ; Address Transaction|
= 0 —MSHR_ . _ |[‘|Translation| |Scheduling |-
% Addr| Request |- = ~J
a | Addr| Info |l =
35 | Addr | |

L. .. 0 1| I

Design of CXL-flash - cache

A No Cache

2

é:o)éé()(%

=4

8’02400

<2

© S 200

<
TERI R
= 2
T & 2:3‘:’ & &

Average access latency

Flash Inter-arrival Time (us)

Host
Requests

p
‘| Address HTransactlon

-

CXL Interface |[«——

‘|Translation| |Scheduling

A No Cache
2-
l-
-J. = m e U
—=Q :Q-'U L
IFSSIE ¢
o e

Flash inter-arrival time

15

Host
Requests

DGSIgn Of CXL'ﬂaSh = CaChe F!n‘de‘@g: V"Aﬁare_ss'_FHT'LEarEa};&;\F_

‘|Translation| |Scheduling

CXL Interface |[«——
Cr 2

e DRAM cache reduces latency and traffic

A No Cache [E=8 2GB n B No Cache [E=8 2GB
@ 0.5GB 1 8GB = E 0.5GB 1 8GB
]
2 £ 21
O/ _ ~
é:o) :J% 600 —
=4 >
o 2 400 g=
%5 g
S S 200 3 H é‘
< RS
< p= o9 o 7 0 < b= o 9 o
(aF = < o =
% 9 S8 & B =) =S8 8 =
SESSES ~ EESSZ 3
7 A
Average access latency Flash inter-arrival time

16

Design of CXL-flash - miss status
holding registers (MSHR)

e Even with a large cache size (8GB),
the average access latency is still high

————— w/o MSHR

1.0 1.0
A 0.8 A 0.8
O o |
0.61 0.61
0 500 0 500
Access Latency (us) Access Latency (us)

Matrix mult. Min heap 17

Design of CXL-flash - MSHR

e This is due to repeated flash reads

YlwantDataA] ()

S Iwant Data A again !l | (3)

Host

CXL-flash

ff = N
.| Address Transaction|;
‘[Translation| |Scheduling |:

)

@ @

Data A (Data A

Repeated flash reads

N

Flash
Backend

)

18

Design of CXL-flash - MSHR

o LR
e MSHR prevents repeated flash reads G o3 o
————— w/o MSHR
- w/ MSHR
1.0 1.0 /-
A 0.8 A 0.8
O G
0.61 0.61
0 500 0 500
Access Latency (us) Access Latency (us)

Matrix mult. Min heap

19

Design of CXL-flash - prefetcher

e A prefetcher is added to improve the device’s performance

Host
Requests

: |
Indexing | Prefetcher . FTL |

~ A r N
: : | Address Transaction|
! | —MSHR_ . - || .[Translation Schedu]mg
Addr| Request |- C

| Addr Info
| Addr | |

-t

CXL Interface

L. . —. e 1 0]

Outline

e Memory Tracing
e Design of CXL-flash

e Evaluation and Observations

e Final Thoughts

21

Evaluation objectives

e How effective are the cache policies?
e How effective are the prefetchers?

e How is the performance difference
between virtual and physical traces?

22

Evaluation Overview

e (Cache Policies e Prefetchers
o FIFO o Next-n-line (NL)
o Random o Feedback-directed (FD)
o LRU o Best-offset (BO)
o CFLRU o Leap (LP)

Evaluation Overview

e The evaluation setup: e Real-world applications

Parameters Value Workload Category Description

DRAM size 64MiB ' : 5

DRAM latency A6ns BERT NLP Infers using a transformer model
.. I CFLRU Page rank Graph Computes the page rank score

Eviction Po 1c.y Radiosity HPC Computes the distribution of light

Flash parallelism 8 x 8 XZ SPEC Compresses data in memory

Flash technology ULL YCSBF KVS Read-modify-writes on Redis

24

—¢~ FIFO

- Rand

How effective are the cache policies?

-¥- LRU

- CFLRU

[W—
)
()

o0
()

D
-

e CFLRU prioritizes evicting clean cache lines

¢~ FIFO

~ Rand

-¥-_LRU

~ CFLRU

N W

o
1

Sub-us Request (%)

4 16
Set Associativity

Write Count(M)

-

—_
pad
-~

4 16
Set Associativity

*With BERT

25

Does CXL-flash have a reasonable lifetime?

e CXL-flash can last for at least 3.1 years

I N BN [CJFD [@BO Bl LP

NNNNN

QN —= I O S OO OO RO~ — N

—
(e
|

w
-_—
T

Estimated Lifetime (Year)
(9]

(el
1

BERT Page Rank Radiosity XZ YCSB

How effective are the prefetchers?

e 68% — 91% of requests experience sub-us latency

B N BN [CJFD [[@

(-
(]
e
o,
=)
=
=

Sub-us Request(%)
D o0
S S

BERT Page Rank Radiosity XZ

YCSB

27

How effective are the prefetchers?

e Using a prefetcher can sometimes hurt performance

B N EBEBA N [C1FD [EC@BO [@E&8 LP

(-

(]

e
1

Sub-us Request(%)
D o0
S S

i i U E

BERT Page Rank Radiosity XZ YCSB

28

Why does prefetcher improve performance?

B N BEBA N [C1FD [ECBO 88 LP

—_—

-

o
1

Sub-us Request(%)
D 0
(-] =]

C amdll

Page Rank Radiosity

29

Why does prefetcher improve performance?

e |n cases where prefetchers improve performance,
it is due to achieving high accuracy

Accessed prefetched data

Accuracy =
Total prefetched data

[S—
S
-

Prefetcher Accuracy
(4]
()

NL FD BO LP NL FD BO LP NL FD BO LP NL FD BO LP NL FD BO LP
BERT Page Rank Radiosity XZ YCSB

30

Why does prefetcher degrade performance?

B N BEBA N [C1FD [ECBO 88 LP

—_—

(]

o
1

Sub-us Request(%)
D oo
(-] =]

| Rl MY

XZ YCSB

31

Why does prefetcher degrade performance?

e In cases where prefetchers degrade performance,
it is due to cache pollution

@

N I want Data A]

Host

Cache
@

Pollution =

CXL-flash

Flash
Backend

4 N
©)

N /

Cache miss due to prefetching

Total cache miss

32

Why does prefetcher degrade performance?

e In cases where prefetchers degrade performance,
it is due to cache pollution

[
S
S

O
-
|

E

1] W

Prefetcher Pollution

NLFDBOLPNLFDBOLPNLFDBO LPNLFDBOLPNLFDBOLP
BERT Page Rank Radiosity YCSB

33

How is the performance difference between traces?

e The V2P address translation
makes it difficult to accurately prefetch data

- ||||| |

Virt Phy Virt Phy Virt Phy V1rt Phy Virt Phy
BERT Page Rank Radiosity YCSB

[a—
-
o

Prefetcher Accuracy
N
S

-
l

34

How can the performance be further improved?

e Host-generated access pattern hints can improve performance

[E—
-
O
[E—
-
-

co
&

co
=

Sub-us Requests (%)
O
o

Sub-us Requests (%)
O
O

0 5 10 20 0 2 5 10
Top N% Intensively Prefetch Chance (%)
Accessed Address

*With BERT 3

Outline

e Memory Tracing
e Design of CXL-flash
e Evaluation and Observations

e Final Thoughts

36

Final Thoughts

e CXL-flash has the potential to expand memory
e Future work:
o DRAM-like performance
m Flash internal tasks
m Accuracy and pollution of prefetchers
o End-to-end performance
m No existing hardware at the time
m Interaction between hosts and CXL-flash
e Our work can be a platform for future work to build upon

37

Thank you
Any questions?

Contact: syang32@syr.edu
Source Code: https://github.com/spypaul/MQSim_CXL

e

38

https://github.com/spypaul/MQSim_CXL

