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What is the memory wall?
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Compute Express Link (CXL) and CXL-flash

Processor

e CXL enables direct memory access DDR
between CPU and endpoints 7T
e Samsung Memory-semantic SSD’
and CXL-SSD?
are examples of CXL-flash

1 Memory-Semantic SSD. https://samsungmsl.com/ms-ssd/. [
2 Myoungsoo Jung. Hello bytes, bye blocks: PCle storage meets compute express link for I
memory expansion (CXL-SSD). In HotStorage '22, page 45-51. Association for Computing [
Machinery, 2022. https://doi.ora/10.1145/3538643.3539745. |

I



https://samsungmsl.com/ms-ssd/
https://doi.org/10.1145/3538643.3539745

Can flash memory handle the intensity of
memory requests?




Challenge #1 - granularity mismatch
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Challenge #2 - microsecond latency
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Challenge #3 - limited endurance
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Contributions

e CXL-flash design tools
o Physical memory tracer
o CXL-flash simulator
e Design space of CXL-flash
o QOptimization techniques
e Analysis on CXL-flash performance
o Effectiveness of algorithms
o System-level change
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Virtual vs physical memory trace
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Overview of physical memory tracer

e Independent of hardware or tools
e C(Capture physical memory accesses instead of virtual ones
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Physical memory tracing tool

Application
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1 Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dynamic
binary instrumentation. In Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI '07, page 89—-100. Association
for Computing Machinery, 2007. https://doi.org/10.1145/1250734.1250746.
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Overview of our design

e Integration of existing techniques
e Experiments with synthetic workloads
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Design of CXL-flash - cache
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Host
Requests
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e DRAM cache reduces latency and traffic
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Design of CXL-flash - miss status
holding registers (MSHR)

e Even with a large cache size (8GB),
the average access latency is still high

————— w/o MSHR
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Design of CXL-flash - MSHR

e This is due to repeated flash reads
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Design of CXL-flash - MSHR

o LR
e MSHR prevents repeated flash reads G o3 o
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Design of CXL-flash - prefetcher

e A prefetcher is added to improve the device’s performance
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Evaluation objectives

e How effective are the cache policies?
e How effective are the prefetchers?

e How is the performance difference
between virtual and physical traces?
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Evaluation Overview

e (Cache Policies e Prefetchers
o FIFO o Next-n-line (NL)
o Random o Feedback-directed (FD)
o LRU o Best-offset (BO)
o CFLRU o Leap (LP)



Evaluation Overview

e The evaluation setup: e Real-world applications

Parameters Value Workload Category  Description

DRAM size 64MiB ' : 5

DRAM latency A6ns BERT NLP Infers using a transformer model
.. I CFLRU Page rank Graph Computes the page rank score

Eviction Po 1c.y Radiosity HPC Computes the distribution of light

Flash parallelism 8 x 8 XZ SPEC Compresses data in memory

Flash technology ULL YCSBF KVS Read-modify-writes on Redis
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Does CXL-flash have a reasonable lifetime?

e CXL-flash can last for at least 3.1 years
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How effective are the prefetchers?

e 68% — 91% of requests experience sub-us latency
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How effective are the prefetchers?

e Using a prefetcher can sometimes hurt performance
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Why does prefetcher improve performance?
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Why does prefetcher improve performance?

e |n cases where prefetchers improve performance,
it is due to achieving high accuracy

Accessed prefetched data

Accuracy =
Total prefetched data
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Why does prefetcher degrade performance?

B N BEBA N [C1FD [ECBO 88 LP

—_—

(]

o
1

Sub-us Request(%)
D oo
(-] =]

| Rl MY

XZ YCSB

31



Why does prefetcher degrade performance?

e In cases where prefetchers degrade performance,
it is due to cache pollution
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Why does prefetcher degrade performance?

e In cases where prefetchers degrade performance,
it is due to cache pollution

[
S
S

O
-
|

E

1] W

Prefetcher Pollution

NLFDBOLPNLFDBOLPNLFDBO LPNLFDBOLPNLFDBOLP
BERT Page Rank Radiosity YCSB

33



How is the performance difference between traces?

e The V2P address translation
makes it difficult to accurately prefetch data
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How can the performance be further improved?

e Host-generated access pattern hints can improve performance
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Final Thoughts

e CXL-flash has the potential to expand memory
e Future work:
o DRAM-like performance
m Flash internal tasks
m Accuracy and pollution of prefetchers
o End-to-end performance
m No existing hardware at the time
m Interaction between hosts and CXL-flash
e Our work can be a platform for future work to build upon
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Thank you
Any questions?

Contact: syang32@syr.edu
Source Code: https://github.com/spypaul/MQSim_CXL

e
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