
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Ethane: An Asymmetric File System
for Disaggregated Persistent Memory

Miao Cai, College of Computer Science and Technology, Nanjing University of
Aeronautics and Astronautics; Junru Shen, College of Computer Science and

Software Engineering, Hohai University; Baoliu Ye, State Key Laboratory for Novel
Software Technology, Nanjing University

https://www.usenix.org/conference/atc24/presentation/cai

Ethane: An Asymmetric File System for Disaggregated Persistent Memory

Miao Cai†, Junru Shen‡, Baoliu Ye§

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics †

College of Computer Science and Software Engineering, Hohai University ‡

State Key Laboratory for Novel Software Technology, Nanjing University§

Abstract
The ultra-fast persistent memories (PMs) promise a practical
solution towards high-performance distributed file systems.
This paper examines and reveals a cascade of three perfor-
mance and cost issues in the current PM provision scheme,
namely expensive cross-node interaction, weak single-node
capability, and costly scale-out performance, which not only
underutilizes fast PM devices but also magnifies its limited
storage capacity and high price deficiencies. To remedy this,
we introduce Ethane, a file system built on disaggregated
persistent memory (DPM). Through resource separation us-
ing fast connectivity technologies, DPM achieves efficient
and cost-effective PM sharing while retaining low-latency
memory access. To unleash such hardware potentials, Ethane
incorporates an asymmetric file system architecture inspired
by the imbalanced resource provision feature of DPM. It splits
a file system into a control-plane FS and a data-plane FS and
designs these two planes to make the best use of the respec-
tive hardware resources. Evaluation results demonstrate that
Ethane reaps the DPM hardware benefits, performs up to
68× better than modern distributed file systems, and improves
data-intensive application throughputs by up to 17×.

1 Introduction
Distributed file systems (DFSs) are the backbone of modern
data center storage. To meet the unprecedented performance
demands posed by data center applications [17, 20, 77], dis-
tributed file systems heavily rely on high-speed storage de-
vices like persistent memories [12, 36, 41, 49, 72]. In contrast
to the large, cheap, slow storage devices (e.g., solid-state or
hard-disk drives), persistent memory is a disruptive storage
technology with three distinctive features, namely ultra-fast
speed (∼300 ns latency), limited storage capacity (≤512 GB
per DIMM slot), and expensive price ($3.27/GB). In the cur-
rent monolithic data centers [61], every server machine is
equipped with a number of PM modules, dubbed symmetric
PM architecture in this paper. This egalitarian PM provision,
however, leads to a cascade of performance and cost issues.

For symmetric PM architecture, file system data are scat-
tered over a cluster of machines. When serving a client re-
quest, the server node has to interact with other nodes, re-
sulting in excessive, expensive network round-trips. More
severely, when distributed data meets non-uniform access pat-
terns, the load imbalance problem arises and the server node
storing the hot files inevitably becomes a performance bottle-
neck, crippling the overall system performance. To remedy
the bottlenecked node, administrators have to purchase more
machines to amortize the hotspot pressure. Unfortunately, be-
sides the necessary PM devices, additional expenses have to
be paid for encapsulated processors and other peripheral de-
vices, which significantly increases the total cost of ownership
(TCO) for data center vendors.

To summarize, this hardware usage magnifies PM’s draw-
backs of limited capacity and high price as well as under-
utilizes precious PM resources. Furthermore, our analysis
in Section §2.1 reveals that expensive cross-node interaction,
weak single-node capability, and costly scale-out performance
caused by the symmetric PM architecture result in unpre-
dictable request latency, degraded overall performance, and
high monetary costs for distributed file systems, making them
hardly meet the stringent Server Level Objectives (SLOs) in
the regime of “Killer Microsecond” [16, 23].

To tackle these issues, we propose Ethane 1, a file system
built on disaggregated persistent memory. The persistent mem-
ory disaggregation is a key enabling technique for the next-
generation high-performance data center [34, 43, 61, 65, 75].
DPM separates CPU and PM resources and assembles them
into dedicated compute nodes (CNs) and memory nodes
(MNs) connected with fast data connectivity technologies
(e.g., RDMA [31, 40, 60] and CXL [44, 45, 52]), which deliv-
ers both surpassing large storage capacity and high aggregated
bandwidth in a cost-efficient manner. The DPM architecture
is appealing due to the fast evolution of surging high-speed
memory and network technologies [31, 44, 45, 52, 60, 73].

To drive the DPM system, we depolymerize the compound

1Ethane (C2H6) is an organic chemical compound whose structural for-
mula resembles a DPM system with RDMA-connected CNs and MNs.

USENIX Association 2024 USENIX Annual Technical Conference 191

65536-2 256-3 40-4 16-5 9-6

Directory Width - Path Length

0

50

100

150

200

250
La

te
nc

y
(u

s) Interaction
Remaining

0

2

4

6

8

N
um

be
r o

f R
ou

nd
 T

rip
s

Round Trips

(a) Cross-node Interaction

0.0 1.2 1.5 2.0 2.6
Access Skewness (α)

Node0

Node1

Node2

Node3

Node4

261 85 44 17 7

262 108 78 37 20

254 343 353 312 363

250 180 105 38 12

270 283 209 97 45

Total: 1298 1000 790 500 448

0

60

120

180

240

300

K
O

PS
/s

 (2
56

B
)

(b) Weak-node Capability

MN

PMEM

Node0
PMEM

Node1
PMEM

Node2

CN

...
PMEM

PMEM
...

DRAM tr
an
sp
or
t

(c) Symmetric vs Disaggregated PM Architecture
Figure 1: Performance Issues in Symmetric PM File Systems and Disaggregated PM Architecture. (a) demonstrates that the
cross-node interaction occupies a large portion of the total execution time in CephFS [69]; (b) showcases the overall system performance of
Octopus [49] is crippled due to single node performance limitation; (c) presents the symmetric and disaggregated PM architecture.

file system architecture with a key insight. Particularly, the
DPM features imbalanced resource provision between CNs
and MNs. CNs yields superior computing capability than
MNs whereas only owns a few gigabytes of DRAM. In con-
trast, MNs is equipped with tera- or peta-bytes of PMs but
is supplied with less powerful processing units. This char-
acteristic inspires us to design an asymmetric file system
architecture, which splits file system functionalities into a
control-plane FS and a data-plane FS, making the best use of
respective strong computing and memory resources.

• The control-plane FS is responsible for handling compli-
cated system control and management logic like concur-
rency control and crash consistency. Leveraging the central-
ized view of the shared MN, we delegate intricate control-
plane FS functionalities to simplified, lightweight shared
log [13–15, 25, 38, 48, 67]. For instance, linearizable sys-
tem call execution is turned into a log ordering problem.
Extracting file system semantics, we propose a variety of
techniques to improve log insert scalability, reduce log play-
back latency, and achieve strong operation durability.

• The data-plane FS is responsible for storage management
and processing data requests. It aims to harvest the large
capacity and aggregated bandwidth benefits of parallel-
connected MNs. Towards this end, we design a unified
storage paradigm for translating a variety of dependence-
coupled file system data structures into unified, access-
disentangled key-value tuples and propose mechanisms to
achieve parallel metadata and data paths.

We build Ethane for an RDMA-capable disaggregated PM
system and evaluate it on an emulation platform with a rack
of four Intel Optane DC persistent memory machines con-
nected with a 100 GbE Mellanox switch. We compare Ethane
with three modern distributed PM file systems: Octopus [49],
Assise [12], and CephFS [69]. Evaluations show promising
results. Ethane delivers much better NIC and PM bandwidth
utilizations. It achieves up to 68× higher throughputs and up
to 1.71× lower monetary costs with synthetic benchmarks.
When running a replicated key-value store Redis Cluster [9]
and a MapReduce application Metis [24], Ethane improves
their performance by up to 16×.

To sum up, this paper makes the following contributions.
• We examine current PM use in distributed file systems and

reveal three issues. To tackle these issues, we advocate
disaggregating PM and propose an asymmetric file system
architecture with a novel functionality separation.

• Leveraging the centralized view of the shared memory node,
we define the control-plane FS based on shared log abstrac-
tion for efficient functionality delegation.

• To harvest the aggregated bandwidth, we design the data-
plane FS as a key-value store with a unified storage
paradigm and dependence-disentangled data access.

• We demonstrate the performance benefits and cost effi-
ciency of prototyped Ethane with extensive experiments.

2 Background and Motivation

2.1 Symmetric PM Architecture
The commercialized PM device is a paramount storage tech-
nology to hunt the “Killer Microseconds” [16, 23] for its hun-
dreds of nanoseconds of latency and large bandwidth. Hence,
commodity distributed file systems [12, 33, 36, 41, 49, 72]
extensively and intensively use PMs to fulfill the strict per-
formance requirements for data center applications. From
the hardware perspective, data centers manage resources in
the unit of monolithic servers. Every server machine is full-
featured which hosts both CPU and PM resources. From the
file system perspective, this PM usage induces a series of
correlated issues, as described below.

Expensive cross-node interaction. A distributed file sys-
tem usually stores a large volume of application data [30,
56, 69]. In a symmetric PM architecture, data are scattered
and managed by independent server nodes. These nodes are
self-managed individuals that run customized, deep storage
and network stacks and communicate using general-purpose
RPCs [36, 63, 69, 72]. When a server node receives a client
request, it has to interact with other nodes to serve the re-
quest. An interaction includes cross-node communications
and a (meta-)data fetch from the target node. Considering
current DFSs, general communication mechanisms and long
data paths lead to a high end-to-end interaction latency.

192 2024 USENIX Annual Technical Conference USENIX Association

We use file path resolution in CephFS [69] to describe and
quantify interaction costs. CephFS partitions the namespace
tree among a number of metadata servers (MDSs) [70]. When
resolving a file path, the client accesses multiple MDSs to
fetch directory entries (dentries) and inodes. We conduct an
experiment that runs an RDMA-enabled CephFS with PM-
based OSD storage. We use MDTest [7] to generate a large
directory tree with 65535 entries across four MDSs. A client
issues stat to access files in the namespace. Figure 1a shows
the latency breakdown and the number of network round trips.

CephFS incorporates a message-based RPC and a Blue-
Store storage backend [11] with a layer of RocksDB, BlueFS,
and PMDK. For a remote dentry read, the sender encapsulates
the request in a message, copies and serializes data in the mes-
sage buffer, and transmits it over the network transport (i.e.,
RDMA-over-RoCE). The receiver deserializes the message,
loads data with the BlueStore and copies them to the NIC
buffer, and transmits the response. As a result, a complete
interaction includes costly data movements, encapsulation,
de-/serialization and passes through several storage layers,
which takes ∼162 µs and occupies 60.24% of the component
resolution time.

Furthermore, serialized component resolution design in
CephFS incurs excessive sequential cross-node interactions.
The linear growth of expensive interactions significantly af-
fects the overall syscall latency. The interaction time even
occupies 91.71% of the total syscall time when resolving a
six-component path.

Weak single-node capability. Due to manufacturing re-
strictions, a machine only can be equipped with a few PM
DIMMs [73] which limits the total PM capacity by up to a few
terabytes. Moreover, commodity PM devices have a limited
bandwidth. Performance studies show that only four parallel
writers with an IO size of 256B saturate the bandwidth [32,73].
This small performance and storage upper bound raise serious
concerns for production data-intensive applications due to
their non-uniform access popularity [17, 20, 74]. Skewed data
access causes a server node to easily become a bottleneck,
crippling the overall file system performance.

Figure 1b demonstrates the load imbalance issue of a PM-
based distributed file system, Octopus [49]. This experiment
creates a set of 4KB files and distributes them over four server
nodes. Ten clients issue read requests to four server nodes.
The IO size is 256B and the data access popularity follows a
Zipf distribution [20]. For a uniform request distribution (i.e.,
α = 0), all server nodes deliver almost the same throughput.
When α increases, Node2’s throughput increases but this node
is bottlenecked. More severely, other nodes’ PM devices be-
come underutilized and their throughputs drop dramatically.
The total throughput also decreases significantly by up to
two times. The weak node deficiency is an inevitable conse-
quence of scattered data distribution, and this problem can
hardly be resolved as hot data keeps frequently shifting and
changing [20, 74].

Costly scale-out performance. To remedy the single-node
weakness and keep pace with the exponential growth of ap-
plication requirements, data center vendors have to purchase
more PM machines. Unfortunately, the symmetric PM provi-
sion makes this scale-out paradigm costly and inefficient, es-
pecially for distributed data processing applications with high
elastic resource requirements [24]. For example, Hadoop [1],
a well-known MapReduce implementation, is designed with
two procedures: map and reduce. Each procedure consists of
two independent phases: a computing-intensive phase for data
processing and an IO-intensive phase for data loading/writing.

Hadoop uses HDFS [63] as its primary storage system.
Suppose an HDFS node is running the IO phase and its PM
devices are under-provisioned. After adding a PM machine,
other HDFS nodes are unable to enjoy the added capacity and
performance benefits directly. Besides that, coupled CPUs in
the new machine may be over-provisioned for the computing
phase. Our evaluation §5.4 shows that this low elastic resource
scaling significantly increases the total purchase budget and
maintenance costs for MapReduce applications.

2.2 Disaggregated PM Architecture

To tackle aforementioned issues, decoupling PMs from mono-
lithic machines and aggregating them in a dedicated memory
pool is a promising solution. The disaggregated PM archi-
tecture enables efficient and cost-effective PM sharing with
fast data access [43, 46, 51, 65, 78]. Depicted in Figure 1c,
either a CN or an MN is a specialized machine that assem-
bles blades of computing or memory resources, exhibiting
much stronger hardware capability than a monolithic ma-
chine in the symmetric PM architecture. Moreover, the shared
PM pool embraces the fast evolved data connectivity tech-
nologies like RMDA [60] and CXL [64]. It supports low-
latency data connections with highly aggregated bandwidth.
Finally, the DPM allows independent scaling of two types
of hardware resources. The administrator could provision or
de-provision a specific type of hardware resource flexibly
and on-demand. Recently, the DPM architecture is propelled
rapidly thanks to ultra-fast memory and high-speed network
technologies [31, 44, 45, 52, 60, 73].

Besides performance and cost advantages, the DPM has a
unique feature: resource asymmetry. In particular, CNs and
MNs exhibit respective strong computation and memory capa-
bilities. A CN is equipped with powerful processing units and
limited memory capacity. Its small-sized memory only can
be used for hot data caching or running performance-critical
tasks locally. In contrast, MNs manage a large memory pool
consisting of tens or even hundreds of PM modules [78]. How-
ever, every MN is only equipped with weak computing units
(e.g., ARM SoC and ASIC) that support running necessary
system tasks like memory scrubbing [43]. Realizing this char-
acteristic, the challenge is how to design a file system to fully
drive such distinctive hardware architecture.

USENIX Association 2024 USENIX Annual Technical Conference 193

3 Asymmetric File System Architecture
To respond to the question, we introduce an asymmetric file
system architecture. Inspired by the resource asymmetry char-
acteristic, we split the functionalities of a file system into two
planes: (1) a control-plane FS which is responsible for man-
aging and controlling file system states; (2) a data-plane FS
which is responsible for storage management and processing
data requests, and run these two FS planes on the CNs and
MNs, respectively.

local state

CacheFS

R
N

IC

local state

CacheFS
R

N
IC

CacheFS

R
N

IC

C
on

tr
ol

 P
la

ne

Fast Data Connectivity (RMDA, CXL)

...

CN1

local state

R
N

IC

SharedFS

PM Pool

M
N
1

M
N
2

D
at

a
Pl

an
e

CN2 CNk

in
ge
st

Shared Log
Global State

Namespace

File Block
...[]...

Figure 2: Asymmetric File System Architecture. The control
plane consists of a set of cacheFS instances running on computing
nodes, whereas the data plane provides a centralized sharedFS atop
the memory nodes.

Separation of control and data plane: File systems ab-
stract, define, and store various objects, such as dentries, in-
odes, and file blocks. These objects are classified into two
categories: meta objects and data objects. File system opera-
tions manipulate these objects, e.g., a chmod changes the in-
ode permission fields. Conventional DFS architecture is built
upon the principle of separate object management [30,63,69],
i.e., meta and data objects are stored and manipulated by dif-
ferent nodes. This design is well-suited for file systems built
on symmetric PM architecture, whereas it is ill-suited for the
DPM as neither a CN nor an MN has sufficient PM or CPU
resources for object storage or manipulation.

We propose a design principle of separating FS object
manipulation from storage. Guided by this principle, we split
a file system into a control-plane FS and a data-plane FS. The
data-plane FS stores both meta and data objects as well as
provides efficient mechanisms to access them. The control-
plane FS fetches objects from the data-plane FS and handles
complex and intricate object manipulation logics, such as
namespace query, crash consistency, and concurrency control.

Best use of hardware resource. The primary goal of this
functionality separation is to make the best use of available
hardware in each server node. The CNs exhibit superior com-
puting capability. We deploy the control-plane FS on the
CNs to handle complex and compute-intensive system man-
agement tasks. We incarnate the control-plane FS as a set
of cacheFSes that run atop available CNs. Each cacheFS

instance maintains a cached, partial view in its local, small
DRAM.

On the other side, MNs provide a shared memory pool
with PB-scale PM modules. Memory blades are parallel con-
nected through high-performance NICs [34, 46] or CXL con-
trollers [45, 52]. Because the MN offers a global view of the
whole file system, we design the data-plane FS as a sharedFS
which shards data over disjoint PM modules and parallelizes
data access paths with hardware-provided parallelism.

Shared-log-based control-plane FS. The control-plane
FS is built upon the shared log abstraction [13–15, 25, 38, 48,
67]. We identify the shared log is a good fit for the control-
plane FS for two reasons. First, the memory node provides a
centralized view for all compute nodes, which natively sup-
ports efficient data sharing. Second, implementing control-
plane FS functionalities is complicated and requires consid-
erably sophisticated techniques [12, 57, 69, 71]. The shared
log provides an elegant and efficient means to achieve them
simultaneously. We delegate the control-plane FS function-
alities to the shared log and propose a range of techniques
to support strong persistent guarantee, efficient concurrency
control, and low-cost state coherence for cacheFS instances.

Access-disentangled data-plane FS. An endemic in con-
ventional DFSs is entangled data paths, i.e., data access is
tightly coupled with data processing inside file system opera-
tions [19]. For example, a path resolution resolves a number
of path components. A component resolution includes a den-
try read and many other coupled dentry processing like sanity
checks. This sequential, entangled data path squanders the
large DPM bandwidth and magnifies the latency inefficiency
of the RDMA network. To deal with it, we propose a DPM-
friendly data path which disentangles the data access from
other coupled operations. It overlaps data access to reap the
aggregated bandwidth of parallel-connected PM devices.

4 Ethane: Design and Implementation
Applying the architecture, we build Ethane, a file system for
RDMA-enabled disaggregated persistent memory. We present
the design of its control plane §4.1 and data plane §4.2, as
well as the implementation §4.3.

4.1 Control-plane FS
The control-plane FS consists of a set of cacheFS instances.
Every cacheFS maintains volatile, partial states. The local
state is small, which is sufficient to reside in the small-sized
local DRAM, and is volatile, which can be rebuilt from the
remote sharedFS. The cacheFS mainly consists of two compo-
nents: (1) a namespace cache which stores recently accessed
namespace entries and is structured as a chain-based hash
table; (2) a block cache which caches the data block metadata
(e.g., remote address) and is organized as an AVL tree.

The core functionalities of the control-plane FS, such as
cacheFS operation durability, concurrency control of cacheFS

194 2024 USENIX Annual Technical Conference USENIX Association

...
dlog_persist

opcode

2

3

1Arena_1 Arena_2

mlog_insert
oplog_playback
cachefs_mkdir4

reuse uid gid meta_obj_addrpath

ethane_mkdir
CN1 CNk

...
MN1 MN2 MN3 MNk

shardingplayback

dlog:

skip

mlog: fgprt offset sizeCID

mlog

flag

(a) The Arena Layout and Syscall Execution Flow

Arena

C1
C2
C3
C4

Arena Arena

fail & re-insert

(a) case I (b) case II (c) case III

: system call : valid mlog insert : log playback : pseudo mlog insert

(b) Three Cases of Operation Log Insertion
Figure 3: Log Arena Design

operations, and coherence among cacheFS instances, are del-
egated to the shared log. Illustrated with the example in Fig-
ure 3a, the following section elaborates on our delegation
mechanisms and techniques for optimizing shared log persis-
tence, insertion, and playback.

4.1.1 Delegating Durability to Log Persistence
We decouple the log persistence from the log ordering [25]. A
syscall has an operation log (oplog) which includes a data log
(dlog) and a meta log (mlog). Every cacheFS has a private PM
region in the MN for storing dlogs. A dlog contains an opcode,
a file path, credentials, the meta object address, and a reuse
field used in the collaborative log playback. Moreover, there
is a global log order array for storing mlogs. An 8-byte mlog
packs a 12-bit cacheFS ID (CID), a 2-byte path fingerprint, a
26-bit dlog region offset, a 9-bit dlog size, and a 1-bit flag for
indicating this oplog is associated with a rename/symlink
syscall or other syscalls.

As shown in Figure 3a, the cacheFS creates a dlog and
a mlog for a mkdir syscall. It first writes the dlog in the
private region via a RDMA_WRITE (1). Then it uses another
RDMA_READ to the queue pair issued the RDMA_WRITE in order
to flush the MN’s PCIe buffer [68]. Persisting the dlog ensures
the data durability of this syscall. Leveraging the in-order
delivery property provided by commodity RNICs [66], we
issue these two RDMA requests simultaneously.

4.1.2 Delegating Linearizability to Log Ordering
The control-plane FS provides a compatible linearizability
model instead of a relaxed consistency model for clients [48].
The shared log approach turns concurrent syscall execution
into a sequential history of oplogs. The cacheFS writes the
mlog in the global log order array (2). The mlog order in
the order array reflects the order of corresponding syscall
executions. Every cacheFS instance replays the same log
sequence as if these syscalls take place locally. Thus, produc-
ing a sequence of mlogs with respect to linearizable syscall
executions is the key to linearizable cacheFS design.

To achieve a valid log sequence, a naive solution is us-
ing RDMA_CAS to append mlogs to a list one by one [14, 15].
Imposing a strict order with RDMA_CAS is expensive. It is
because modern RNICs use an internal lock to serialize con-
current RDMA_CASes [40, 66]. High RNIC contention renders
the mlog list tail to become a severe scalability bottleneck.

Our insight is that producing a sequence of mlogs for lineariz-
able syscalls does not require linearizable mlog append. We
propose log arena mechanism which dramatically reduces
mlog insert contention while still enforcing a valid log order
with respect to linearizable syscall executions.

Figure 3a shows the mlog region is partitioned into a series
of arenas. An arena consists of a number of slots for storing
mlogs. An arena insertion consists of two steps: (1) a mlog
insertion and (2) filling preceding empty slots. In step (1),
every cacheFS randomly picks up an empty slot in the current
active arena and uses an RDMA_CAS to insert the mlog and
persist it with an RDMA_READ (case I in Figure 3b). In an
ideal case, no preceding empty slots exist when C1-C4 finish
arena insertions. Thus, step (2) is omitted and these arena
insertions have no contention. Also, they generate a valid
log sequence. The trick is that C1-C4 are concurrent cacheFS
instances. Hence, there are no order restrictions for associated
mlog insertions.

When a cacheFS finishes the arena insertion, it should
ensure that there are no empty slots preceding the inserted
mlogx. Otherwise, if a subsequent cacheFS inserts a mlogy
into one of those empty slots, mlogy precedes mlogx in the
log history. The linearizability is violated. To prevent this, in
case II, C4 scans preceding slots and fills empty slots with
pseudo mlogs. The pseudo mlog represents a null operation.
The empty slot belongs to the in-flight C1. C1 and C4 are
concurrent instances. If C4 precedes C1, C4’s pseudo mlog
insertion may cause C1’s insertion to fail. C1 would re-insert
the mlog.

Scanning and filling empty slots increases the arena in-
sertion latency and causes contention for concurrent insert
operations. We introduce two optimizations. First, the num-
ber of slots in an arena is set to be smaller than the number
of concurrent threads. Thus, all empty slots are likely to be
filled by threads and the pseudo log insertion rarely happens.
Second, we perform step (2) after log playback (3), which
creates a time window for those in-flight arena insertions.
Both optimizations try to minimize the likelihood of empty
slots for concurrent arena insertions.

In case III, C3 is non-concurrent with the other three
cacheFS instances. There are no empty slots after the other
three cacheFSs insert mlogs. Thus, C3’s mlog locates behind
their mlogs in the arena. When C3 finishes mlog insertion,
there exists two empty slots ahead of its mlog. It fills these

USENIX Association 2024 USENIX Annual Technical Conference 195

empty slots to complete the log history.

4.1.3 Delegating Coherence to Log Playback
Every cacheFS maintains a coherent state via replication. The
coherence among replicated cacheFS instances is achieved via
log playback. File system interfaces are not nilext [29]. Thus,
to return a correct value, the syscall should externalize its
effect and modify file system states immediately. Therefore,
the cacheFS first forwards its local state to a newest one by
scanning and replaying oplogs (3). Afterwards, it executes
the mkdir locally and returns the execution result (4).

The non-nilext interface property forces the log playback
to appear during the syscall execution path. To resolve the
bottleneck, we propose two techniques: file-lineage-based log
dependence check and collaborative log playback.

Log dependence check. Replaying a long sequence of
logs significantly increases the total latency. To reduce the
log playback sequence length, the cacheFS aims to play de-
pendent logs. To this end, we need to answer two questions:
(a) which oplogs are dependent? and (b) how to identify de-
pendent oplogs quickly.

/

a b
c d e

(a) Direct Lineage (b) Step Lineage (c) Remote Lineage

rename(/a/c, /b/e)

g f

/

a b
c d e

g f

symlink(/a, /b)

/

a b
c d e

g f

mkdir(/a/c/g)

g

Figure 4: Direct, Step, and Remote Lineage

To respond (a), we validate the dependence of two file
system operations based on file lineage. The direct lineage of
a file f is defined as a set of files whose paths is a prefix of
f ’s path. Figure 4(a) illustrates an example. /a/c/g’s direct
lineage includes /, /a, and /a/c. The f ’s operation depends
on operations whose files and directories belong to f ’s lineage.
For instance, removing /a or disabling /a’s read permission
causes /a/c/g to become inaccessible.

A directory rename operation changes f ’s existing lineage.
Figure 4(b) shows that rename(/a/c, /b/e) moves files from
/a/c to /b/e. Files in /a/c change their lineage. The new
lineage is called step lineage. Dependence checking of oplogs
behind the rename’s oplog uses the step lineage.

The symbolic link (symlink) adds a new file lineage. If a
source directory is a symlink and points to a directory which
does not belong to its lineage, the lineage of the target direc-
tory is the new lineage for children in the source directory. We
call the new lineage remote lineage. Figure 4(c) shows that
/a/c is a symlink and points to /b. /a/c/g has a remote lin-
eage /b. Dependence checking of oplogs behind the symlink’s
oplog uses both the direct and remote lineage.

To answer (b), we design a mlog skip table to reduce the
log playback range. Each cacheFS has a volatile, private mlog
skip table. Every file has a corresponding table entry which

records the final slot position in the global log order array dur-
ing last playback. It helps skip logs which have been replayed
in the last playback. As shown in Figure 5, the cacheFS cal-
culates the lineage for the target file /a/b/c (1), queries the
skip table with the fingerprint of every file path (2), and finds
associated playback ranges of every file. The final playback
range is the union of all ranges.

H(/a)

lineage

... H(/x/y)
mlog Skip Table

/a/b/c
/a
/a/b
/a/b/c ha

sh

Playback Range

query skip table

read & compare
=?

: valid mlog

: pseudo mlog

H(/a/b)

skip

reuse
partial replay full replay

Y

N

2

3

1

4.1

4.2

Figure 5: Fast, Collaborative Log Playback

During log playback, the cacheFS reads mlogs one by one
and checks their dependence (3). In particular, we calculate
the path fingerprints in the lineage and compare each of them
with the path fingerprint stored in the mlog. If one equals,
this oplog is dependent. Thus, the cacheFS reads the dlog and
performs the associated operation to update cacheFS states. In
addition, if an mlog is associated with a rename or a symlink
syscall, the associated step or direct and remote lineage is
used for checking log dependence.

Collaborative log playback. The log playback performs
history operations to derive a coherent cacheFS state. A com-
plete file syscall has a long execution path. The collaborative
log playback accelerates syscall execution by reusing partial
execution results of other log playback routines. Specifically,
almost all metadata syscalls are composed of two parts: a file
path walk and the final file modification (e.g., changing file
credentials). The file path walk is lengthy as it consists of a
series of path component resolutions which occupies a large
portion of the total execution time [19, 50].

We aim to reuse the path walk result of other log playbacks.
This reusing mechanism is feasible. Suppose the current log
playback contains a log. This log has a deterministic order in
history as well as a set of dependent logs. If another cacheFS
has played this log before, these dependent logs already have
been replayed in its local state. The file path walk of this
oplog in these two playbacks produces the same result.

We add a reuse field in the dlog. A set field indicates that
this log has been played before. Hence, the current playback
routine performs a partial log replay (4.2) by fetching the path
resolution result and modifying the file directly. Otherwise, it
performs a complete log replay (4.1).

4.2 Data-plane FS
The data-plane FS provides a shared, DPM-friendly storage
layer. It unifies data management for diverse file system struc-
tures with a key-value-based storage paradigm and a vector

196 2024 USENIX Annual Technical Conference USENIX Association

access interface. Furthermore, it provides disentangled, paral-
lelized (meta-)data access paths to harvest DPM bandwidth.

4.2.1 Data Storage Paradigm
Metadata and data in file systems are managed with vari-
ous data structures. For example, dentries are organized in
a namespace tree [57]. Ethane designs a unified key-value
storage paradigm for (meta-)data indexing and management.
The key-value storage paradigm is advantageous for PM file
systems. It is expressive and provides efficient support for
structured file system data [37,58]. Also, it offers fine-grained
and easy-to-use interfaces which effectively exploits PM byte-
addressability to avoid access amplification [42].

/a/b/c [obj2_addr, obj1_addr]

/a/b

/a/hardlink

/a/b/symlink

[obj1_addr, obj0_addr]
Key Value

[obj2_addr, obj0_addr]

[obj3_addr, obj1_addr]

obj1

obj2

obj3

Meta
Object

Type

Data
Section extent

[obj2_addr, start_addr,
section_size]

extent_addr
section

Figure 6: Key-value Data Storage Paradigm

Translating FS objects to KV tuples. The data-plane FS
mainly includes three types of objects: a superblock, meta
objects, and data sections. The superblock records global file
system states. Every file or directory has a meta object which
stores its metadata, including file type, file size, and full path,
etc. Figure 6 shows that every meta object is associated with a
key-value tuple. The key is the unique full path. The value is
a combination of the meta object address itself and the meta
object address of its parent directory. A hard link to a target
file has no meta object. Its value stores a pointer to the target
file’s meta object. In contrast, a symlink has an independent
meta object.

The data-plane FS uses extents to organize data blocks.
An extent is a mapping from contiguous logical blocks to
contiguous physical blocks. To translate a file offset to a
physical block number —file mapping, file systems often use
extent tree [47, 53]. This translation method is unfriendly
for DPM due to a cascade of pointer chasings during tree
traversal. To overcome this, we propose a data section-based
file mapping design.

Every file has a logical contiguous linear space. A data
section represents an aligned range of linear space and has
three fixed sizes: 1 GB, 2 MB, and 4 KB. Moreover, a data
section is associated with an extent and its range is inclusive
to that extent range. A large extent may have several data
sections with different sizes. For example, an extent with a
mapping range of [0, 2113536] has a 2 MB section and four
4 KB sections. A data section has a key of a concatenation
of three fields: the memory address of its file’s meta object,
the section start address, and the section size. The value is a
backward pointer to the associated extent. For a file mapping,

we find the data section first and use the pointer to get the
associated extent. The detailed file mapping procedure is
presented later §4.2.2.

Hash-based data management. We use cuckoo hash ta-
bles to manage key-value tuples for each type of file system
objects. We choose cuckoo hash table because its constant
number of slot probes per lookup facilitates designing parallel
data search. We use global instead of per-file block manage-
ment [53], i.e., key-value tuples of all files’ data sections are
managed by global hash tables. The key space of a hash table
is split. A sharding of key-value tuples is stored in a cuckoo
hash table. The cuckoo hash table is organized as a linear
array of slots. We stripe the linear array across all available
MNs.

Access interface. The data-plane FS provides a vector-
based key-value get interface: int vec_kv_get(key_t
*k_vec, val_t *v_vec). This interface is vectorized which
accepts a bunch of keys. It is beneficial for batched file system
operations. For example, a file path walk needs to search a col-
lection of meta objects for component resolutions. These meta
object lookups can be performed at once via this interface.

In addition, this interface is approximate which returns a
number of possibly correct values. Due to hash collisions, a
hash table lookup needs to validate keys. To saturate the DPM
bandwidth, this interface delays key validation and instead
returns all possibly correct values for the caller at once. The
caller at the CN side filters out desired values afterward. In
addition, the data-plane FS also provides a vector-based key-
value put interface.

4.2.2 Data Path Disentanglement
The data path in traditional file system calls includes entan-
gled, sequential data access and data processing. We introduce
disentangled data path and demonstrate it with two examples.
It separates the data access from the data processing, so as to
leverage the vector lookup interface to saturate the aggregated
DPM bandwidth and hide RDMA network latency.

Parallel, pipelined hash lookup. The vector lookup in-
terface is implemented via parallel, pipelined cuckoo hash
lookups. The cuckoo hash introduces two slot probes per
lookup and there are no memory access dependence for
these two slot probes. Exploiting this feature, we propose
a pipelined lookup mechanism. A slot probe includes a se-
quence of computational tasks, which calculates hash value
and target MN, etc, and a one-sided RDMA_READ. We overlap
these computational tasks with the remote memory access for
pipelined slot probe.

Furthermore, our cuckoo hash table supports optimistic
concurrency control [28]. Every slot contains a version num-
ber. Readers are lock-free. It reads and compares the versions
of two slots before and after reading the data. Only if these
two versions are unchanged, this lookup succeeds. Otherwise
the reader retries. Therefore, a lookup requires two rounds
of slot probes at least. Only the first round of slot probes is

USENIX Association 2024 USENIX Annual Technical Conference 197

optimized with the pipeline mechanism.
File path walk. A metadata syscall first performs a path

walk and then modifies the meta object. The file path walk
is an iterative process which consists of a number of path
component resolutions. Traditionally, each path component
resolution includes a dentry fetch (data access) and a series of
coupled operations (data processing) like permission checks.

component resolution

path walk: ...

......

Filter

in
pu

t

[]...

]
...

[

batch read:

: object fetch : object processing

batch
lookup

vec_key_get Data-plane FS

Figure 7: Disentangled File Path Walk

We decompose the path walk into a batch of dentry
lookups and remaining operations. A dentry lookup equals a
meta object search in our data-plane FS. Suppose a syscall
unlink(/a/b/c) and the associated path /a/b/c contains
three components. Its file path has three prefix paths. In Fig-
ure 7, to find associated meta objects for three prefix paths,
the cacheFS issues three lookups via one vec_kv_get invo-
cation. The vec_kv_get computes six hash values for three
keys, performs six parallel, dependence-free hash lookups,
and returns six lookup results. The return values may con-
tain false meta objects, i.e., their file paths do not belong to
/a/b/c’s lineage. To filter out correct objects quickly, we
perform a swift sanity check on returned meta objects before
exact filename comparisons.

Assume we check returned meta objects for the prefix path
/a. We compare the parent directories of returned meta ob-
jects with the root directory and abandon these objects with
an incorrect parent. We use the correct meta object as a new
parent directory and repeat this sanity check with the next
prefix path /a/b. Note that the root directory has an empty
parent directory. After finding out all correct meta objects, it
performs remaining operations at once.

File data read. For a read(int* fd,void* buf,off_t
offset,size_t count), the file system performs a file map-
ping by traversing the extent tree, visiting tree node entries
(data access), performing a binary search (data processing),
and comparing the extent range with the requested range (data
processing). Then it reads block data (data access) and repeats
this process until all requested data are fetched. This data read
consists of a number of sequential extent tree lookups and
block reads, resulting in a relatively long read path.

Our data-plane FS decomposes the data IO path into a
series of disentangled file mappings and parallel data reads,
as shown in Algorithm 1. First, our file mapping performs
batched data section lookups to find extents. The endpoint
addr is initialized as the left point of the lookup range

[offset, offset+count]. Because the target data section
size is unknown, we calculate the start addresses of three pos-
sible data sections in line 4-6. Next, we compute three key
tuples in line 7 and send data section lookup requests via a
vec_kv_get invocation in line 8.

Algorithm 1: read(int* fd,void* buf,size_t count,off_t offset)
1 uint64 union_min = offset, union_max = 0, addr = offset, i = 0;
2 struct* extents[N]; struct block* blks[M]; vec_t v_vec;
3 while union_min >= offset && union_max <= (offset+count) do
4 uint64 section1_start = ALIGN_DOWN(addr/SIZE_1GB);
5 uint64 section2_start = ALIGN_DOWN(addr/SIZE_2MB);
6 uint64 section3_start = ALIGN_DOWN(addr/SIZE_4KB);
7 key_t* k_vec = vectorize_key(section1_start, section2_start,

section3_start); // get a vector of keys
8 vec_kv_get(k_vec, v_vec); // batch section lookup
9 extents[i] = filter_sections(v_vec);

10 union_max += extents[i]->range_size; // extend the union range
11 addr += extents[i]->range_size; i++; // update lookup endpoint

12 blks = get_blocks(extents); // get blocks in all extents
13 buf = read_blocks(blks, offset, count); // parallel block reads

The vec_kv_get performs DPM-friendly, batched lookups
and returns a vector of data sections. We filter out the correct
section by validating candidate sections’ ranges and get the as-
sociated extent in line 9. After that, we extend the union range
of found extents in line 10 and update the lookup endpoint
in line 11. If the union range cannot include the requested
range, we perform another extent lookup. Otherwise, we get
all blocks for found extents in line 12. The data-plane FS
stripes a file in the unit of extents across PM devices in the
memory pool, which facilitates parallel data R/W onto file
blocks belonging to disjoint extents. Hence we parallelize
data block reads in line 13.

4.2.3 Log Ingestion
The sharedFS ingests shared logs to update its states. The
log ingestion is split into two phases. First, every CN runs
a log ingestion worker and suppose there are N workers in
total. Logs belonging to the same file are dependent. Every
worker i scans all shared logs and gathers those logs whose
f ingerprint%N == i in its working set. It ensures that de-
pendent logs are processed by the same worker. The worker
fetches and replays operation logs to forward cacheFS states.
When finishes replaying logs, it translates data in the names-
pace cache and block cache into corresponding key-value
tuples and feeds these key-value data to sharedFS via a vector
put invocation. Second, the sharedFS ingests these data by
creating, inserting, or updating associated key-value tuples.

4.3 Implementation
We develop Ethane prototype from scratch. Its source code is
available at https://github.com/miaogecm/Ethane.git.
It consists of 10910 lines of C code. The CN runs the Linux op-
erating system to provide POSIX-compatible interfaces, effi-
cient resource management, and data protection. The cacheFS
is implemented as a user-level library which includes 4922
lines of C code.

198 2024 USENIX Annual Technical Conference USENIX Association

https://github.com/miaogecm/Ethane.git

32 64 128 256 384 512
Number of Clients

0

0.4

0.8

1.2

1.6

2.0

2.4

Th
ro

ug
hp

ut
 (M

 o
ps

/s
)

Log+Arena
Log+CAS

(a) Log Arena Scalability

64 96 128 192 256
K

104

105

106

Th
ro

ug
hp

ut
 (o

ps
/s

)

Baseline
+DepCheck
+DepCheck+Reuse

(b) Log Replay Performance

1 2 3 4 5 6 7 8 9
Number of Path Component

0

20

40

60

80

100

N
IC

 IO
PS

 (M
 o

ps
/s

)

IOPS: Para-Walk
IOPS: Seq-Walk

0

60

120

180

240

300

Sy
st

em
 C

al
l L

at
en

cy
 (u

s)LAT: Para-Walk
LAT: Seq-Walk

(c) Path Walk Latency

4KB 256KB 16MB 1GB 64GB
File Size

0

0.3

0.6

0.9

1.2

Th
ro

ug
hp

ut
 (M

 o
ps

/s
) Disent-Read Ent-Read

(d) Data Read Throughput
Figure 8: Control-Plane FS and Data-Plane FS Evaluation Results

Every cacheFS instance runs as a state machine which
replays logs to transit local states. Multiple cacheFS instances
are isolated from each other. CacheFS instances are classified
into two categories: external cacheFSs and internal cacheFSs.
An external cacheFS is linked with a client and serves user
requests. Internal cacheFSs are used for log ingestion. There
are no clients for internal cacheFS instances.

The MN has less computation power and is unable to sup-
port executing a full-fledged operating system kernel. Instead,
every MN runs a thin sharedFS daemon which is responsible
for PM pool management and log garbage collection. Ethane
runs on the reliable connected RDMA transport. We use the
ZooKeeper [2] for managing namespace and maintaining con-
figuration information for CNs and MNs.

We assume the sharedFS belongs to the trusted comput-
ing base. Every cacheFS instance runs in the user space.
Its states and data are volatile and can be rebuilt based on
the sharedFS and shared logs. Any data corruption or stray
writes [26, 57, 76] that happened in the cacheFS or client ap-
plications are unable to affect the data integrity of sharedFS.
The log ingestion of internal cacheFS instances is performed
by dedicated kernel threads at the CN.

5 Evaluation
This section tries to answer three questions: (1) Is Ethane
friendly to disaggregated persistent memory architecture?
(§5.1-5.2) (2) Does Ethane perform better than conventional
distributed file systems? (§5.3) (3) How does Ethane perform
with real-world data-intensive applications? (§5.4)

We set up two platforms with a rack of four blade servers for
emulating disaggregated PM and symmetric PM. Every blade
server has two NUMA nodes and is equipped with two Intel
Xeon Gold 5220 CPU @ 2.20 GHZ, 128 GB (4×32 GB) SK
Hynix DDR4 DRAM, 512 GB (4×128 GB) Intel Optane DC
Persistent Memory (DCPMM), a 512 GB Samsung PM981
NVMe SSD, and two Mellanox ConnectX-6 100 GbE NICs.
Every blade server runs Ubuntu 18.04 and is connected to a
100 Gb Ethernet Mellanox switch.

Table 1 lists the hardware configurations and estimated
prices of disaggregated PM and symmetric PM systems. Hard-
ware device prices are collected from Amazon and HPE CDW
websites. In the experiment, a disaggregated PM system con-

Table 1: Hardware Configuration of Disaggregated and Sym-
metric PM Systems

CPU DRAM PMEM SSD NIC Price

CN 32
cores

8 GB
DDR4 - 512 GB

NVMe SSD
2×ConnectX-6

NIC $3919

MN 1 core 8 GB
DDR4

4×128 GB
DCPMM

512 GB
NVMe SSD

2×ConnectX-6
NIC $3463

SN 16
cores

2×32 GB
DDR4

2×128 GB
DCPMM

512 GB
NVMe SSD

ConnectX-6
NIC $3789

sists of two CNs and two MNs and a symmetric PM system
includes four symmetric nodes (SNs). The total prices of two
systems are $14764 and $15156, respectively.

We compare Ethane with CephFS [69], Octopus [49], and
Assise [12]. These three DFSs run on the symmetric PM
system. We configure an RDMA-enabled CephFS with Blue-
Store as OSD storage backend. The OSD uses PMDK to
manage DCPMM. The CephFS runs four MDS daemons and
four OSD daemons. We pin a pair of MDS and OSD dae-
mons to an SN. Due to the limited number of physical cores,
experiments also use a coroutine library [6].

5.1 Control-plane FS Evaluation
The control-plane FS functionalities is delegated to the shared
log. We evaluate its performance by analyzing three shared
log techniques: log persistence, log arena and log playback.

Log persistence latency. We measure the oplog persis-
tence latency with different log size. An oplog consists of a
mlog and a dlog. We evaluate three dlog sizes (64B, 1024B,
4096B) by varying file path length. Inserting and persist-
ing a mlog/dlog need one RDMA_CAS/RDMA_WRITE and one
RDMA_READ. An RDMA_CAS/RDMA_READ and RDMA_WRITE la-
tency is 4.8 µs and 3.2 µs. These two RDMA requests are
transmitted in parallel. Thanks to this optimization, the 8-byte
mlog insertion and persistence latency takes 5.48 µs. Inserting
and persisting a small- and medium-sized dlog costs 4.32 µs
and 5.53 µs. The 4096B dlog insertion and persistence takes
7.46 µs.

Log arena scalability. This experiment studies log insert
scalability. Every client has a private working directory and
repeats creating files in this directory. We compare our log
arena approach (Log+Arena) with a RDMA_CAS-based solution
(Log+CAS). The number of slots in an arena is set to the half
of the number of clients. The experiment varies the number of
clients. Figure 8a demonstrates that Log+Arena scales much

USENIX Association 2024 USENIX Annual Technical Conference 199

better than Log+CAS. Its throughput increases linearly when
the number of clients increases.

32 64 96 128 192 256 384
Number of Clients

0

10

20

30

40

50

N
um

be
r o

f R
D

M
A

_C
A

S # RDMA_CAS: Log+Arena
RDMA_CAS: Log+CAS

0

1

2

3

4

5

D
at

a
Tr

an
sf

er
 R

at
e

(M
 o

ps
/s

)

Transfer Rate: Log+Arena
Transfer Rate: Log+CAS

Figure 9: # RDMA_CAS and PCIe Data Transfer Rate

We collect the number of RDMA_CAS operations and re-
port them in Figure 9. The Log+CAS introduces much more
atomic RDMA operations than Log+Arena. In contrast, the
Log+Arena incurs a few RDMA_CAS operations. Moreover,
Log+CAS has a low PM bandwidth utilization. RDMA_CAS
causes heavy NIC lock contention which prevents throughput
increment. We use Intel PMWatch tool [5] to measure the
number of write operations received from the memory con-
trol, i.e., ddrt_write_ops. The RNIC accesses the DCPMM
via PCIe bus and the on-chip PCIe controller forwards re-
quests to the memory control. Thus, the increase rate of
ddrt_write_ops approximates the PCIe data transfer rate.
The Log+Arena achieves a much higher PCIe data transfer
rate. Its peak rate is 3× higher than Log+CAS, leading to a
better PM bandwidth utilization.

Log playback efficiency. Our log playback consists of
two techniques: lineage-based log dependence check and
collaborative log playback. We first evaluate the effectiveness
of the log dependence check. In the experiment, every client
creates files in the directory /ethane-<X> where 1 ≤ X ≤ K.
Experiments vary K from 64 to 256. Before a client creates
a file, it must replay all dependent logs. Hence, a small K
causes more dependent logs.

The baseline replays logs one by one without any depen-
dence check or reusing optimizations. Figure 8b shows that
the baseline throughput is only 5 Kops/s. The log dependence
check optimization is effective. When K increases, the num-
ber of dependent logs reduces. It filters out a large number of
unrelated logs during log replay. The +DepCheck improves
the throughput by up to 1.7 Mops/s. The log reusing mecha-
nism brings more performance benefits. Because all creat
syscalls share a common prefix path, the collaborative log
playback utilizes this to accelerate the execution path. It per-
forms 42.21% better than +DepCheck on average.

5.2 Data-plane FS Evaluation
The data-plane FS incorporates DPM-friendly, disentangled
data paths. This section analyzes two representative data
paths: file path walk and file data read.

Path walk latency. This experiment preloads a Linux-4.15
source code repository. Then it creates 256 clients and each
client accesses a file in the directory tree via stat. We change

the file path length and measure the syscall latency. We com-
pare the parallel path walk design in Ethane with the tra-
ditional sequential path walk. Figure 8c demonstrates that
Para-Walk delivers a much more stable latency than that of
Seq-Walk. The Seq-Walk is non-scalable. Its total path walk
latency is proportional to the number of path components. Its
path walk latency at 9-component takes 263 µs which is 3.09
× higher than that of 1-component.

The Para-Walk decouples the component access from com-
ponent processing. It utilizes the vector lookup interface to
perform parallel component lookups, which hides the RDMA
latency and delivers high network bandwidth utilization. To
confirm it, we profile the NIC IOPS at the receiver side. Fig-
ure 8c shows that Para-Walk achieves up to 2.43× higher
IOPS than that of Seq-Walk.

Data read throughput. This experiment creates a client to
perform random data read to a file. The IO size is set to 4 KB.
We change the file size from 4 KB to 64 GB. We compare
two data path designs: disentangled read path (Disent-Read)
and entangled read path (Ent-Read). The entangled read path
uses extent tree-based block management. Figure 8d shows
that the Disent-Read performs much better than the Ent-Read,
especially for a large file size. When the file size is 64 GB, its
throughput is 5.76× higher than that of the Ent-Read. This is
because the file mapping dominates the large file read time.

Table 2: # Pointer Chasing and % File Mapping Time

File Size # Pointer Chasing % File Mapping Time
Disent-Read Ent-Read Disent-Read Ent-Read

4 KB 2.0 2.0 28.2% 49.7%
256 KB 2.0 2.76 31.4% 62.2%
16 MB 2.0 3.89 29.9% 77.8%
1 GB 2.0 4.38 29.7% 80.2%
64 GB 2.0 5.41 30.5% 86.7%

When the file size is large, the extent tree is high. As a
result, the Ent-Read needs to traverse many tree levels to
find a data block. To analyze performance overheads deeply,
Table 2 reports the number of pointer chasings during two
data paths. It shows that the Ent-Read requires 5.41 pointer
chasings in extent tree traversal for a 64 GB file read. The total
file mapping time occupies 86.7% of the total time. Thanks to
the data section-based block management, our Disent-Read
only incurs two pointer chasings per file read regardless of
file size changing. Moreover, it only spends 28.2%-30.5% of
the total time in file mapping.

5.3 Macrobenchmark Performance
End-to-end latency. We measure the end-to-end latency of
system calls. Eight clients run on four nodes and send mkdir
and stat requests to backend file system servers. Figure 10 re-
ports measured latencies. In the first experiment, every client
creates directories in /ethane-<X> where X=rand(1,K). We
vary K from 1 to 10. As shown in Figure 10a, deep software
stack and distributed namespace tree in CephFS causes over

200 2024 USENIX Annual Technical Conference USENIX Association

eight hundred microseconds of mkdir latency. Octopus de-
livers approximately 60 µs latency. Assise achieves 31.27%
lower latency than that of Octopus on average owing to its
client-local NVM design. Ethane delivers the similar latency
as Assise when K is small. Fortunately, when K increases,
the number of dependent logs decreases. The log playback
latency in Ethane effectively reduces. It outperforms Assise
by up to 33.54%.

1 2 4 6 8 10
K

101

102

103

La
te

nc
y

(u
s)

Ethane Octopus

(a) mkdir

0 0.99 1.2 1.5 2.6
α

100

101

102

103

104
La

te
nc

y
(u

s)

CephFS Assise

(b) stat
Figure 10: System call Latency

In the second experiment, every client accesses files via
stat. The file access pattern follows a Zipfian distribution
with a parameter α. A large α indicates a skewed access
pattern. Both CephFS and Octopus suffer from the load im-
balance issue. Their stat latencies increase linearly when
α becomes bigger. Assise replicates hot data in client-local
NVMs. Thus, skewed file access improves its performance.
Similarly, the namespace cache design in cacheFS also helps
avoid the load imbalance issue for Ethane.

Metadata scalability. We use MDTest [7] to evaluate
metadata performance. We run an MPICH framework [8]
to generate MDTest processes across server nodes. Before
the experiment, every process creates a private directory hier-
archy for each client. Then, every client creates two million
files, accesses them, and removes these files. Figure 11 shows
the metadata performance of four file systems.

16 32 48 64 96 128
Clients

104

105

106

Th
ro

ug
hp

ut
 (o

ps
/s

)

Ethane

(a) creat

16 32 48 64 96 128
Clients

104

105

106

Th
ro

ug
hp

ut
 (o

ps
/s

)

Octopus

(b) unlink

2 4 6 8 10
Path Components

104

105

106

Th
ro

ug
hp

ut
 (o

ps
/s

)

CephFS

(c) stat (random)

0 0.99 1.2 1.5 2.6
Access Skewness (α)

104
105
106
107
108

Th
ro

ug
hp

ut
 (o

ps
/s

)

Assise

(d) stat (skew)
Figure 11: MDTest Performance

For file creation and removal, Ethane outperforms all other
three distributed file systems. Octopus only assigns one
worker per data server. It is unable to process massive client
requests efficiently, which causes severe weak node capability
issues. The total throughput of Octopus stops increasing at 48

clients. CephFS yields orders of magnitudes of lower through-
puts than Ethane. The MDS in CephFS relies on OSDs to store
metadata. A creat or unlink syscall causes frequent cross-
node communication between MDS and OSD. Moreover, the
BlueStore in OSD has a deep software stack for managing
PM devices, which includes RocksDB, BlueFS, and PMDK.
It leads to a high latency, aggravating the interaction issue.
Similar to Octopus, the MDS is single-threaded which also
impedes CephFS scalability improvement. Assise performs
worse than Ethane. Even though Assise localizes data access
with client-local PMs, its chain replication protocol incurs
high remote write overheads. Specifically, every time a client
creates a file, it needs to propagate this data update to all other
remote nodes in sequence.

We evaluate two settings of file stat. In the first setting,
file systems randomly access files and the experiment varies
the file path length. Octopus achieves approximately 1 Mops/s
regardless of the number of path component changes. The path
resolution in Octopus is not POSIX-compliant. It hashes the
whole path without any individual path component resolution.
In contrast, Ethane faithfully resolves every component and
it is still 1.8× faster than Octopus thanks to the parallel path
walk design. Assise’s throughput is close to that of Ethane.
It is because there is no data replication during file stat and
all data access happens on local devices. However, random
file access causes numerous PM misses for Assise. Loading
data from SSD-based storage delivers a similar or even longer
latency than RDMA_READ latency.

The second setting uses a non-uniform access popular-
ity. Both Octopus and CephFS configure one worker per SN.
Therefore, their total throughput decreases dramatically when
the file access becomes more skewed. Fortunately, Ethane has
no such load imbalance concern. All stat requests are evenly
distributed among cacheFS instances.

4 16 32 64 128
IO Size (KB)

0
10
20
30
40
50

Th
ro

ug
hp

ut
 (G

B
/s

)

Ethane
Octopus

(a) read

4 16 32 64 128
IO Size (KB)

0
3
6
9

12
15
18

Th
ro

ug
hp

ut
 (G

B
/s

)

CephFS
Assise

(b) write
Figure 12: Fio Throughput

Data IO throughput. We use fio [4] to evaluate the data
R/W performance. We spawn 32 clients per CN/SN. All client
performs data reads to a shared file. We measure the data
throughput with different IO sizes in Figure 12. CephFS per-
forms worst. Data de-/serialization, message encapsulation,
and extra data copies in its message-based RPC lead to low
throughput. Its peak throughput only approaches 6 GB/s. Oc-
topus has load imbalance issues. When the IO size increases,
its total throughputs are bounded by a single node. Besides,
Octopus achieves better performance than CephFS for small-
sized IOs. Its client-active IO uses one-sided RDMA_READ to

USENIX Association 2024 USENIX Annual Technical Conference 201

reduce data transfer overheads.
For Ethane, both its file mapping and block reading in the

data path fully exploit aggregated bandwidth provided by the
remote PM pool. Its total throughput decreases when the IO
size exceeds 64KB. Every time Ethane reads file data, it needs
to initiate one extra remote read to check if there exist any
new dependent logs. These additional data reads consume
network and PM bandwidth. When running 32 threads with
an IO size of 128KB, the bandwidth exhausts and the total
throughput decreases. Assise read throughput is higher than
Ethane. Every client in Assise caches the file in its local NVM.
A local NVM read is 10× lower than a remote NVM read
which accounts for their performance difference.

We spawn four clients per CN/SN for the write experi-
ment and clients write a shared file. Analogously to the read
experiment, when the IO size is large, the total file system
performance of CephFS and Octopus are bottlenecked by the
PM capability in an SN. They deliver a peak throughput of
0.63 GB/s and 4.4 GB/s, respectively. The write throughput
in Assise is much worse than the read throughput. For a file
write, it has to send the updated data to all remaining SNs.
Such expensive data coherence protocol greatly degrades the
write throughput. Ethane throughputs scale linearly thanks to
its parallel data path design and reach a peak of 15.52 GB/s.

Cost efficiency. This experiment uses the video server
workload from filebench [3]. This workload prepares a set of
1 GB video files. During experiments, a vidwriter writes new
videos and fifteen clients read these video files with different
IO sizes. This workload is read-intensive which stresses the
file system IO performance.

4 32 128 256 512
IO Size (KB)

0
1
2
3
4
5

[M
B

/s
]/$

Octopus
CephFS

Assise
Ethane

Figure 13: Performance-cost Evaluation

A single PM device only offers a peak of 6 GB/s bandwidth.
For large IO sizes, file systems need to add more PM devices
to serve the IO requests. Symmetric PM file systems add more
monolithic SN while disaggregated PM file system plugs
more PM modules into the MN. For different IO sizes, we
choose the most cost-effective hardware configuration for
each file system. This hardware configuration fitly supports
running this workload. For example, for an IO size of 32 KB,
CephFS requires two SNs. These two SNs contain four PM
devices whose total bandwidth is sufficient for running the
workload. One SN or three SNs is under- or over-provisioned.

Figure 13 shows the performance-cost efficiency. Ethane
yields the highest throughput (i.e., MB/s) per dollar. The rea-
sons are twofold. First, the disentangled data path design in
Ethane brings better PM utilization than other file systems.
Second, when PM resources become scarce due to increased

IO size, Ethane only needs to add a new PM DIMM with-
out purchasing an entire machine as other PM file systems.
Two Intel DCPMMs cost $838 while an SN machine includ-
ing two DCPMMs takes $3789. Disaggregating PM reduces
significant monetary costs compared with symmetric PM.

5.4 Application Performance
Redis cluster. We evaluate the data persistence performance
of a distributed key-value store: Redis cluster [9]. Redis clus-
ter shards data and replicates Redis nodes to manage these
shards. The Redis node supports two data persistence modes:
(1) AOF, which persists every operation in a log and flushes
logs periodically to disk; (2) RDB, which snapshots database
states and checkpoints it to disk.

Experiments create sixteen shards and each client operates
a shard by putting 100 million keys and executing the SAVE
command to dump the database into a RDB file. We run the
Redis cluster atop four file systems and measure both AOF
throughput and ROB latency in Figure 14a. Ethane achieves
6.77%/17.98×/41.55% higher AOF throughputs than Octo-
pus/CephFS/Assise. Replicated Redis is unfriendly to As-
sise for its expensive data coherence mechanism. CephFS is
10× slower than Ethane for its heavyweight software stack.
When clients dump ten 10 GB RDB files, Ethane achieves
27.56%/8.21×/4.71× lower latency than others.

AOF Thpt. RDB Lat.103

104

105

106

Th
ro

ug
hp

ut
 (o

ps
/s

) Octopus
CephFS

Assise
Ethane

0

5

10

15

La
te

nc
y

(s
ec

)

(a) Redis Cluster
Ethane CephFS Assise Octopus0

1.0

2.0

3.0

To
ta

l L
at

en
cy

 (s
ec

)

Computing Phase
IO Phase

(b) Metis
Figure 14: Application Performance

Metis. We run a multicore-optimized MapReduce applica-
tion Metis [18]. We use Metis to run WordCount with a 16GB
input file. We configure two SNs for symmetric PM file sys-
tems. Besides, We configure 0.5 CN and 1.5 MNs for Ethane.
The half CN and MN is enabled by using one NUMA node of
that machine. It ensures that the total costs of 2 SNs and 0.5
CN + 1.5 MNs are approximately equal. Two SNs have twice
more cores than the half CN but they deliver similar com-
puting phase latency. It suggests that the computing resource
is over-provisioned for symmetric PM file systems. On the
other side, Ethane has a shorter IO phase latency. Four PM
devices is under-provisioned for symmetric PM file systems.
Thanks to its elastic resource scaling, Ethane yields superior
performance than others with the same hardware cost.

6 Related Works
Distributed file systems. For the past decades, DFSs play
a critical role in large-scale data storage. Conventional file
systems decouple metadata from data management, e.g.,

202 2024 USENIX Annual Technical Conference USENIX Association

HDFS [63], PVFS [21], and Lustre [10]. It is a reasonable
design for monolithic data center as a machine is capable
of storing and manipulating file data. A line of research ef-
forts have been devoted to improving capabilities in handling
metadata requests and processing data IOs. CephFS [69]
improves metadata scalability via namespace tree partition-
ing. GIGA+ [56] adopts a hash-based directory partitioning
scheme. To avoid system-wide synchronization, GIGA+ dis-
ables client caching for high concurrency. IndexFS [59] and
HopsFS [54] use NoSQL and relational databases for efficient
small-sized metadata storage and indexing. HDFS [63] uses
block replication to improve data availability and achieve
aggregated IO throughput. QFS [55] reduces replication-
incurred storage consumption via erasure coding.

PM-based file systems. For local file systems, researchers
exploit PM characteristics to redesign various file system
modules, such as namespace hierarchy [19], data IO [39],
and journal mechanism [57, 71]. For distributed file systems,
incorporating PM is flexible. BlueStore in Ceph [11] uses
PM for OSD storage. However, it has a deep software stack
for PM management, resulting in a long software latency.
NVFS [36] proposes a PM-based write-ahead log design for
HDFS. SINGULARFS [33] deploys all PM devices in one
server machine. It only scales for billions of files due to the
PM limitation of a single machine.

Octopus [49] and Orion [72] couple high-speed RDMA
and PM. Octopus proposes a shared PM pool abstraction
via unifying disjoint PM devices across multiple nodes. The
weak node issue easily arises as it lacks efficient load balance
mechanism. Orion [72] configures PMs in client machines,
metadata servers, and data stores. Its scattered data introduces
substantial node interactions during request processing. As-
sise [12] is a client-local PM file system. It achieves superior
system performance by placing PM near client applications.
However, this architecture design transfers PM expenses to
users. These file systems extensively leverage PM’s strength
but they overlook PM’s drawbacks.

Disaggregated PM system. Memory and storage disaggre-
gation gains increased research interests recently [22, 27, 34,
35, 43, 46, 61, 62, 65, 75]. Resource disaggregation effectively
overcomes the inherent storage capacity and cost deficiency
of persistent memories. Moreover, commodity RDMA net-
work [40] and forthcoming fast CXL protocols [45, 52] retain
the latency advantage of PMs. This paper argues that disag-
gregated PMs provides an attractive and competitive solution
towards future high-performance DFSs, and to the best of our
knowledge, Ethane is the first file system that unleashes such
hardware potentials with a novel asymmetric architecture and
efficient functionality separation.

7 Conclusion
This paper revisits the PM usage in existing distributed file
systems and reveals three correlated issues. To leverage PM
performance strength as well as overcome its capacity and

cost weakness, we propose a DPM-based file system Ethane.
Ethane features an asymmetric file system architecture which
decouples an FS into two planes running on distinct server
nodes in DPM. Compared with modern PM-based distributed
file systems, Ethane yields significant better performance for
data-intensive applications with much lower monetary costs.

Acknowledgments
We thank the reviewers for their helpful feedback. This pa-
per is supported by the Fundamental Research Funds for
the Central Universities (Grant No. NS2024057) and the
Natural Science Foundation of Jiangsu Province (Grant No.
BK20220973). Baoliu Ye is the corresponding author.

References

[1] Apache Hadoop. https://hadoop.apache.org/,
2023.

[2] Apache ZooKeeper. https://zookeeper.apache.o
rg/, 2023.

[3] Filebench. https://github.com/filebench/fileb
ench, 2023.

[4] Flexible I/O Tester. https://github.com/axboe/f
io, 2023.

[5] Intel PMWatch. https://github.com/intel/intel
-pmwatch, 2023.

[6] libaco. https://github.com/hnes/libaco, 2023.

[7] MDTest. https://github.com/LLNL/mdtest, 2023.

[8] MPICH. https://www.mpich.org/, 2023.

[9] Scale with Redis Cluster. https://redis.io/docs/
management/scaling/, 2023.

[10] The Lustre file system. https://www.lustre.org/,
2023.

[11] Abutalib Aghayev, Sage A. Weil, Michael Kuch-
nik, Mark Nelson, Gregory R. Ganger, and George
Amvrosiadis. File Systems Unfit as Distributed Storage
Backends: Lessons from 10 years of Ceph Evolution. In
27th ACM Symposium on Operating Systems Principles,
Huntsville, ON, Canada, October 27-30, 2019, pages
353–369.

[12] Thomas E. Anderson, Marco Canini, Jongyul Kim, De-
jan Kostic, Youngjin Kwon, Simon Peter, Waleed Reda,
Henry N. Schuh, and Emmett Witchel. Assise: Per-
formance and Availability via Client-local NVM in a
Distributed File System. In 14th USENIX Symposium on
Operating Systems Design and Implementation, Virtual
Event, November 4-6, 2020, pages 1011–1027.

USENIX Association 2024 USENIX Annual Technical Conference 203

https://hadoop.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/intel/intel-pmwatch
https://github.com/intel/intel-pmwatch
https://github.com/hnes/libaco
https://github.com/LLNL/mdtest
https://www.mpich.org/
https://redis.io/docs/management/scaling/
https://redis.io/docs/management/scaling/
https://www.lustre.org/

[13] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mi-
hir Dharamshi, Ahmed Jafri, Xiao Shi, Santosh Ghosh,
Hazem Hassan, Aaryaman Sagar, Rhed Shi, Jingming
Liu, Filip Gruszczynski, Xianan Zhang, Huy Hoang,
Ahmed Yossef, Francois Richard, and Yee Jiun Song.
Virtual Consensus in Delos. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation,
Virtual Event, November 4-6, 2020, pages 617–632.

[14] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prab-
hakaran, Ted Wobber, Michael Wei, and John D. Davis.
CORFU: A Shared Log Design for Flash Clusters. In
9th USENIX Symposium on Networked Systems Design
and Implementation, San Jose, CA, USA, April 25-27,
2012, pages 1–14.

[15] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber,
Ming Wu, Vijayan Prabhakaran, Michael Wei, John D.
Davis, Sriram Rao, Tao Zou, and Aviad Zuck. Tango:
Distributed Data Structures over a Shared Log. In ACM
SIGOPS 24th Symposium on Operating Systems Princi-
ples, Farmington, PA, USA, November 3-6, 2013, pages
325–340.

[16] Luiz André Barroso, Mike Marty, David A. Patterson,
and Parthasarathy Ranganathan. Attack of the Killer
Microseconds. Communications of ACM, 60(4):48–54,
2017.

[17] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac
Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar,
Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, and
Gregory R. Ganger. The CacheLib Caching Engine: De-
sign and Experiences at Scale. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation,
Virtual Event, November 4-6, 2020, pages 753–768.

[18] Silas Boyd-Wickizer, Austin T. Clements, Yandong
Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Tap-
pan Morris, and Nickolai Zeldovich. An Analysis of
Linux Scalability to Many Cores. In 9th USENIX Sympo-
sium on Operating Systems Design and Implementation,
October 4-6, 2010, Vancouver, BC, Canada, pages 1–16.

[19] Miao Cai, Junru Shen, Bin Tang, Hao Huang, and Baoliu
Ye. FlatFS: Flatten Hierarchical File System Namespace
on Non-volatile Memories. In 2022 USENIX Annual
Technical Conference, Carlsbad, CA, USA, July 11-13,
2022, pages 899–914.

[20] Zhichao Cao, Siying Dong, Sagar Vemuri, and David
H. C. Du. Characterizing, Modeling, and Benchmarking
RocksDB Key-Value Workloads at Facebook. In 18th
USENIX Conference on File and Storage Technologies,
Santa Clara, CA, USA, February 24-27, 2020, pages
209–223.

[21] Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and
Rajeev Thakur. PVFS: A Parallel File System for Linux
Clusters. In 4th Annual Linux Showcase & Conference,
Atlanta, Georgia, USA, October 10-14, 2000.

[22] Zongzhi Chen, Xinjun Yang, Feifei Li, Xuntao Cheng,
Qingda Hu, Zheyu Miao, Rongbiao Xie, Xiaofei Wu,
Kang Wang, Zhao Song, Haiqing Sun, Zechao Zhuang,
Yuming Yang, Jie Xu, Liang Yin, Wenchao Zhou, and
Sheng Wang. CloudJump: Optimizing Cloud Databases
for Cloud Storages. Proc. VLDB Endow., 15(12):3432–
3444, 2022.

[23] Shenghsun Cho, Amoghavarsha Suresh, Tapti Palit,
Michael Ferdman, and Nima Honarmand. Taming the
Killer Microsecond. In 51st Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, Fukuoka,
Japan, October 20-24, 2018, pages 627–640.

[24] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. In 6th Sympo-
sium on Operating System Design and Implementation,
San Francisco, California, USA, December 6-8, 2004,
pages 137–150.

[25] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo
Alvisi, and Robbert van Renesse. Scalog: Seamless
Reconfiguration and Total Order in a Scalable Shared
Log. In 17th USENIX Symposium on Networked Sys-
tems Design and Implementation, Santa Clara, CA, USA,
February 25-27, 2020, pages 325–338.

[26] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and Protection in the ZoFS
User-space NVM File System. In 27th ACM Sympo-
sium on Operating Systems Principles, Huntsville, ON,
Canada, October 27-30, 2019, pages 478–493.

[27] Siying Dong, Shiva Shankar P., Satadru Pan, Anand
Ananthabhotla, Dhanabal Ekambaram, Abhinav Sharma,
Shobhit Dayal, Nishant Vinaybhai Parikh, Yanqin Jin,
Albert Kim, Sushil Patil, Jay Zhuang, Sam Dunster,
Akanksha Mahajan, Anirudh Chelluri, Chaitanya Datye,
Lucas Vasconcelos Santana, Nitin Garg, and Omkar
Gawde. Disaggregating RocksDB: A Production Expe-
rience. Proc. ACM Manag. Data, 1(2):1–24, 2023.

[28] Bin Fan, David G. Andersen, and Michael Kaminsky.
MemC3: Compact and Concurrent MemCache with
Dumber Caching and Smarter Hashing. In Proceedings
of the 10th USENIX Symposium on Networked Systems
Design and Implementation, Lombard, IL, USA, April
2-5, 2013, pages 371–384.

[29] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Ex-
ploiting nil-externality for fast replicated storage. In

204 2024 USENIX Annual Technical Conference USENIX Association

ACM SIGOPS 28th Symposium on Operating Systems
Principles, Virtual Event / Koblenz, Germany, October
26-29, 2021, pages 440–456.

[30] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google File System. In 19th ACM Symposium
on Operating Systems Principles, Bolton Landing, NY,
USA, October 19-22, 2003, pages 29–43.

[31] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient Memory Dis-
aggregation with Infiniswap. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation,
Boston, MA, USA, March 27-29, 2017, pages 649–667.

[32] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. Un-
derstanding the Idiosyncrasies of Real Persistent Mem-
ory. Proc. VLDB Endow., 14(4):626–639, 2020.

[33] Hao Guo, Youyou Lu, Wenhao Lv, Xiaojian Liao,
Shaoxun Zeng, and Jiwu Shu. SingularFS: A Billion-
Scale Distributed File System Using a Single Metadata
Server. In 2023 USENIX Annual Technical Conference,
Boston, MA, USA, July 10-12, 2023, pages 915–928.

[34] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang,
and Yiying Zhang. Clio: a Hardware-software Co-
designed Disaggregated Memory System. In 27th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Lau-
sanne, Switzerland, 28 February - 4 March, 2022, pages
417–433.

[35] Haoyu Huang and Shahram Ghandeharizadeh. Nova-
LSM: A Distributed, Component-based LSM-tree Key-
value Store. In International Conference on Manage-
ment of Data, Virtual Event, China, June 20-25, 2021,
pages 749–763.

[36] Nusrat Sharmin Islam, Md. Wasi-ur-Rahman, Xiaoyi
Lu, and Dhabaleswar K. Panda. High Performance De-
sign for HDFS with Byte-Addressability of NVM and
RDMA. In Proceedings of the 2016 International Con-
ference on Supercomputing, Istanbul, Turkey, June 1-3,
2016, pages 1–14.

[37] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael A. Ben-
der, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. BetrFS: A Right-
Optimized Write-Optimized File System. In 13th
USENIX Conference on File and Storage Technologies,
Santa Clara, CA, USA, February 16-19, 2015, pages
301–315.

[38] Zhipeng Jia and Emmett Witchel. Boki: Stateful Server-
less Computing with Shared Logs. In ACM SIGOPS
28th Symposium on Operating Systems Principles, Vir-
tual Event / Koblenz, Germany, October 26-29, 2021,
pages 691–707.

[39] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
SplitFS: Reducing Software Overhead in File Systems
for Persistent Memory. In 27th ACM Symposium on
Operating Systems Principles, Huntsville, ON, Canada,
October 27-30, 2019, pages 494–508.

[40] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design Guidelines for High Performance RDMA Sys-
tems. In 2016 USENIX Annual Technical Conference,
Denver, CO, USA, June 22-24, 2016, pages 437–450.

[41] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im,
Marco Canini, Dejan Kostic, Youngjin Kwon, Simon
Peter, and Emmett Witchel. LineFS: Efficient SmartNIC
Offload of a Distributed File System with Pipeline Paral-
lelism. In ACM SIGOPS 28th Symposium on Operating
Systems Principles, Virtual Event, Koblenz, Germany,
October 26-29, 2021, pages 756–771.

[42] Jinhyung Koo, Junsu Im, Jooyoung Song, Juhyung Park,
Eunji Lee, Bryan S. Kim, and Sungjin Lee. Moderniz-
ing File System through In-Storage Indexing. In 15th
USENIX Symposium on Operating Systems Design and
Implementation, July 14-16, 2021, pages 75–92.

[43] Se Kwon Lee, Soujanya Ponnapalli, Sharad Singhal,
Marcos K. Aguilera, Kimberly Keeton, and Vijay Chi-
dambaram. DINOMO: An Elastic, Scalable, High-
Performance Key-Value Store for Disaggregated Persis-
tent Memory. Proc. VLDB Endow., 15(13):4023–4037,
2022.

[44] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li,
Xu Liu, Nathan R. Tallent, and Kevin J. Barker. Evaluat-
ing Modern GPU Interconnect: PCIe, NVLink, NV-SLI,
NVSwitch and GPUDirect. IEEE Transactions on Par-
allel Distributed Systems, 31(1):94–110, 2020.

[45] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst,
Pantea Zardoshti, Stanko Novakovic, Monish Shah,
Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. Pond:
CXL-Based Memory Pooling Systems for Cloud Plat-
forms. In 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Vancouver, BC, Canada, March 25-
29, 2023, pages 574–587.

[46] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and
Jiajie Sheng. ROLEX: A Scalable RDMA-oriented

USENIX Association 2024 USENIX Annual Technical Conference 205

Learned Key-Value Store for Disaggregated Memory
Systems. In 21st USENIX Conference on File and Stor-
age Technologies, Santa Clara, CA, USA, February 21-
23, 2023, pages 99–114.

[47] Ruibin Li, Xiang Ren, Xu Zhao, Siwei He, Michael
Stumm, and Ding Yuan. ctFS: Replacing File Indexing
with Hardware Memory Translation through Contiguous
File Allocation for Persistent Memory. In 20th USENIX
Conference on File and Storage Technologies, Santa
Clara, CA, USA, February 22-24, 2022, pages 35–50.

[48] Joshua Lockerman, Jose M. Faleiro, Juno Kim, Soham
Sankaran, Daniel J. Abadi, James Aspnes, Siddhartha
Sen, and Mahesh Balakrishnan. The FuzzyLog: A Par-
tially Ordered Shared Log. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation,
Carlsbad, CA, USA, October 8-10, 2018, pages 357–372.

[49] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-
pus: an RDMA-enabled Distributed Persistent Memory
File System. In 2017 USENIX Annual Technical Con-
ference, Santa Clara, CA, USA, July 12-14, 2017, pages
773–785.

[50] Wenhao Lv, Youyou Lu, Yiming Zhang, Peile Duan, and
Jiwu Shu. InfiniFS: An Efficient Metadata Service for
Large-Scale Distributed Filesystems. In 20th USENIX
Conference on File and Storage Technologies, Santa
Clara, CA, USA, February 22-24, 2022, pages 313–328.

[51] Teng Ma, Mingxing Zhang, Kang Chen, Zhuo Song,
Yongwei Wu, and Xuehai Qian. AsymNVM: An Ef-
ficient Framework for Implementing Persistent Data
Structures on Asymmetric NVM Architecture. In 25th
ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, Lausanne, Switzerland, March 16-20, 2020, pages
757–773.

[52] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Jo-
hannes Weiner, Niket Agarwal, Pallab Bhattacharya,
Chris Petersen, Mosharaf Chowdhury, Shobhit O.
Kanaujia, and Prakash Chauhan. TPP: Transparent Page
Placement for CXL-Enabled Tiered-Memory. In 28th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
Vancouver, BC, Canada, March 25-29, 2023, pages 742–
755.

[53] Ian Neal, Gefei Zuo, Eric Shiple, Tanvir Ahmed Khan,
Youngjin Kwon, Simon Peter, and Baris Kasikci. Re-
thinking File Mapping for Persistent Memory. In 19th
USENIX Conference on File and Storage Technologies,
February 23-25, 2021, pages 97–111.

[54] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowl-
ing, Steffen Grohsschmiedt, and Mikael Ronström.
HopsFS: Scaling Hierarchical File System Metadata
Using NewSQL Databases. In 15th USENIX Confer-
ence on File and Storage Technologies, Santa Clara, CA,
USA, February 27 - March 2, 2017, pages 89–104.

[55] Michael Ovsiannikov, Silvius Rus, Damian Reeves, Paul
Sutter, Sriram Rao, and Jim Kelly. A The Quantcast File
System. Proc. VLDB Endow., 6(11):1092–1101, 2013.

[56] Swapnil Patil and Garth A. Gibson. Scale and Concur-
rency of GIGA+: File System Directories with Millions
of Files. In 9th USENIX Conference on File and Storage
Technologies, San Jose, CA, USA, February 15-17, 2011,
pages 177–190.

[57] Dulloor Subramanya Rao, Sanjay Kumar, Anil S.
Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh
Sankaran, and Jeff Jackson. System Software for Per-
sistent Memory. In Ninth Eurosys Conference on Com-
puter Systems, Amsterdam, The Netherlands, April 13-
16, 2014, pages 1–15.

[58] Kai Ren and Garth A. Gibson. TABLEFS: Enhancing
Metadata Efficiency in the Local File System. In 2013
USENIX Annual Technical Conference, San Jose, CA,
USA, June 26-28, 2013, pages 145–156.

[59] Kai Ren, Qing Zheng, Swapnil Patil, and Garth A. Gib-
son. IndexFS: Scaling File System Metadata Perfor-
mance with Stateless Caching and Bulk Insertion. In
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, New Orleans,
LA, USA, November 16-21, 2014, pages 237–248.

[60] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-
era, and Adam Belay. AIFM: High-Performance,
Application-Integrated Far Memory. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation, Virtual Event, November 4-6, 2020, pages
315–332.

[61] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A Disseminated, Distributed OS for
Hardware Resource Disaggregation. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation, Carlsbad, CA, USA, October 8-10, 2018,
pages 69–87.

[62] Junyi Shu, Ruidong Zhu, Yun Ma, Gang Huang, Hong
Mei, Xuanzhe Liu, and Xin Jin. Disaggregated RAID
Storage in Modern Datacenters. In 28th ACM Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, Vancouver, BC,
Canada, March 25-29, 2023, pages 147–163.

206 2024 USENIX Annual Technical Conference USENIX Association

[63] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The Hadoop Distributed File Sys-
tem. In IEEE 26th Symposium on Mass Storage Systems
and Technologies, Lake Tahoe, Nevada, USA, May 3-7,
2010, pages 1–10.

[64] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chi-
hun Song, Jinghan Huang, Houxiang Ji, Siddharth Agar-
wal, Jiaqi Lou, Ipoom Jeong, Ren Wang, Jung Ho Ahn,
Tianyin Xu, and Nam Sung Kim. Demystifying CXL
Memory with Genuine CXL-Ready Systems and De-
vices. In 56th Annual IEEE/ACM International Sym-
posium on Microarchitecture, Toronto, ON, Canada, 28
October - 1 November, 2023, pages 105–121.

[65] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating Persistent Memory and Controlling Them
Remotely: An Exploration of Passive Disaggregated
Key-Value Stores. In 2020 USENIX Annual Technical
Conference, July 15-17, 2020, pages 33–48.

[66] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A
Write-Optimized Distributed B+ Tree Index on Disag-
gregated Memory. In International Conference on Man-
agement of Data, Philadelphia, PA, USA, June 12 - 17,
2022, pages 1033–1048.

[67] Michael Wei, Amy Tai, Christopher J. Rossbach, Ittai
Abraham, Maithem Munshed, Medhavi Dhawan, Jim
Stabile, Udi Wieder, Scott Fritchie, Steven Swanson,
Michael J. Freedman, and Dahlia Malkhi. vCorfu: A
Cloud-Scale Object Store on a Shared Log. In 14th
USENIX Symposium on Networked Systems Design and
Implementation, Boston, MA, USA, March 27-29, 2017,
pages 35–49.

[68] Xingda Wei, Xiating Xie, Rong Chen, Haibo Chen, and
Binyu Zang. Characterizing and Optimizing Remote
Persistent Memory with RDMA and NVM. In 2021
USENIX Annual Technical Conference, July 14-16, 2021,
pages 523–536.

[69] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A Scalable,
High-Performance Distributed File System. In 7th Sym-
posium on Operating Systems Design and Implemen-
tation, November 6-8, 2006, Seattle, WA, USA, pages
307–320.

[70] Sage A. Weil, Kristal T. Pollack, Scott A. Brandt, and
Ethan L. Miller. Dynamic Metadata Management for
Petabyte-Scale File Systems. In Proceedings of the
ACM/IEEE Conference on High Performance Network-
ing and Computing, 6-12 November 2004, Pittsburgh,
PA, USA, pages 1–12.

[71] Jian Xu and Steven Swanson. NOVA: A Log-structured
File System for Hybrid Volatile/Non-volatile Main
Memories. In 14th USENIX Conference on File and
Storage Technologies, Santa Clara, CA, USA, February
22-25, 2016, pages 323–338.

[72] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
Orion: A Distributed File System for Non-Volatile
Main Memory and RDMA-Capable Networks. In 17th
USENIX Conference on File and Storage Technologies,
Boston, MA, February 25-28, 2019, pages 221–234.

[73] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steven Swanson. An Empirical Guide
to the Behavior and Use of Scalable Persistent Memory.
In 18th USENIX Conference on File and Storage Tech-
nologies, Santa Clara, CA, USA, February 24-27, 2020,
pages 169–182.

[74] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at Twitter. In 14th USENIX Symposium on Operat-
ing Systems Design and Implementation, Virtual Event,
November 4-6, 2020, pages 191–208.

[75] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu.
FORD: Fast One-sided RDMA-based Distributed Trans-
actions for Disaggregated Persistent Memory. In 20th
USENIX Conference on File and Storage Technologies,
Santa Clara, CA, USA, February 22-24, 2022, pages
51–68.

[76] Diyu Zhou, Vojtech Aschenbrenner, Tao Lyu, Jian
Zhang, Sudarsun Kannan, and Sanidhya Kashyap. En-
abling High-Performance and Secure Userspace NVM
File Systems with the Trio Architecture. In 29th Sym-
posium on Operating Systems Principles, Koblenz, Ger-
many, October 23-26, 2023, pages 150–165.

[77] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu,
Christos Kozyrakis, Ion Stoica, and Xin Jin. RackSched:
A Microsecond-Scale Scheduler for Rack-Scale Com-
puters. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation, Virtual Event, Novem-
ber 4-6, 2020, pages 1225–1240.

[78] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang,
and Yu Hua. One-sided RDMA-Conscious Extendible
Hashing for Disaggregated Memory. In 2021 USENIX
Annual Technical Conference, July 14-16, 2021, pages
15–29.

USENIX Association 2024 USENIX Annual Technical Conference 207

	Introduction
	Background and Motivation
	Symmetric PM Architecture
	Disaggregated PM Architecture

	Asymmetric File System Architecture
	Ethane: Design and Implementation
	Control-plane FS
	Delegating Durability to Log Persistence
	Delegating Linearizability to Log Ordering
	Delegating Coherence to Log Playback

	Data-plane FS
	Data Storage Paradigm
	Data Path Disentanglement
	Log Ingestion

	Implementation

	Evaluation
	Control-plane FS Evaluation
	Data-plane FS Evaluation
	Macrobenchmark Performance
	Application Performance

	Related Works
	Conclusion

