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Abstract
With traffic surveillance increasingly used, thousands of cam-
eras on roads send video feeds to cloud servers to run com-
puter vision algorithms, requiring high bandwidth. State-of-
the-art techniques reduce the bandwidth requirement by either
sending a limited number of frames/pixels/regions or relying
on re-encoding the important parts of the video. This imposes
significant overhead on both the camera side and server side
compute as re-encoding is expensive. In this work, we propose
TILECLIPPER, a system that utilizes tile sampling, where a
limited number of rectangular areas within the frames, known
as tiles, are sent to the server. TILECLIPPER selects the tiles
adaptively by utilizing its correlation with the tile bitrates. We
evaluate TILECLIPPER on different datasets having 55 videos
in total to show that, on average, our technique reduces≈ 22%
of data sent to the cloud while providing a detection accuracy
of 92% with minimal calibration and compute compared to
prior works. We show real-time tile filtering of TILECLIP-
PER even on cheap edge devices like Raspberry Pi 4 and
nVidia Jetson Nano. We further create a live deployment of
TILECLIPPER to show that it provides over 87% detection
accuracy and over 55% bandwidth savings.

1 Introduction

In recent years, real-time traffic surveillance has become im-
portant for automatic enforcement of traffic rules [30], control
of traffic lights [14], and the detection of anomalous events
like accidents [49]. Cities like Shanghai, New Delhi, and New
York have installed hundreds of thousands of surveillance
cameras1.The video feeds generated from these cameras are
either processed locally or sent to the cloud/edge servers for
applying computer vision algorithms. These algorithms run
deep neural networks (DNNs), which are inherently compute-
intensive. Processing it locally requires expensive hardware
(like GPUs and NPUs), thus increasing the cost of traffic

1https://www.comparitech.com/vpn-privacy/the-worlds-most-
surveilled-cities/

surveillance and impacting the scalability. On the other hand,
a major challenge faced by techniques that send video feeds to
servers is that the amount of data generated is very high, going
up to 1Mbps per camera [17], leading to high network band-
width consumption. Thus, it is essential to find techniques to
reduce bandwidth consumption without sacrificing the quality
of traffic surveillance.

Current techniques of reducing bandwidth typically uti-
lize one or more of two strategies. The first technique is
intelligently selecting the objects or frames of interest that
should be sent to the cloud server [17, 38, 60]. However, video
is usually encoded such that pixels are defined as an offset
of their neighboring pixel values as a compression strategy,
where the neighbors could be either spatial or temporal. Thus,
only sending the objects or frames of interest would require
re-encoding, which mandates either the integration of the al-
gorithm in the camera’s firmware [42] or a re-encoding on
the device directly connected to the camera [38, 52]. Adding
such capability to the cameras or devices attached to it would
need a substantial amount of investment. Further, while this
technique can save a lot of bandwidth during off-peak hours,
it is difficult to save bandwidth when the traffic is congested.
The second technique is to perform additional computation
on the cloud server by either running more powerful mod-
els [54] or sending a signal to the camera to send additional
data only when needed [17]. This technique saves bandwidth
at the cost of additional GPU usage, which is also expen-
sive and energy-intensive. Thus, a solution that runs without
adding to the computation while also being simple to inte-
grate with existing systems is essential to reduce the cost of
traffic surveillance.

In this paper, we focus on traffic surveillance of moving
objects such as vehicles, pedestrians, and so on. For this, we
avoid the problem of re-encoding proposed in prior works as
follows. Recent video standards like HEVC (High-Efficiency
Video Codec) or H.265 [50] allow the videos to be split into
independently encoded spatial rectangular blocks called tiles
(Figure 1b). This allows us to send tiles containing only the
objects of interest (moving vehicles or pedestrians) while
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Figure 1: Illustration of TILECLIPPER. Steps: (a) encoding the video in the
form of tiles supported by the HEVC format, (b) selecting only the relevant
tiles by using the statistical pattern of bitrates, (c) clipping out the unnecessary
tiles, and (d) sending this filtered video to the server for surveillance.

omitting the other tiles without re-encoding. Figure 1 shows
the workflow of our system. The key advantage of removing
tiles is that it runs in real-time, even on embedded platforms
like Jetson Nano, unlike techniques that filter frames or ob-
jects of interest and re-encode videos. As surveillance cam-
eras with native HEVC support increasingly become available
[4], removing tiles is easy to integrate into actually deployed
surveillance systems.

However, identifying tiles with objects of interest gener-
ally requires running DNNs, which are themselves compute-
intensive in nature. The camera usually does not have suffi-
cient compute capability or even power to run any such algo-
rithm. Thus, the key challenge of selecting tiles with objects
of interest is to avoid any increase in the compute involved
either on the camera side or on the server side. We address
this challenge of identifying tiles via a statistical approach
that rests on a few observations. Our first observation is that
since our cameras are stationary, only the objects of interest,
such as vehicles and people, are in motion or can change. This
implies that identifying just objects in motion is sufficient to
identify objects of interest. Our second observation is that
tiles’ file sizes (or bitrates) increase significantly when there
is any kind of motion in them. These two observations enable
us to design a heuristic to identify tiles with objects of interest.
Note that the tile bitrates are also influenced by other factors,
such as weather conditions, the local conditions of the road,
the color of the objects, and the position of the camera. Finally,
we design a system TILECLIPPER that applies a threshold on
the bitrates of the tiles seen in the past to identify the ones
containing objects of interest. TILECLIPPER computes this
threshold by performing a grid search on the statistics of tile
bitrates during calibration. The grid search shows the right
percentile values of the tile bitrates separately for the tiles
with and without moving objects. It then uses the midpoint
between these identified percentile values as the threshold.
This threshold automatically adapts based on weather and
traffic conditions for each tile independently.

We evaluate TILECLIPPER on a variety of videos by run-
ning it on embedded platforms like Jetson Nano and Rasp-
berry Pi 4B (RPi). We show results of object detection as

our system is agnostic to applications such as identification
and tracking. Our dataset includes a total of 55 videos from
standard benchmarks in various weather, lighting, and traffic
density conditions and our own recorded videos. Our eval-
uation shows that TILECLIPPER achieves, on average, over
92% accuracy in identifying objects while running in real-
time, even on RPi and Nano. This accuracy is higher than
state-of-the-art frame filtering techniques like Reducto [38]
and comparable to techniques like DDS [17], and CloudSeg
[54] that use additional server computation. It also requires
lower compute for calibration than the baselines, as it requires
only one-time calibration instead of periodic re-calibrations.
We summarize our contributions as follows:

• We identify that tiles with moving objects have higher bi-
trates and envision using them for traffic surveillance. To
the best of our knowledge, this is the first work that uses
tile bitrate to identify mobile objects.

• We utilize the correlation between tile bitrate and moving
objects to design a thresholding strategy that identifies the
tiles with moving/changing objects. This strategy is adap-
tive to different weather and traffic conditions.

• We evaluate TILECLIPPER on RPi and Jetson Nano and
obtain > 92% accuracy. It works in real-time and reduces
data sent by up to 40%. We compare it with DDS, Reducto,
and CloudSeg to show that it is less compute-intensive,
allowing scalable and cheaper deployment.

• We show a live deployment of TILECLIPPER near our uni-
versity campus with a camera attached to an embedded
board with a 4G connection. It saves over 55% bandwidth
while providing an accuracy of over 87%.

2 Background & Motivation

In this section, we provide the background needed for our
work and then present the motivation behind TILECLIPPER.

2.1 Working of Video Encoders
Videos are encoded typically in the form of a sequence of
frames. To reduce the video’s file size, it is generally not
stored or encoded as raw pixels. Instead, each pixel is encoded
by a reference to its neighboring pixels, where the neighbors
can be drawn from either the adjacent pixels of the same
frame (spatial dependence) or from adjacent frames (tem-
poral dependence). Typically, an independent frame called
an intra-frame is utilized after a fixed duration, followed by
a sequence of inter-frames with content dependent on their
previous frame. Such a sequence of intra followed by inter-
frames is called a segment. A software called video decoder
parses the dependencies within a segment to regenerate the
actual content of the frames. The exact encoding scheme is
specified by the video standard, also referred to as a codec.
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Figure 2: Video codecs use sub-
blocks to encode complex scenes.
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Figure 3: Removing tiles reduces
the filesize of a video linearly.

We now discuss the strategy of video compression used by
video codecs. In general, the video codecs operate at a coarser
level than using pixel-level dependencies by partitioning the
frames into spatial blocks (macroblocks in H.264 and coding
tree units (CTUs) in H.265) [29]. Blocks with similar content
(dependencies) can use the same bit allocation for representa-
tion, thus reducing the total number of bits needed. Matching
blocks are estimated using motion vector predictor algorithms
[50, 61]. Therefore, the objective of video encoders is to min-
imize the distortions (D) after compression and the number of
bits (b) needed for encoding dependencies in the blocks (also
referred to as rate R). This is known as R-D minimization. For
frames split into K blocks, the objective function is shown
mathematically as [45, 51]

Minimize
K

∑
k=1

(D(sk,s′k)+λbk), (1)

where sk is the original kth uncompressed block, s′k is its de-
coded version of the compressed representation, D(sk,s′k) is a
distortion function that returns the mean squared error (MSE)
between sk and s′k, λ is Lagrange multiplier assigning rela-
tive importance to distortion and the extra bits, and bk is the
number of extra bits needed to encode spatial (within frames)
and/or temporal (across frames) dependencies of the kth block
in a frame from a reference frame. In codecs such as HEVC
and AV1, blocks with highly dynamic and complex scenes are
further subdivided into smaller sub-blocks for precise motion
prediction [50, 51]. This is shown in Figure 2 where blocks
are subdivided into multiple levels to encode the area with
moving car. Thus, the number of bits bk for a block k and the
total number of bits B for a segment with S total blocks that
are subdivided using a single-level quadtree is given by:

bk =
I

∑
i=1

bi
k, and B =

S

∑
k=1

bk, (2)

where bi
k is the number of bits required for motion prediction

of ith sub-block of kth block and I is the number of sub-
blocks2. Note that while decoding the exact content requires
algorithms, it is possible to obtain the total number of bits
used in a segment B simply by parsing the statistics of the
segments present in its headers.

2The number of sub-blocks depends on the codec used. For example,
HEVC and AV1 use a quadtree structure with four recursive sub-blocks,
whereas VVC uses a multi-tree structure

Figure 4: The plots show the correlation between video segment sizes and the
number of moving objects for two different videos. The Spearman correlation
values are 0.49 and 0.80, respectively.

Tiles: The newer video standards such as HEVC, AV1, and
VVC allow encoding videos in the form of independent rect-
angular units called tiles. Tiles allow individual spatial parts
of frames to be encoded, removed, and decoded independently.
Multiple works have, therefore, used tiles to optimize the de-
livery of 360 or omnidirectional videos [46, 57]. Note that
tiles are different from blocks discussed in the above sub-
section. A tile consists of multiple blocks. During encoding,
tiles are enforced with the constraint that the spatial and tem-
poral dependencies among the blocks should be within blocks
inside the tile boundaries only[41]. Therefore, the dependen-
cies are localized and based only on the content within a
tile.

Since tiles are independently encoded units of a video, re-
moving them does not impact the decoder. The decoder can
easily play the video by placing empty patches in the places
where tiles are missing (Figure 1d). An important advantage
of using tiles is that removing them reduces the video file size,
thus saving network bandwidth. We confirm this in Figure
3 where we prune tiles one by one in 45 segments of a tiled
video and observe that the average filesize of the segments
reduces linearly. This implies that removing tiles with irrel-
evant scenes, such as the background with no objects, sky,
trees, and buildings, can curb unnecessary bandwidth usage.

2.2 Correlation Between Number of Objects
and Segment Bitrate

In surveillance settings, the camera itself is at a fixed loca-
tion but needs to monitor any movement/changes. Due to the
compression strategy of video codecs (discussed in §2.1), any
sudden appearance and/or movement of objects would lead
to a corresponding increase in the amount of residual data.
Intuitively, this would lead to an increase in the bitrate (which
effectively means filesize) of the video segments.

We first explain the intuitive reason behind the possible
correlation between the number of moving objects and seg-
ment bitrates. Note from Eq. (2) and Figure 2 that regions of
the video that have more motion and objects of interest are
sub-divided into smaller blocks and thus require more num-
ber of bits to encode. Therefore, videos with moving objects
and dynamic content have higher bitrates [15, 37]. Note that
motion prediction and the use of smaller blocks for dynamic
scenes are used by almost all modern video standards, such as
H.264 [34], HEVC [24], AV1 [23] and VVC [27]. Such higher
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Figure 5: Amount of possible savings in four sample videos. In (a) and
(b), we show that the removal of the frame background leads to no loss of
information. In (c), we quantify the possible data savings. Each video has
a length of 1 minute and a resolution of 940×540. For “Full Video", we
send the entire video unchanged. For “Relevant Objects", we remove the
background.

bitrates have been observed by prior studies [15, 37, 59].
We confirm this hypothesis by studying the correlation

between the filesize of videos and the number of objects,
where the videos are segmented into lengths of 0.5s each.
Figure 4 shows the scatter plots of two distinct videos in
different settings (details of the benchmarks used are in §4).
We note that the filesize and number of objects in the segments
are moderately correlated, with the correlation values ranging
from 0.48−0.90. Such an observation motivates us to design
a surveillance system that can use the bitrates to detect the
presence of objects of interest, i.e., moving objects.

However, utilizing this observation to skip segments is
difficult. This is because, as seen in Figure 4, no segment has
zero objects, indicating that it is impossible to remove any
segment without hurting the accuracy. Thus, an alternative
strategy of pruning unnecessary regions is needed.

2.3 Shortcomings of Existing Systems
Recent works have proposed two major strategies to reduce
the amount of data sent to the servers. The first strategy,
frame-level filtering, is to transmit only a limited number
of frames and then reconstruct the position of the moving
objects from them [60]. The second strategy is to send only a
low-resolution version of the video. The server side can then
compensate for the low resolution by either running a more
compute-intensive DNN [54] or, if needed, sending queries to
the camera to send frames/regions of interest within frames
at higher resolutions [17]. Figure 5 shows the amount of data
that can be saved by sending only the relevant portions of the
frame. We observe a reduction of 3.5−19× in the filesizes
that need to be sent if only the objects identified (known as
regions of interest) are transmitted over the network.

However, sending only the regions of interest has a couple
of challenges. First, traditional techniques of detecting objects
require some type of DNN. Current techniques, such as DDS
[17] and CrossROI [22], can only identify the spatial regions
by running these compute-intensive DNNs. Although a few
recent models like Yolo-Ret [20] can run in real-time on em-
bedded devices with GPU, such as Jetson Nano, their reported
accuracy is only comparable to the weakest full models (i.e.,
nano version of Yolov5).

While smart cameras, with specialized compute capabili-
ties to run DNNs, are available in the market, they are at least
5× costlier than conventional cameras [1]. Thus, current tech-
niques either depend on server-side calibration heuristics as
proposed by DDS [17] or Reducto [38] or utilize specialized
hardware such as FPGA-based boards [21]. Second, prun-
ing unnecessary regions or frames of interest often requires
integration of the logic into the camera’s firmware itself to
avoid the overhead of re-encoding the video [38]. Both utiliz-
ing server-side techniques and integrating the logic into the
firmware increase the complexity and cost of the system.

Next, we present TILECLIPPER that overcomes these limi-
tations of prior works by using the key idea that bitrates and
the presence of moving objects are correlated.

3 TILECLIPPER’s Architecture & Design

3.1 Design Choices and Overview

To resolve the challenges discussed earlier, TILECLIPPER
selects video tiles for transmission to the server in real-time.
Unlike prior works, TILECLIPPER side-steps the problem of
integration with firmware by using the tiled encoding built
into the video standard. The main advantage of tiles is that
removing some of them is not compute-intensive and can
be done in real-time, even on embedded platforms. TILE-
CLIPPER’s identification of relevant tiles has the following
motivations:

1. Minimal computation requirement on the camera side:
The amount of computation on the camera side should be
low enough to allow cheap edge devices like RPi to run
the tile selection technique in real-time. This allows easier
integration of the technique into existing deployments.

2. Substantial bandwidth savings: The number of tiles sent
to the cloud server should be small enough to provide
significant bandwidth savings.

3. Sufficient robustness: The selection of tiles should be ro-
bust enough so that server-side object detection accuracy
does not suffer by missing out on necessary tiles under
different light and weather conditions. The calibration of
the system should not introduce a lot of additional compu-
tation overhead on the cloud/edge server.

TILECLIPPER Overview: The key idea behind TILECLIP-
PER is that video encoders utilize a technique of encoding
that generates higher bitrates for tiles with moving or complex
scenes than with simpler static scenes. This enables TILE-
CLIPPER to identify the regions of interest without using the
raw frames (i.e. the video is not decoded for TILECLIPPER’s
inference to run). This makes TILECLIPPER different from
existing state-of-the-art techniques that often utilize optical
flow [39] or low-level features of frames [38]. This technique
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Figure 6: Workflow of TILECLIPPER. On the camera side, the camera gener-
ates tiled videos and runs the thresholding strategy to remove unwanted tiles.
The server side runs the initial calibration and the DNN to recognize objects.

further has the advantage that it is easy to integrate TILECLIP-
PER with newer codecs, such as AV1 and VVC that utilize
increasingly complex encoding and decoding algorithms.

Figure 6 shows the workflow of TILECLIPPER. At the cam-
era side, 1 camera hardware captures frames, 2 provides
the HEVC encoded tiled video, 3 we apply TILECLIPPER’s
tile selection heuristic to select the relevant tiles from tiled
video using a threshold. TILECLIPPER depends on a crucial
observation to select tiles. We identify tile bitrate (in kbps) as
a key statistic that can be used to identify whether there is a
moving object in it. This is feasible because of the way video
encoding schemes work in practice – where any static back-
ground material can easily be inferred via prediction from
previous frames, but moving objects need to be encoded with
additional bits [15, 37]. This increases the sizes of a group of
tiled video frames with objects in them, as opposed to the ones
that have only static background material. 5 TILECLIPPER
uses this insight to design a selection strategy. It calculates
each tile’s statistics separately and then individually identifies
the right threshold for each of them by calibrating it (discussed
in §3.3). 4 Any tile that exceeds the threshold is sent to the
server for detailed post-processing for traffic surveillance. 6
At the server side, we use YOLO-v5 [9] for object detection
and calibration. 7 The calibrator uses the first 30s of videos
and runs a DNN to send the right parameters as feedback to
the camera. While we have assumed calibration to run on the
server side, it is lightweight and rare enough to be performed
even on edge devices with GPUs like nVidia Jetson Nano.
Furthermore (as discussed in §5.2), calibration need not be
triggered even by changes in weather/lighting conditions.

3.2 Utilization of Tile Bitrate Statistics

Correlation Between Tile Bitrate and Moving Objects: A
major challenge of TILECLIPPER is to identify the spatial
regions of interest. TILECLIPPER focuses on the smaller rect-
angular regions (tiles) as opposed to entire segments because
there are few segments with no objects of interest. To utilize
tiles, we first divide each segment into a configuration of 4×4
tiles, as justified by prior works such as CrossROI [22] since
it gives a good balance between accuracy and overhead of

Figure 7: The plots show the correlation between video tile filesize and the
number of objects for two different tiles. The Spearman correlation values
are 0.78 and 0.90.

encoding. We obtain the bitrates statistics of each tile and use
a computer vision algorithm YOLO-v5 to obtain the number
of objects in each of them (illustrated in Figure 1). A key
thing to note is that obtaining the bitrates of each individual
tile does not require decoding. Thus, this technique can be
utilized on encoded videos by parsing only metadata.

We then obtain the correlation between the tile bitrates
(filesizes) and the number of objects (shown for two tiles in
Figure 7) for each individual tile. We find that there is a very
strong correlation, with the Spearman correlation coefficient
always exceeding 0.75. Figure 8a (for a subset of 32 tiles)
shows only the tiles containing the moving car have higher
bitrates. Note that even though the car is partly present in tiles,
all of them show higher bitrates because the car is moving
in all of these. Therefore, objects split across tiles show a
similar signature in all tiles containing them. Such a strong
correlation can be intuitively explained by the fact that since
each tile is independently encoded, their sizes are affected by
even a small number of moving/changing objects (see Figure
2). These changes cannot be as efficiently compressed by the
encoding algorithm, leading to larger tile bitrates (in §2.1).

This strong correlation no longer holds if the comparison is
performed across tiles with distinct scenes, even of the same
segment (shown in Figure 8b). This is because the background
encoded in each of the tiles affects the bitrates. We note
that the tile bitrates have significantly different distributions,
with the median values being different by a factor of 2.5×.
Thus, each individual tile has its own bitrate characteristic
that cannot be directly inferred from the adjacent tiles.
Lighting and Weather Conditions Affect Tile Bitrates: We
also note in Figure 8c that both lighting and weather con-
ditions affect tile bitrates. Again, this is intuitive since the
background content can affect the tile bitrates. We find that in
the rain, the droplets reduce the intensity of the colors, thus
reducing the median tile size by over 30% compared to noon
time. Since light and weather conditions can change period-
ically, these observations imply that the tile bitrate can be a
good metric only over the short term. Thus, while tile bitrate
can be used as a metric, the actual threshold should depend
on a moving window of the bitrate statistics. An alternative
strategy would be to recalibrate periodically, which has ad-
ditional overheads (shown in Figure 16). However, we will
show in §5.2 that using percentile statistics over a moving
window performs as good as periodic recalibration.
Presence of Noise in Tile Bitrates: We next observe in Fig-
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Figure 8: (a) relation between the presence of moving objects and the bitrate (in bps) of tiles. Note that only the tiles where the car is moving have a higher
bitrate than the other tiles. (b) and (c) shows bitrates of the same video across 600 segments of different tiles and the same tile under different lighting conditions,
respectively. (d) shows the temporal (for 20s) distribution of video segments of a tile; spikes with high bitrates (in orange) have objects.

ure 8d that while the bitrates of a tile are noisy in nature,
the amount of noise in general is small. The higher peaks
usually represent the presence of moving objects, while the
smaller peaks tend to represent minor changes, such as shad-
ows, changes in lighting conditions, and so on. Therefore,
just considering any tile bitrate higher than a certain arbitrary
value does not necessarily imply the presence of an object.
Thus, we discard smaller peaks by considering only the spikes
as most probable to have objects with sizes greater than a
threshold. Choosing this threshold via an intelligent strategy
is, therefore, crucial as it is different for each tile and directly
affects the accuracy and savings of TILECLIPPER. Moving
objects of no interest, such as the movement of foliage, also
gives a considerable spike in bitrate distribution. However,
they should be discarded because they are irrelevant to traffic
surveillance. Our calibration phases make the threshold high
for these cases to reduce false detections.

3.3 Our Thresholding Technique to Filter Tiles
Problem Formulation: The goal of TILECLIPPER is to iden-
tify as many tiles with moving objects as possible while dis-
carding tiles without such objects. The ratio of tiles selected
with moving objects to the total tiles with moving objects is
called recall. The ratio of tiles with objects present to the total
tiles sent is called precision3. A high recall ensures that the
most relevant objects are selected, whereas a high precision
ensures that substantial bandwidth is saved. Let the bitrates of
tiles Tj( j = 1, . . . , t) of a segment si be denoted as Bi(Tj). Let
their corresponding precision and recall be denoted by Pi j and
Ri j, respectively. TILECLIPPER needs to identify the right
threshold ri j on bitrate Bi(Tj) of each < si,Tj > pair to clas-
sify if objects are present. An accurate classification would
imply balancing both recall and precision. This is typically
done using Fβ-score, which is the weighted harmonic mean
(HM) of precision and recall [40]4. Mathematically,

Maximize Fβ =
1+β2

2
HM(Pi j,

1
β2 Ri j),∀si,Tj (3)

3We utilize precision and recall instead of the absolute number of true
positives and true negatives as the data is often imbalanced in nature [40].

4Harmonic mean gives higher weightage to the term that has the least
value. Thus, for harmonic mean, unlike in arithmetic or geometric mean,
higher weightage to a term is given by dividing the term by the weight.

To assign the value of β, we note that recall is usually given
higher priority than precision in traffic surveillance as it is
often used in safety-critical applications [13]. In such cases,
β = 2 is used as it gives 4× higher weight to recall than to
precision. We, therefore, maximize the F2-score. However, to
explore the accuracy versus savings tradeoff for addressing
use cases requiring higher precision, the value of 2 can be
substituted by other values commonly used, such as 1 or 0.5.
Calibrating the Thresholds and Selecting Tiles: During the
calibration, we send all the tiles of the first S segments to the
server to run the CALIBRAT E procedure. It starts by running
the object classification (using YOLO-v5x) to identify tiles
with moving objects inside by tracking bounding boxes using
StrongSORT [19] object tracker in each frame of the segments
(Line 2 of Algorithm 1). We use the intersection over union
(IoU) of tracked bounding boxes to segregate tiles with static
and mobile objects. We accordingly classify the tiles of the
segments into two categories: true (with moving objects)
and f alse (without moving objects). For each category, we
compute the 10th,20th, . . . ,80th percentiles5 of the bitrates
for each tile separately for all S segments, denoted by Ptrue

10 ,
Ptrue

20 , . . . ,Ptrue
80 and P f alse

10 ,P f alse
20 , . . . ,P f alse

80 respectively. We
then consider the threshold as the mean of Ptrue

v1 and P f alse
v2

for all values of v1,v2 = 10 to 80. We identify the pair of
percentile values v1 and v2 using an exhaustive search that
maximizes the F2-score for thresholding at the camera side
(Line 4-8 in Algorithm 1). For each video, we use the first
S=60 segments (30s) for calibration, which worked well for us
during sensitivity tests (in Appendix A). After calibration, the
server returns the best percentiles p_t and p_ f and the clusters
Q_t and Q_ f with bitrates of the segments in S belonging to
true and f alse categories, respectively, for each tile.

With the thresholds now calibrated, we use the SELECT
procedure in Algorithm 2 at the camera to obtain the threshold
on the bitrate. This is called for all the tiles of every segment.
The procedure looks at the bitrates of the segments in each
cluster (Q_t and Q_ f ) of each tile to compute the percentile
values. To adapt the thresholds temporally, we maintain two
different clusters of size 10 (sensitivity towards size shown

5We choose percentiles instead of weighted means due to its lower bias
towards outliers, which are introduced by mistakes in the ground truth [55].
Furthermore, we utilize statistics instead of absolute values to adjust to con-
tent drift. We later show that this avoids the need for periodic re-calibration.
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in the Appendix A) for each category. Note that each tile
has its own independent cluster with ten recent bitrate values.
We compare the bitrate with the tile-specific midpoint of
< Ptrue

p_t ,P
f alse
p_ f > (Lines 8-10 in Algo 2), where the values

p_t and p_ f are chosen during the calibration phase. The
tile-specific clusters are updated in each call (Lines 12 and
14). A segment classified with no object is added to cluster
Q_ f , automatically removing the older element (because we
use evicting queues6 as clusters). A segment with objects is
pushed to cluster Q_t. This update of clusters (an instance
of a sliding window) ensures that the clusters are up to date
with the changing bitrate distribution, making them adaptive
to scene changes. Note that for tiles where we encounter no or
very few segments with objects (< 10%, i.e., < 6 segments)
during calibration, this technique does not work because the
clusters are not populated with enough values to represent
the bitrate distribution. We fall back to an outlier detection
approach for these cases (Lines 3-6).
Fallback to Outlier Detection: In a few tiles (≈ 21% of
the total tiles in our dataset), the calibration phase finds no
or too few segments with objects (no object ratio O < 10%)
within the S segments. These cases happen either because
the tile focuses on an area outside the roads or because there
is less traffic. We cannot decide to remove these tiles alto-
gether because ≈ 26% out of 21% (5.72% of the total) of
tiles start having objects after calibration. Since these events
are rare, we model them as the tail of a Gaussian distribu-
tion. To identify these, we compute the median P50 and the
standard distribution σ of the bitrates of the tiles across past
S segments, which is updated at each step (Line 6 of Algo
2). We then utilize P50 + γ×σ as the threshold (Line 5). To
identify the right value of γ, we run TILECLIPPER on such
tiles to get Figure 9 that shows how the false positives and
misses vary with the increase in the value of γ. We choose
γ = 1.75 (corresponding to the 96th percentile), which gives
a mean miss rate of < 0.05 and a mean false positive rate
of ≈ 0.075. Note that we choose a slightly lower value of γ

over the one that minimizes the total errors in Figure 9 for
providing higher weightage to recall than precision.
Time Complexity of Calibration and Thresholding: We
note that computing the percentile statistics of the tiles takes
O(S logS), where S is the number of segments used for cali-
bration. If there are t tiles, then this computation is repeated
for each tile. Thus, calibration has a total time complexity
of O(tS logS). For the SELECT procedure, again, we com-
pute the percentiles of the two queues, which have a time
complexity of O(|Q| log |Q|), where |Q| is the maximum size
of the two clusters (10 in our case). We also use enqueue
operations, which take constant time. Since the SELECT pro-
cedure is called for all tiles t, this gives a total time complexity
of O(t|Q| log |Q|). Since both t and Q are relatively small in
magnitude (< 20 each), this time complexity is small enough

6Evicting queues are FIFO queues with auto-dequeuing when enqueue
exceeds the queue size.

Algorithm 1 TILECLIPPER’s strategy for calibration
INPUT: Bitrate of each tile Bi(Tj), list of percentile values V
OUTPUT: percentiles of true cluster and false clusters < p_t, p_ f >,
tiles in the cluster with objects Q_t, tiles in cluster with no objects
Q_ f

1: procedure CALIBRATE(Bi(Tj),V )
2: Q_t,Q_ f = Object recognition and tracking on S segments
3: o← [ ] // Empty list of objective values
4: for each value v1 in V do
5: for each value v2 in V do
6: f 2← ComputeF2Score(Q_t,Q_ f ,v1,v2)
7: o.push(< v1,v2, f 2 >)

8: < p_t, p_ f >← argmax<v1,v2>(o)
9: return < p_t, p_ f >, Q_t,Q_ f

Algorithm 2 TILECLIPPER’s strategy to estimate the thresh-
old for tiles of segments.
INPUT: Current tile’s Bitrate B, no object ratio O, # used for cali-
bration S, two evicting queues Q_t and Q_ f containing bitrates of
the past segments and best percentiles p_t and p_ f to use for true
and false clusters respectively, value of γ to use.
OUTPUT: Threshold on a tile.

1: procedure SELECT(Q_t,Q_ f ,O,S,B, p_t, p_ f ,γ)
2: // Calculate threshold r
3: if (sizeO f (Q_t)/S)< O then
4: // Not enough objects; use fallback
5: r← (median(Q_t)+ γ∗ std(Q_t))
6: Q_t.enqueue(B) // Update cluster
7: else
8: u← percentile(Q_t, p_t)
9: l← percentile(Q_ f , p_ f )

10: r← 0.5∗ (u+ l) // Mean of both percentiles
11: if B > r and (sizeO f (Q_t)/S)>= O then
12: Q_t.enqueue(B)
13: else if B <= r and (sizeO f (Q_t)/S)>= O then
14: Q_ f .enqueue(B)
15: return r

for it to run at real-time on cheap devices.

4 Implementation and Dataset

TILECLIPPER’s Implementation: We implement both the
camera-side version of TILECLIPPER and server side calibra-
tion in Python3. We obtain the bitrates of the tiled segments
using the tool ffprobe available in the FFmpeg tool suite [3].
We run the camera-side component on Raspberry Pi 4 and
Jetson Nano. Our server uses Ubuntu 18.04 and has an nVidia
GeForce RTX 2080 Ti GPU. For the experiments, we store
the encoded videos on the storage of Raspberry Pi or Jetson
Nano and then use a script to start our workflow.
Video Encoding: While a number of traffic surveillance pub-
lic datasets are available, they are usually not encoded in tiled
form. Since TILECLIPPER requires the input video in tiled
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Table 1: Summary of the dataset used for evaluation.

Dataset # of Videos Resolution Duration Type
AICC21 14 1920×1080 5 min Benchmark

14 1280×960
DETRAC 20 960×540 1-2 min Benchmark

Others 4 1280×720 6-8 min Chaotic
OurRec 3 1280×720 13-25 min Flyover
Total 55 - - -

form, we first need to encode the videos into tiled format using
a system of 4×4 tiles. Other tiling configurations are possible,
but we will discuss in §5.4 (as have prior works like CrossROI
[22]) that this configuration performs well in practice. We
first split the entire video into segments of 0.5s duration. We
choose this duration since having it smaller wastes more band-
width due to poor compression while increasing it reduces
the scope of tile removal because fast-moving vehicles exit
tiles quickly, leaving them empty mostly. We then encode it
using the open-source HEVC encoder Kvazaar [53] at 30fps,
and finally pack it into mp4 using the tool GPAC [36].

An encoding parameter that influences the quality of the
videos is the Quantization Parameter (QP). A high QP value
implies that both the amount of compression and loss is high.
However, traffic surveillance videos do not require quality
as good as in videos for end-consumers [17, 18]. Thus, we
experimentally identify the QP parameter that leads to no loss
of object detection accuracy using YOLO-v5s (in Figure 10).
We observe that a QP parameter of 30 does not lead to any
such loss while also reducing filesize by almost 4×, therefore
we encoded all of our videos at 30 QP.
Datasets and Baselines: For large-scale evaluation, we use
YOLO-v5s as the ground truth, as it is widely used for surveil-
lance, by running it on each tiled video segment to identify
objects. As in Reducto and DDS, we utilize publicly available
benchmarks and a few of our own videos (Others and OurRec)
in chaotic traffic and at flyovers (summarized in Table 1). The
dataset has been carefully chosen to incorporate more hours
of video and more diverse traffic conditions than the original
studies that proposed the baseline strategies.

As a baseline, we re-implement DDS with a few changes
in parameters to make the performance comparable to TILE-
CLIPPER. We recall that DDS first sends the videos at a higher
QP of 36 with lower 0.8× resolution and identifies the regions
with objects. The regions where objects are identified with
low confidence are then queried from the camera to send at a
lower QP than the original video (30 in our case with 0.8× res-
olution). Our version of DDS uses HEVC video encoding and
YOLO-v5s as the neural network on the server side (consid-
ering its state-of-the-art performance) [48], with a threshold
value of 0.2−0.25 to fetch an object for the second phase7.

7A larger range of values leads to fewer misses and/or misclassifications,
but at the cost of lower saving. We noted from experiments that increasing
this range even by 0.05 leads to a large increase in objects recalled in the
second phase, thus allowing very low or even negative savings compared
to sending the whole video. This also highlights the critical dependency of
DDS on DNNs’ confidence score.
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Although DDS always sends the video frames at a resolution
0.8× the original, we still calculate the savings by comparing
them with 1× resolution to retain their setting and make the
reported savings compatible with their implementation.

We utilize the open-source implementation of Reducto as
a second baseline with fixes to circumvent the low QP video.
Reducto’s frame filtering uses a calibration system to first
cluster the values of low-level pixel features. We reproduce
the technique and then let the calibration run for 120s, as we
observed that this calibration time minimizes the need for
re-calibration in the future.

Finally, we include two additional orthogonal baselines –
CloudSeg and StaticTileRemoval (STR). We were able to
run the open-sourced version of CloudSeg available at [43]
without any changes. CloudSeg sends the videos at a lower
resolution than the original and uses super-resolution at the
server end before using object detection. We send the videos
from the camera end at a resolution of 0.5× the original and
then use super-resolution at the server end for upscaling. In
STR, we annotate the tiles that do not contain any road area
and remove them. This allows us to test the utility of TILE-
CLIPPER’s thresholding strategy. We do not compare against
AccMPEG [18] as its implementation requiring changes to
the codec is currently not compatible with HEVC.

Performance Metrics: We report the following metrics:

(1) Accuracy: Accuracy is the ratio of objects that are de-
tected after tile pruning to the total number of objects detected
without filtering.

(2) Precision: Precision is the proportion of objects detected
that are actually relevant (moving objects). A high precision
indicates a substantial amount of bandwidth saving.

(3) Recall: Recall is the proportion of objects correctly identi-
fied. Having a high recall is essential to ensure that our system
does not miss any moving objects.

(4) Bandwidth saving: The bandwidth saving in percentage
is the amount of data reduction achieved as compared to the
original data if the pruned video is sent.

(5) Execution time: We measure the execution time in frames
per second on the camera side. We measure computations on
the server side in terms of GPU use time in minutes.
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Figure 11: Performance of TILECLIPPER compared to Reducto and DDS in terms of (a) accuracy, (b) precision, (c) recall, and (d) bandwidth savings.
TILECLIPPER provides accuracy, precision, and recall comparable to DDS, but larger bandwidth savings than DDS. TILECLIPPER provides much higher
accuracy than Reducto (12-15%), though TILECLIPPER’s savings are lower on average by 10%. We omit Reducto’s precision and recall results as it never gives
false positives, and also omit its results on DETRAC dataset as it requires more calibration time than the length of videos.

5 Evaluation

We evaluate TILECLIPPER’s performance and justify some
of its design choices discussed in §3.1 in various scenarios
and compare it with DDS, Reducto, and CloudSeg.

5.1 Comparison with Baseline Techniques

Accuracy: Figure 11a compares the accuracy of TILECLIP-
PER and other baseline techniques across datasets. We list
down our observations as follows: (1) TILECLIPPER is able
to achieve a mean accuracy of over 0.85 on all the datasets.
It exceeds 0.90 on AICC21, DETRAC, and OurRec. This in-
dicates that very few moving objects are left undetected. (2)
TILECLIPPER has comparable accuracy with DDS. Only on
AICC21 videos DDS performs marginally better than TILE-
CLIPPER. (3) Reducto suffers in terms of accuracy at testing
time, leading to the lowest accuracy on all the datasets. Note
that Reducto prepares a hash table of various thresholds, and
the camera uses this threshold for filtering. Due to high quanti-
zation, the pixel level differences fail to be included within the
existing clusters, leading to lower accuracy. We observe that
this does not work well in practice on videos of lower quality,
as corroborated by [52]. Further, we cross-verified Reducto’s
performance by running on videos with lower quantization to
reproduce the accuracy originally reported.
Precision and Recall: Figure 11b and 11c shows the preci-
sion and recall of TILECLIPPER and DDS. Since Reducto’s
frame filtration never provides false positives, we omit its com-
putation of precision. We observe that TILECLIPPER provides
> 0.85 precision and > 0.90 recall, which is high enough for
most safety-critical applications [13]. DDS’s both recall and
precision are comparable to TILECLIPPER, thus proving that
TILECLIPPER’s threshold works well in selecting tiles. We
further separately check the precision and recall values on the
DETRAC dataset, as it contains such different traffic densities.
We find that the fallback approach gives precision and recall
values of 92.65% and 96.48%, respectively, which is only 2%
lower than where normal calibration is possible.
Bandwidth Savings: Figure 11d shows a comparison of band-
width saved in percentage for each technique. We observe
that, TILECLIPPER provides > 40% savings for AICC21 and

Table 2: Comparison with CloudSeg and StaticTileRemoval (STR).

Mean Accuracy (%) Mean Saving (%)
Dataset Tile- Cloud- STR Tile- Cloud- STR

Clipper Seg Clipper Seg
AICC21 94.12 96.77 100 42.23 57.34 17.44

DETRAC 95.48 97.04 100 22.06 61.41 07.05
Others 87.98 90.80 100 09.28 69.89 00.00
OurRec 93.50 95.02 100 12.91 64.13 05.04

> 20% for DETRAC videos. For OurRec and Others, the sav-
ing is close to 10%. This is due to the nature of the videos
because in these datasets, the number of cars and the traffic
flow rate are very high and occupy most of the frame. This
leaves less room for saving in terms of removing unnecessary
tiles. Except for OurRec, on all other datasets, TILECLIPPER
gives higher bandwidth savings than DDS. The savings for
DDS are generally lower than TILECLIPPER even though it
uses higher QP and 0.8× video resolution. DDS also has a
high variance compared to other techniques. This is attributed
to the second phase of asking for the video at a high resolu-
tion if it has less confidence. Reducto has higher savings than
both DDS and TILECLIPPER on all the datasets except on
AICC21, where its savings are slightly lower. This is because
Reducto’s heuristic filters out frames even with dense traf-
fic. These gains in bandwidth, however, come at the cost of
accuracy, as shown in Figure 11a. Note that in cases where
TILECLIPPER’s accuracy and saving drop, the accuracy of
DDS and Reducto drop too. This implies that the accuracy
and saving drop is dataset specific and is not a shortcoming
of TILECLIPPER.

Comparison with Orthogonal Techniques: We also com-
pare TILECLIPPER with the complementary works Cloud-
Seg [54] and StaticTileRemoval (STR) in Table 2. STR re-
moves the off-road tiles. Hence, none of the moving objects
are missed, which leads to 100% accuracy at the cost of poor
savings. Such savings even reach 0 on Others videos while
TILECLIPPER provides 9.28% mean savings. Savings of
TILECLIPPER is at least 2× that of STR. CloudSeg provides
the highest accuracy and saving, which is expected because
it sends videos of half the resolution at the cost of increased
server-side GPU use. TILECLIPPER’s accuracies on AICC21,
DETRAC, and OuRec are comparable to CloudSeg. In the
case of OurRec and Others dataset, due to occlusions and
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(a) (b)
Figure 12: (a) Accuracy and bandwidth saving tradeoffs of TILECLIPPER
and baseline strategies across the entire dataset. (b) GPU use time and saving
tradeoffs of all the systems for a video of ≈25 minutes.

types of vehicles not present in the training dataset (COCO)
of YOLO-v5 (our server-side DNN is trained on), TILECLIP-
PER’s calibration misses objects leading to a drift from the
optimal value. This makes TILECLIPPER filter tiles incor-
rectly. We leave utilizing a better server-side object recog-
nition for future work. The adaptive spatial tile pruning of
TILECLIPPER helps achieve high savings compared to Static-
TileRemoval across the datasets.
Tradeoffs: Figure 12 shows the tradeoffs of all the techniques
between accuracy, saving, and server-side GPU usage. We
find that TILECLIPPER provides a better tradeoff between ac-
curacy and bandwidth saving than the baselines (Figure 12a).
CloudSeg gives the best tradeoff between accuracy and band-
width saving at the cost of the highest server-side GPU use. At
the server, as the majority of the cost comes from energy and
money spent on GPU usage, we compare server-side GPU
usage to process a ≈ 25 minute video against the saving in
Figure 12b. Here, TILECLIPPER provides the best tradeoff be-
tween server-side GPU use and bandwidth savings. Although
Reducto’s savings are slightly better than TILECLIPPER, its
GPU usage is 20× higher and gives the lowest accuracy. This
implies that TILECLIPPER can maximize its accuracy and
savings while using the least server-side resources.
Execution Time: We now test TILECLIPPER, Reducto, DDS,
and CloudSeg benchmarks on two distinct edge devices –
Jetson Nano and Raspberry Pi 4B (RPi). Figure 13a shows
TILECLIPPER’s processing speed along with the baselines on
each device in terms of frames per second (fps) on the camera
side. We note that TILECLIPPER runs at the rate of 22 fps on
RPi, ≥ 16 fps [6], [10] needed for most real-time analytics,
while on Jetson Nano, it runs at 57 fps. The higher speed on
Jetson Nano is due to its support for hardware-based HEVC
encoding on it. CloudSeg performs similar to TILECLIPPER
on RPi because it also requires only video encoding. DDS
is slower than TILECLIPPER on each device, as it requires
extraction of the spatial portions from the frames (in its second
phase), which is computationally expensive. Reducto runs
fastest because it needs to encode fewer number of frames.
Cloud Server Cost: Figure 13b shows the server-side cost
in terms of server GPU use time of each system to process
a video of ≈ 25min. We note that the most common object
detectors available today are single-shot detectors, where the
amount of computation is independent of the scenes. We ob-

(a) (b)
Figure 13: (a) shows mean video segment processing time (in fps) of TILE-
CLIPPER, Reducto, DDS, and CloudSeg at the camera side on different
hardware. (b) shows server use time of all the systems for a ≈ 25min video.

serve that TILECLIPPER uses less computation (GPU) on
the server side than others. It requires computation initially
only during calibration for 60 video segments (30s). On the
other hand, CloudSeg uses super-resolution continuously to
scale up the low-resolution videos from the camera, and DDS
requires processing all frames through a DNN to recall ob-
jects. Both are computationally expensive and use GPU to
run super-resolution and object detection algorithms. In our
experiments, Reducto required frequent recalibration every
2 minutes using the server’s GPU. However, note that Re-
ducto’s computation for inference may also reduce slightly
due to fewer frames eventually sent by the server. In summary,
while TILECLIPPER runs in real time on edge devices and
is computationally cheaper, it also uses less power (reducing
costs) on the server side, making it an overall more efficient
and scalable system.

5.2 Effect of Environment
Varying Traffic Density: Figure 14a and 14b show the accu-
racy and bandwidth savings achieved under different traffic
densities. As expected, we note from Figure 14b that videos
with less traffic density give the possibility of removing more
tiles, resulting in more bandwidth savings. TILECLIPPER
saves 22% more than DDS in both conditions. Furthermore,
Figure 14a shows that TILECLIPPER works equally well in
low traffic conditions, indicating that its fallback approach
also gives good accuracy in practice.
Varying Lighting Condition: We also have a set of three
videos from the AICC21 dataset from the same camera with
different lighting conditions – noon, rain, and dawn. We find
that the accuracy values (shown in Figure 14c) do not change
significantly. They are all more than 0.92 across all settings
and comparable with DDS. Reducto performs worst, giving
< 0.85 accuracy in all the environments. TILECLIPPER’s
bandwidth savings (Figure 14d) are consistently > 30% as
compared to DDS in all the conditions, showing its robustness
in all weathers. Reducto gives the highest savings only at
noon, performing the worst in the rain because raindrops
decrease the correlation between pixels of frames to filter.
Impact and Need for Recalibration: We argued in §3.3 that
any change in weather and light conditions can be handled
by TILECLIPPER’s cluster-based adaptive threshold without
recalibration. We confirm this in Figure 15a and 15b. We first
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Figure 14: Performance in different traffic densities and lighting conditions. (a) and (b) shows the accuracy and bandwidth savings under high traffic (> 10
moving vehicles within a segment) and low traffic density. (c) and (d) shows the accuracy and bandwidth savings in the rain, at noon, and at dawn.
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Figure 15: Performance with and without re-calibration (a) shows accuracy
and (b) shows bandwidth savings.
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Figure 16: The amount of data sent
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and Reducto.

30fps 10fps
Framerate

0.80

0.85

0.90

0.95

1.00

1.05

Ac
cu

ra
cy

30

40

50

60

70

Sa
vi

ng
 (%

)

Accuracy Saving

Figure 17: Accuracy and the band-
width savings during the live exper-
iment at different video encoding
rates of 30fps and 10fps.

calibrate on the videos for noon and then run it both using re-
calibration and without re-calibration for the videos in other
conditions, such as rain and dawn. We note that recalibration
has a negligible impact on accuracy and savings. This shows
that TILECLIPPER’s thresholding strategy of using percentile
statistics of the clusters is robust enough to adapt to light-
ing and/or weather conditions, and additional recalibration is
unnecessary to maintain consistent performance.
Recalibration Overheads: We now compare in Figure 16 the
overheads involved in calibrating TILECLIPPER and Reducto
in terms of data sent to the server during calibration and
the total number of calibrations needed. We omit DDS and
CloudSeg as they have no notion of calibration. We observe
that for a 25min video, Reducto sends 15× more data to the
server than TILECLIPPER for calibration. Further, the overall
number of calibrations needed is also 10×more in the case of
Reducto. This is because Reducto does not inherently adapt
to scene changes and requires frequent recalibration triggers
to get updated thresholds from the server. On the other hand,
the adaptive algorithm (discussed in §3.3) of TILECLIPPER
based on the clusters of the past 10 video segments can align
itself with the temporal changes, making it more robust to
changes in weather and traffic volumes changes, imposing
lower server overheads.
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Figure 18: Live deployment, (a) Workflow on Odroid H3+, (b) On-site setup
with a tripod-mounted camera connected to the Odroid.

5.3 Live Deployment of TILECLIPPER

We also evaluate TILECLIPPER in a live deployment where
the key challenge was that surveillance cameras available
today do not utilize tiled encoding. Live encoding in software,
as done by Kvazaar, requires support for vector instructions
that are unavailable on ARM processors. Thus, we designed
a setup on Odroid H3+ [8], which had an Intel Jasper Lake
N6005 x86 processor clocked at 2.0 GHz frequency. This
costs around $130, which is similar to the cost of Jetson Nano.
Setup: Figure 18a shows the process of capturing frames,
tiling, encoding, and running TILECLIPPER on top of it. To
get 0.5 s of tiled video segments (needed for TILECLIPPER)
at an fps of N, we first capture N/2 raw video frames from
the camera using FFmpeg, encode them into HEVC tiled
videos using Kvazaar (with a superfast encoding preset) and
finally use GPAC to package them into tiled mp4. All these
tools run in cascade and transfer data via Linux pipes on the
Odroid H3+ board. We run the TILECLIPPER’s thresholding
algorithm on the encoded tiled video segments to discard tiles
with no objects. We used a smartphone with 4G connectivity
as a hotspot. After obtaining regulatory and IRB approval,
we installed the setup about 4-5 meters from a two-way road
intersection near our campus, having a vehicle speed limit
of 30kmph. The traffic consisted of a mix of vehicles and
pedestrians. We use a Logitech C615 1080p webcam as our
camera connected to the Odroid H3+ board (shown in Figure
18b). Setting a bitrate filtering threshold in the deployment
was similar to the design in §3.1. We sent the first 60 segments
to our hosted server for calibration over the 4G network. Once
the server returns the feedback, we let the tile filtering run.
TILECLIPPER did not require any recalibration during the
entire live experiment.
Results: We run two experiments of 30min and 15min dura-
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Figure 19: Sensitivity studies to (a) measure the effect of using fallback, and
(b) show the effect of different tile configurations on accuracy and savings.

tion at frame rates of 30 and 10 fps, respectively. The accuracy
and savings for both scenarios are reported in Figure 17. We
observe that in this setup, TILECLIPPER obtains an accuracy
> 88% and 90%, and saving > 55% and≈ 50% on 30 fps and
10 fps segments, respectively. However, even though the band-
width saving in terms of percentage is similar, the amount of
data sent is 53% higher when encoded at 30fps than at 10fps.
We also observe that the streaming latency of filtered tiles
is 50% and 30% lower after using TILECLIPPER compared
to streaming the entire video at 30 fps and 10 fps, respec-
tively. This shows that TILECLIPPER’s bandwidth savings
also reduce streaming latency, unlike DDS.

5.4 Sensitivity Study

We now justify the decision choices made in TILECLIPPER,
including the parameters used during calibration and in the
algorithmic strategies through sensitivity tests. We show addi-
tional sensitivity tests, namely, the need for a search of per-
centile statistics, the size of the clusters, and the calibration
duration in Appendix A.
Effectiveness of Fallback: To validate the effectiveness of
our fallback strategy for outlier detection (discussed in §3.3),
we conducted a study with and without the fallback on 43
videos out of all 55 where the calibration phase identified
no or too few segments with objects of interest (Figure 19a).
Note that the no fallback approach leaves out all tiles, as it
assumes that none of them would have objects. Thus, any
strategy would show some fall in savings. TILECLIPPER’s
fallback strategy demonstrated a mere 8% reduction in sav-
ings compared to the scenario where it was not employed, as
depicted in Figure 19a. Here, we show results for the tiles
where clusters could not be formed during calibration due to
the absence of objects. We observe that more than 65% of the
tiles with objects were detected using the fallback strategy
while having only 7% false selections. This implies that us-
ing our fallback strategy is more suitable than removing tiles
altogether.
Using different tile configurations: We compare the accu-
racy with 4×4 tiles, among 2×2, 4×4 and 6×6 configura-
tions in Figure 19b. In each case, the encoder uses constant-
bitrate encoding to ensure that the size of the video does not
change with tile configurations. While the accuracy remains
relatively consistent irrespective of the setting used, we obtain
substantial savings (over 30%) only with 4×4 and 6×6 con-

figurations. While selecting 6×6 yields significant savings,
it also escalates calibration complexities and increases the
extraction time of bitrates by 3.5× as opposed to 2×2 tiles.
Thus, we selected the tile configuration of 4×4 since it strikes
the optimal balance between savings and operational intrica-
cies. A similar configuration was also chosen by CrossROI,
citing an identical reason [22].

6 Related Works

Works on traffic surveillance fall into two categories – opti-
mization of traffic surveillance using a variety of intelligent
strategies and design of lighter DNNs.
Optimization of Traffic Surveillance: Traffic surveillance
is increasingly used in practice, and thus is an important area
of research [28, 32, 38, 44, 54, 54, 59]. Chameleon [32] and
Spatula[31] use the traffic correlation from multiple cameras
to identify segments to send to reduce bandwidth consump-
tion. CASVA [59] uses a deep reinforcement learning mecha-
nism to adapt the video parameters to the changing bandwidth
configuration. AccMPEG [18] optimizes server-side DNN
accuracy by tuning video codec-specific parameters to re-
duce bandwidth usage. This requires it to rely on the server
side to get the right parameters. CloudSeg [54] sends the
video at a low resolution but then uses super-resolution on the
server side. Like CloudSeg, DDS [17] similarly also sends the
video at a low resolution but then requests additional parts of
frames separately when the DNN has low confidence. Clown-
fish [44] and AdaMask [39] extract the background content
of the video frames and separately send only the objects to
reduce the amount of data. However, identifying the objects
requires a lightweight deep neural network, thus requiring
a more expensive device on the camera side. Reducto [38]
and SmartFilter [52] use a set of pixel-level operations to fil-
ter out irrelevant frames. MRIM [56] sends mixed-resolution
frames having a higher resolution for areas with objects. Un-
like TILECLIPPER, these works all work at the frame level,
thus requiring the raw frames. Furthermore, like TILECLIP-
PER, CoVA [29] analyzes videos in the compressed domain
to identify objects of interest. However, unlike TILECLIPPER,
it uses neural networks on the server side.
Design of Lightweight Neural Networks: A number of
works reduce the computation needed for vision tasks. For ex-
ample, [25], [20] and [12] all run object detection on smaller
edge devices like Jetson Nano. However, they still require a
GPU for computation, and their speeds come at the cost of
accuracy. FastDeepIoT [58] and DeepAdaptor [26] identify
and then prune the nodes in the neural network for pruning to
make it light enough for execution on embedded systems. No-
Scope [33], RECL [35] and Ekya [11] all design lightweight
DNNs based on the situations observed by the cameras. Such
techniques are orthogonal to our work.

978    2024 USENIX Annual Technical Conference USENIX Association



7 Discussion on Design Choices, Limitations,
and Future Work

We discuss a few aspects and limitations of TILECLIPPER:
Missing Tiles with Static and Small Objects: TILECLIPPER
relies on the presence of moving objects to select tiles and,
thus, misses static objects. As static objects would not raise
the bitrate, the thresholding strategy would treat small move-
ments as noise. Similarly, slow-moving objects could also be
missed by TILECLIPPER, as they might not create sufficient
changes in the bitrate. A possible mitigation strategy for slow-
moving objects would be to use techniques like optical flow
to interpolate missing frames/regions within videos. Since
the changes in the case of slow-moving or static objects are
relatively small, such interpolation can be done via optical
flow estimation followed by pixel synthesis [16].

We also note that there is a slight drop in accuracy on TILE-
CLIPPER with Others and OurRec datasets as they contain a
few such missed cases. Furthermore, small objects (< 1/20th
of the tile dimensions), such as pedestrians or vehicles far
from the camera do not increase the bitrate sufficiently to
get detected by TILECLIPPER. They get considered as noise.
However, missing such objects does not often hurt server-side
application accuracy because such smaller objects (< 1% of
the entire frame) are also missed by DNNs at the server.
Choice of Video Codecs in TILECLIPPER: We have evalu-
ated TILECLIPPER on videos encoded using HEVC at con-
stant bitrate (CBR). We choose HEVC as it is used in today’s
cameras [2, 4, 5], and there is open-source software available
to manipulate its tiles easily. As newer codecs like AV1 and
VVC support tiles and utilize similar encoding strategies, we
expect TileClipper to also work with them. Note that H.264
encoders do not support tiled encoding, so it is difficult to use
TILECLIPPER with H.264. Furthermore, we utilize CBR en-
coding as the tool used for video encoding, Kvaazar, does not
support variable bitrate (VBR) encoding [7]. As VBR allows
changes in bitrates of segments depending on the complex-
ity of content, such changes in the individual tiles (utilized
by TILECLIPPER) are even more strongly visible. Recent
prior works on traffic surveillance such as AdaMask also
utilized another similar technique called constant rate factor
(CRF). Note that we do not consider adaptive bitrate (ABR),
since none of the traffic surveillance systems currently use
it. However, we believe that TILECLIPPER can still function
by initially calibrating itself for each of the possible quality
levels on the server.
Reduced Precision with Unstable Camera: The DETRAC
dataset has a few videos with unstable cameras, causing move-
ment across the frame, leading to lower precision and savings.
We intend to explore reinforcement learning-based calibration
to handle such problems by studying the correlation across
tiles of segments. As the motion of moving objects on traffic
would follow a pattern that leads to a temporal correlation
among tiles. Such reinforcement learning-based camera cali-

bration has shown good results in CamTuner [47].
Applying TILECLIPPER on Other Applications: Our eval-
uation discusses object recognition, because TILECLIPPER
is agnostic to applications. This is unlike the baseline papers,
such as DDS and Reducto, whose parameters need to change
depending on the query sent to the camera. Because TILE-
CLIPPER does not make any changes at the frame level or
quality of videos, it has no direct effect on applications such
as object classification, reidentification, or tracking. TILE-
CLIPPER could also potentially be used to infer the level of
congestion on roads since any change in the number and/or
movement of objects in a tile would trigger TileClipper to
send the content.

8 Conclusions

In this paper, we present a system TILECLIPPER for traffic
surveillance that substantially reduces bandwidth consump-
tion by selecting spatial regions (tiles) of interest for further
analysis at the server. TILECLIPPER’s tile selection leverages
the observation that tile bitrates strongly correlate with the
number of moving objects inside it. We then implement TILE-
CLIPPER on inexpensive edge devices and show that it runs in
real-time. We further show that it outperforms prior systems in
accuracy, bandwidth savings and/or amount of computation in
a wide range of scenarios and live deployment. We have made
available our source code and datasets for use (in Appendix
B) by the community to encourage further research.

Acknowledgments

This paper was partially funded by Cisco University Research
Fund, Cisco Grant number 76417363 (SVCF Grant #2022-
318921).

References

[1] Ambarella, AI Envisioned, Ambarella enables
artificial intelligence on a wide range of con-
nected cameras using Amazon SageMaker Neo.
https://www.ambarella.com/news/ambarella-enables-
artificial-intelligence-on-a-wide-range-of-connected-
cameras-using-amazon-sagemaker-neo/. Visited on
April 30, 2023.

[2] Dahua Technology, Network Video Recorder User’s
Manual. Available at https://us.dahuasecurity.com/wp-
content/uploads/2023/08/Network-Video-
Recorder_Users-Manual_V2.3.1_20230210-Eng.pdf.

[3] Ffmpeg. https://www.ffmpeg.org/. [Online; accessed
Sept-2021].

USENIX Association 2024 USENIX Annual Technical Conference    979

https://www.ambarella.com/news/ambarella-enables-artificial-intelligence-on-a-wide-range-of-connected-cameras-using-amazon-sagemaker-neo/
https://www.ambarella.com/news/ambarella-enables-artificial-intelligence-on-a-wide-range-of-connected-cameras-using-amazon-sagemaker-neo/
https://www.ambarella.com/news/ambarella-enables-artificial-intelligence-on-a-wide-range-of-connected-cameras-using-amazon-sagemaker-neo/
https://us.dahuasecurity.com/wp-content/uploads/2023/08/Network-Video-Recorder_Users-Manual_V2.3.1_20230210-Eng.pdf
https://us.dahuasecurity.com/wp-content/uploads/2023/08/Network-Video-Recorder_Users-Manual_V2.3.1_20230210-Eng.pdf
https://us.dahuasecurity.com/wp-content/uploads/2023/08/Network-Video-Recorder_Users-Manual_V2.3.1_20230210-Eng.pdf
https://www.ffmpeg.org/


[4] GoPro Support, HEVC Explained.
https://community.gopro.com/s/article/hevc. Pub-
lished on Mar 22, 2023; Accessed on Aug 1, 2023.

[5] Wisenet Network Camera: User Manual. Avail-
able at https://www.hanwhasecurity.com/wp-
content/uploads/attachments/u/s/user_manual-xnp-
6120h-english_web-0710.pdf.

[6] Average frame rate video surveillance statistics
2021. https://ipvm.com/reports/average-frame-rate-
video-surveillance-2021. Visited on Oct 9, 2023; Pub-
lished on Jan 8, 2021.

[7] Is there any idea to achieve hevc vari-
able bitrate mode in kvazaar encoder?
https://github.com/ultravideo/kvazaar/issues/400.
Published on Mar 21, 2024; Accessed on Jun 2, 2024.

[8] Odroid h3-plus. https://www.hardkernel.com/shop/odroid-
h3-plus/. Accessed on May 1, 2023.

[9] Ultralytics yolov5. https://github.com/ultralytics/yolov5.
Accessed on August 1, 2022.

[10] IBM Documentation, Camera frame rate,
resolution, and video format require-
ments. https://www.ibm.com/docs/en/video-
analytics/1.0.6?topic=requirements-camera-frame-
rate-resolution-video-format, March 2021.

[11] Romil Bhardwaj, Zhengxu Xia, Ganesh Anantha-
narayanan, Junchen Jiang, Yuanchao Shu, Nikolaos Kar-
ianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica.
Ekya: Continuous learning of video analytics models
on edge compute servers. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 22), pages 119–135, Renton, WA, April
2022. URL https://www.usenix.org/conference/
nsdi22/presentation/bhardwaj.

[12] Yuxuan Cai. YOLObile: Real-time object detection on
mobile devices via compression-compilation co-design.
PhD thesis, Northeastern University, 2020.

[13] Andrea Ceccarelli and Leonardo Montecchi. Eval-
uating object (mis)detection from a safety and relia-
bility perspective: Discussion and measures. IEEE
Access, 11:44952–44963, 2023. DOI: 10.1109/AC-
CESS.2023.3272979.

[14] Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming
Yang, Yuanhao Xiong, Kai Xu, and Zhenhui Li. To-
ward a thousand lights: Decentralized deep reinforce-
ment learning for large-scale traffic signal control. AAAI
Conference on Artificial Intelligence, 34(04):3414–3421,
Apr. 2020. DOI: 10.1609/aaai.v34i04.5744.

[15] Jan De Cock, Zhi Li, Megha Manohara, and Anne Aaron.
Complexity-based consistent-quality encoding in the
cloud. In 2016 IEEE International Conference on Im-
age Processing (ICIP), pages 1484–1488, 2016. DOI:
10.1109/ICIP.2016.7532605.

[16] Jiong Dong, Kaoru Ota, and Mianxiong Dong. Video
frame interpolation: A comprehensive survey. ACM
Transactions on Multimedia Computing and Commu-
nication Applications, 19(2s), May 2023. ISSN 1551-
6857. DOI: 10.1145/3556544.

[17] Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha
Chowdhery, Qizheng Zhang, Henry Hoffmann, and
Junchen Jiang. Server-driven video streaming for
deep learning inference. In 2018 Conference of the
ACM Special Interest Group on Data Communica-
tion, page 557–570, New York, NY, USA, 2020. DOI:
10.1145/3387514.3405887.

[18] Kuntai Du, Qizheng Zhang, Anton Arapin, Haodong
Wang, Zhengxu Xia, and Junchen Jiang. Ac-
cmpeg: Optimizing video encoding for accu-
rate video analytics. In Proceedings of Ma-
chine Learning and Systems, volume 4, pages
450–466, 2022. URL https://proceedings.
mlsys.org/paper_files/paper/2022/file/
853f7b3615411c82a2ae439ab8c4c96e-Paper.pdf.

[19] Yunhao Du, Zhicheng Zhao, Yang Song, Yanyun Zhao,
Fei Su, Tao Gong, and Hongying Meng. Strong-
sort: Make deepsort great again. IEEE Transac-
tions on Multimedia, 25:8725–8737, 2023. DOI:
10.1109/TMM.2023.3240881.

[20] Prakhar Ganesh, Yao Chen, Yin Yang, Deming Chen,
and Marianne Winslett. YOLO-ReT: Towards high
accuracy real-time object detection on edge GPUs.
In IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV). IEEE, 2022. DOI:
10.1109/WACV51458.2022.00138.

[21] Shikha Goel, Rajesh Kedia, M. Balakrishnan, and Ri-
jurekha Sen. Infer: Interference-aware estimation of
runtime for concurrent cnn execution on dpus. In
2020 International Conference on Field-Programmable
Technology (ICFPT), pages 66–71, 2020. DOI:
10.1109/ICFPT51103.2020.00018.

[22] Hongpeng Guo, Shuochao Yao, Zhe Yang, Qian Zhou,
and Klara Nahrstedt. Crossroi: Cross-camera region of
interest optimization for efficient real time video ana-
lytics at scale. In 12th ACM Multimedia Systems Con-
ference, page 186–199, 2021. ISBN 9781450384346.
DOI: 10.1145/3458305.3463381.

980    2024 USENIX Annual Technical Conference USENIX Association

https://community.gopro.com/s/article/hevc
https://www.hanwhasecurity.com/wp-content/uploads/attachments/u/s/user_manual-xnp-6120h-english_web-0710.pdf
https://www.hanwhasecurity.com/wp-content/uploads/attachments/u/s/user_manual-xnp-6120h-english_web-0710.pdf
https://www.hanwhasecurity.com/wp-content/uploads/attachments/u/s/user_manual-xnp-6120h-english_web-0710.pdf
https://ipvm.com/reports/average-frame-rate-video-surveillance-2021
https://ipvm.com/reports/average-frame-rate-video-surveillance-2021
https://github.com/ultravideo/kvazaar/issues/400
https://www.hardkernel.com/shop/odroid-h3-plus/
https://www.hardkernel.com/shop/odroid-h3-plus/
https://github.com/ultralytics/yolov5
https://www.ibm.com/docs/en/video-analytics/1.0.6?topic=requirements-camera-frame-rate-resolution-video-format
https://www.ibm.com/docs/en/video-analytics/1.0.6?topic=requirements-camera-frame-rate-resolution-video-format
https://www.ibm.com/docs/en/video-analytics/1.0.6?topic=requirements-camera-frame-rate-resolution-video-format
https://www.usenix.org/conference/nsdi22/presentation/bhardwaj
https://www.usenix.org/conference/nsdi22/presentation/bhardwaj
https://doi.org/10.1109/ACCESS.2023.3272979
https://doi.org/10.1109/ACCESS.2023.3272979
https://doi.org/10.1609/aaai.v34i04.5744
https://doi.org/10.1109/ICIP.2016.7532605
https://doi.org/10.1145/3556544
https://doi.org/10.1145/3387514.3405887
https://proceedings.mlsys.org/paper_files/paper/2022/file/853f7b3615411c82a2ae439ab8c4c96e-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/853f7b3615411c82a2ae439ab8c4c96e-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/853f7b3615411c82a2ae439ab8c4c96e-Paper.pdf
https://doi.org/10.1109/TMM.2023.3240881
https://doi.org/10.1109/WACV51458.2022.00138
https://doi.org/10.1109/ICFPT51103.2020.00018
https://doi.org/10.1145/3458305.3463381


[23] Jingning Han, Bohan Li, Debargha Mukherjee, Ching-
Han Chiang, Adrian Grange, Cheng Chen, Hui Su,
Sarah Parker, Sai Deng, Urvang Joshi, Yue Chen,
Yunqing Wang, Paul Wilkins, Yaowu Xu, and James
Bankoski. A technical overview of AV1. Proceed-
ings of the IEEE, 109(9):1435–1462, 2021. DOI:
10.1109/JPROC.2021.3058584.

[24] Philipp Helle, Simon Oudin, Benjamin Bross, Detlev
Marpe, M. Oguz Bici, Kemal Ugur, Joel Jung,
Gordon Clare, and Thomas Wiegand. Block
merging for quadtree-based partitioning in hevc.
IEEE Transactions on Circuits and Systems for
Video Technology, 22(12):1720–1731, 2012. DOI:
10.1109/TCSVT.2012.2223051.

[25] Rachel Huang, Jonathan Pedoeem, and Cuixian Chen.
Yolo-lite: A real-time object detection algorithm opti-
mized for non-gpu computers. In 2018 IEEE Interna-
tional Conference on Big Data (Big Data), pages 2503–
2510, 2018. DOI: 10.1109/BigData.2018.8621865.

[26] Yakun Huang, Xiuquan Qiao, Jian Tang, Pei Ren, Ling
Liu, Calton Pu, and Junliang Chen. Deepadapter: A
collaborative deep learning framework for the mobile
web using context-aware network pruning. In IEEE
Conference on Computer Communications, 2020. DOI:
10.1109/INFOCOM41043.2020.9155379.

[27] Yu-Wen Huang, Jicheng An, Han Huang, Xiang Li,
Shih-Ta Hsiang, Kai Zhang, Han Gao, Jackie Ma, and
Olena Chubach. Block partitioning structure in the vvc
standard. IEEE Transactions on Circuits and Systems
for Video Technology, 31(10):3818–3833, 2021. DOI:
10.1109/TCSVT.2021.3088134.

[28] C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik,
M. Yu, P. Bahl, and M. Philipose. Videoedge: Pro-
cessing camera streams using hierarchical clusters. In
2018 IEEE/ACM Symposium on Edge Computing (SEC),
pages 115–131, 2018. DOI: 10.1109/SEC.2018.00016.

[29] Jinwoo Hwang, Minsu Kim, Dohee Kim, Daeun Kim,
Seungho Nam, Yoonsung Kim, Hardik Sharma, and
Jongse Park. CoVA: Exploiting Compressed-Domain
Analysis to Accelerate Video Analytics. In 2022
USENIX Annual Technical Conference, pages 707–
722. URL https://www.usenix.org/conference/
atc22/presentation/hwang.

[30] Md Rokebul Islam, Nafis Ibn Shahid, Dewan Tanzim
ul Karim, Abdullah Al Mamun, and Md Khalilur
Rhaman. An efficient algorithm for detecting traffic
congestion and a framework for smart traffic control
system. In 2016 18th International Conference on Ad-
vanced Communication Technology. IEEE, 2016. DOI:
10.1109/ICACT.2016.7423566.

[31] Samvit Jain, Xun Zhang, Yuhao Zhou, Ganesh Anan-
thanarayanan, Junchen Jiang, Yuanchao Shu, Paramvir
Bahl, and Joseph Gonzalez. Spatula: Efficient cross-
camera video analytics on large camera networks. In
ACM/IEEE Symposium on Edge Computing, pages 110–
124, 2020. DOI: 10.1109/SEC50012.2020.00016.

[32] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik,
Siddhartha Sen, and Ion Stoica. Chameleon: Scalable
adaptation of video analytics. In 2018 Conference of the
ACM Special Interest Group on Data Communication,
page 253–266, 2018. DOI: 10.1145/3230543.3230574.

[33] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis,
and Matei Zaharia. Noscope: Optimizing neural net-
work queries over video at scale. Proceedings of
VLDB Endowment, 10(11):1586–1597, Aug 2017. DOI:
10.14778/3137628.3137664.

[34] Chao-Yang Kao and Youn-Long Lin. A memory-
efficient and highly parallel architecture for vari-
able block size integer motion estimation in h.
264/avc. IEEE transactions on very large scale inte-
gration (VLSI) systems, 18(6):866–874, 2009. DOI:
10.1109/TVLSI.2009.2017122.

[35] Mehrdad Khani, Ganesh Ananthanarayanan, Kevin
Hsieh, Junchen Jiang, Ravi Netravali, Yuanchao Shu,
Mohammad Alizadeh, and Victor Bahl. RECL: Re-
sponsive Resource-Efficient continuous learning for
video analytics. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation, pages 917–
932, Boston, MA, April 2023. ISBN 978-1-939133-
33-5. URL https://www.usenix.org/conference/
nsdi23/presentation/khani.

[36] Jean Le Feuvre. GPAC filters. In Proceedings of
the 11th ACM Multimedia Systems Conference, pages
249–254, Istanbul Turkey, May 2020. ACM. DOI:
10.1145/3339825.3394929.

[37] Weihe Li, Jiawei Huang, Shiqi Wang, Chuliang Wu,
Sen Liu, and Jianxin Wang. An apprenticeship learn-
ing approach for adaptive video streaming based on
chunk quality and user preference. IEEE Trans-
actions on Multimedia, 25:2488–2502, 2023. DOI:
10.1109/TMM.2022.3147667.

[38] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei
Wang, Guoqing Harry Xu, and Ravi Netravali. Re-
ducto: On-camera filtering for resource-efficient real-
time video analytics. In Annual Conference of the ACM
Special Interest Group on Data Communication, page
359–376, 2020. DOI: 10.1145/3387514.3405874.

USENIX Association 2024 USENIX Annual Technical Conference    981

https://doi.org/10.1109/JPROC.2021.3058584
https://doi.org/10.1109/TCSVT.2012.2223051
https://doi.org/10.1109/BigData.2018.8621865
https://doi.org/10.1109/INFOCOM41043.2020.9155379
https://doi.org/10.1109/TCSVT.2021.3088134
https://doi.org/10.1109/SEC.2018.00016
https://www.usenix.org/conference/atc22/presentation/hwang
https://www.usenix.org/conference/atc22/presentation/hwang
https://doi.org/10.1109/ICACT.2016.7423566
https://doi.org/10.1109/SEC50012.2020.00016
https://doi.org/10.1145/3230543.3230574
https://doi.org/10.14778/3137628.3137664
https://doi.org/10.1109/TVLSI.2009.2017122
https://www.usenix.org/conference/nsdi23/presentation/khani
https://www.usenix.org/conference/nsdi23/presentation/khani
https://doi.org/10.1145/3339825.3394929
https://doi.org/10.1109/TMM.2022.3147667
https://doi.org/10.1145/3387514.3405874


[39] Shengzhong Liu, Tianshi Wang, Jinyang Li, Dachun
Sun, Mani Srivastava, and Tarek Abdelzaher. AdaMask:
Enabling Machine-Centric Video Streaming with Adap-
tive Frame Masking for DNN Inference Offloading. In
Proceedings of the 30th ACM International Conference
on Multimedia, pages 3035–3044, October 2022. DOI:
10.1145/3503161.3548033.

[40] Christopher D Manning. An introduction to information
retrieval. Cambridge university press, 2009.

[41] Kiran Misra, Andrew Segall, Michael Horowitz, Shilin
Xu, Arild Fuldseth, and Minhua Zhou. An Overview
of Tiles in HEVC. IEEE Journal of Selected Topics in
Signal Processing, 7(6):969–977, December 2013. DOI:
10.1109/JSTSP.2013.2271451.

[42] Saman Naderiparizi, Pengyu Zhang, Matthai Phili-
pose, Bodhi Priyantha, Jie Liu, and Deepak Ganesan.
Glimpse: A programmable early-discard camera ar-
chitecture for continuous mobile vision. In 15th An-
nual International Conference on Mobile Systems, Ap-
plications, and Services, page 292–305, 2017. DOI:
10.1145/3081333.3081347.

[43] Kyung-Ah Sohn Namhyuk Ahn, Byungkon Kang.
Fast, Accurate, and Lightweight Super-
Resolution with Cascading Residual Network.
https://github.com/nmhkahn/CARN-pytorch.

[44] Vinod Nigade, Lin Wang, and Henri Bal. Clownfish:
Edge and cloud symbiosis for video stream analytics.
In ACM/IEEE Symposium on Edge Computing, pages
55–69, 2020. DOI: 10.1109/SEC50012.2020.00012.

[45] Jens-Rainer Ohm, Gary J. Sullivan, Heiko Schwarz,
Thiow Keng Tan, and Thomas Wiegand. Com-
parison of the Coding Efficiency of Video Coding
Standards—Including High Efficiency Video Coding
(HEVC). IEEE Transactions on Circuits and Systems for
Video Technology, 22(12):1669–1684, December 2012.
DOI: 10.1109/TCSVT.2012.2221192.

[46] Sohee Park, Arani Bhattacharya, Zhibo Yang, Samir R.
Das, and Dimitris Samaras. Mosaic: Advancing user
quality of experience in 360-degree video streaming
with machine learning. IEEE Transactions on Network
and Service Management, 18(1):1000–1015, 2021. DOI:
10.1109/TNSM.2021.3053183.

[47] Sibendu Paul, Kunal Rao, Giuseppe Coviello, Murugan
Sankaradas, Oliver Po, Y. C. Hu, and Srimat Chakrad-
har. Enhancing video analytics accuracy via real-time
automated camera parameter tuning. In 20th ACM Con-
ference on Embedded Networked Sensor Systems, 2023.
DOI: 10.1145/3560905.3568527.

[48] Maxim Priymak and Richard Sinnott. Real-Time Traf-
fic Classification through Deep Learning. In 2021
IEEE/ACM 8th International Conference on Big Data
Computing, Applications and Technologies (BDCAT
’21), pages 128–133, Leicester, United Kingdom, De-
cember 2021. DOI: 10.1145/3492324.3494165.

[49] K. K. Santhosh, D. P. Dogra, and P. P. Roy. Anomaly
detection in road traffic using visual surveillance: A
survey. ACM Computing Surveys, 53(6), Dec 2020. DOI:
10.1145/3417989.

[50] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han,
and Thomas Wiegand. Overview of the High Ef-
ficiency Video Coding (HEVC) Standard. IEEE
Transactions on Circuits and Systems for Video Tech-
nology, 22(12):1649–1668, December 2012. DOI:
10.1109/TCSVT.2012.2221191.

[51] G.J. Sullivan and R.L. Baker. Rate-distortion optimized
motion compensation for video compression using fixed
or variable size blocks. In IEEE Global Telecommuni-
cations Conference, pages 85–90, Phoenix, AZ, USA,
1991. DOI: 10.1109/GLOCOM.1991.188361.

[52] Jude Tchaye-Kondi, Yanlong Zhai, Jun Shen, Dong Lu,
and Liehuang Zhu. Smartfilter: An edge system for real-
time application-guided video frames filtering. IEEE
Internet of Things Journal, pages 1–1, 2022. DOI:
10.1109/JIOT.2022.3188518.

[53] Marko Viitanen, Ari Koivula, Ari Lemmetti, Arttu
Ylä-Outinen, Jarno Vanne, and Timo D. Hämäläinen.
Kvazaar: Open-source hevc/h.265 encoder. In 24th
ACM International Conference on Multimedia, page
1179–1182, 2016. DOI: 10.1145/2964284.2973796.

[54] Yiding Wang, Weiyan Wang, Junxue Zhang, Junchen
Jiang, and Kai Chen. Bridging the edge-cloud barrier for
real-time advanced vision analytics. In 11th USENIX
Workshop on Hot Topics in Cloud Computing (Hot-
Cloud 19), 2019. URL https://www.usenix.org/
conference/hotcloud19/presentation/wang.

[55] Rand R Wilcox and HJ Keselman. Modern robust data
analysis methods: measures of central tendency. Psycho-
logical methods, 8(3):254, 2003. DOI: 10.1037/1082-
989X.8.3.254.

[56] Ji-Yan Wu, Vithurson Subasharan, Tuan Tran, and
Archan Misra. MRIM: Enabling Mixed-Resolution
Imaging for Low-Power Pervasive Vision Tasks. In
2022 IEEE International Conference on Pervasive
Computing and Communications (PerCom), pages 44–
53, Pisa, Italy, March 2022. DOI: 10.1109/Per-
Com53586.2022.9762398.

982    2024 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.1145/3503161.3548033
https://doi.org/10.1109/JSTSP.2013.2271451
https://doi.org/10.1145/3081333.3081347
https://github.com/nmhkahn/CARN-pytorch
https://doi.org/10.1109/SEC50012.2020.00012
https://doi.org/10.1109/TCSVT.2012.2221192
https://doi.org/10.1109/TNSM.2021.3053183
https://doi.org/10.1145/3560905.3568527
https://doi.org/10.1145/3492324.3494165
https://doi.org/10.1145/3417989
https://doi.org/10.1109/TCSVT.2012.2221191
https://doi.org/10.1109/GLOCOM.1991.188361
https://doi.org/10.1109/JIOT.2022.3188518
https://doi.org/10.1145/2964284.2973796
https://www.usenix.org/conference/hotcloud19/presentation/wang
https://www.usenix.org/conference/hotcloud19/presentation/wang
https://doi.org/10.1037/1082-989X.8.3.254
https://doi.org/10.1037/1082-989X.8.3.254
https://doi.org/10.1109/PerCom53586.2022.9762398
https://doi.org/10.1109/PerCom53586.2022.9762398


(a) (b)

Figure 20: Sensitivity to different parameters of TILECLIPPER on a subset of
the videos. (a) shows the effect of choosing a single fixed percentile for all
tiles vs grid searched value of TILECLIPPER. (b) shows the effect of different
cluster sizes on accuracy and savings.

Figure 21: Effect of varying calibration duration on TILECLIPPER. We
choose 30s as it gives the best tradeoff between accuracy and savings.
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A Supplementary Materials Appendix

A.1 Additional Sensitivity Results
We now discuss three additional sensitivity results to justify
the search for tile statistics, the size of clusters, and the dura-
tion of calibration used in TILECLIPPER. The study utilizes
the same dataset as in §5.4.
Without Search of Tile Statistics: We first recall that TILE-
CLIPPER uses a search of the percentile statistics to find out
the optimal one. To verify that this search is essential, we per-
form our study with a threshold value fixed at 50th percentile
for both the clusters across 8 videos, selecting 2 videos from
each of the 4 datasets randomly. This results in more savings
(≈ 2×) at the cost of lower accuracy when compared with
the study run on the same dataset but with calibration as illus-
trated in Figure 20a. This happens due to the static nature of
the threshold value. The tiles with objects of interest having
a lower bitrate than the fixed threshold are missed, affecting
accuracy. Our selection of 50th percentile is deliberate, as opt-
ing for any other lower value would have led to a compromise
in accuracy.
Varying cluster sizes: In Figure 20b, we show experimenta-
tion with different cluster sizes. Interestingly, we find that var-
ied cluster sizes do not affect accuracy. However, we observe
a decrease in savings by 3.34% when cluster size changes
from 10 to 15. It is important to note that we avoid a cluster
size of 5 over the choice of 10 as it captures the underlying
bitrate distribution with a mere 7.5% dip in savings. Further-
more, we also note that choosing any size above the cluster
size of 10 leads to a progressive decline in savings.
Varying calibration duration: Figure 21 demonstrates the
calibration phase across different time durations, we delib-
erately chose videos from the dataset where the Tileclipper
exhibited its worst performance. The motivation behind our
experiment is to observe the effect of varied calibration dura-
tion. We observe that changing the calibration duration has
relatively small effects on the overall accuracy and savings.
Since increasing the calibration time did not contribute to
an improvement in accuracy or savings instead, we chose to
utilize an average calibration of 30s to reduce the incidents of
fallback.

B Artifact Appendix

We now describe the technique of reproducing the results dis-
cussed in the evaluation of TILECLIPPER. This open-sourced
artifact provides the required codebase with documentation
to run TILECLIPPER to reproduce the reported results.
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B.1 Scope
The artifact contains all the required pre-processed datasets to
reproduce the results quickly. In addition, we provide sample
videos/datasets to validate TILECLIPPER and the baselines.

B.2 Contents
The file README.md in the main branch describes the right
steps and procedures for evaluation. Note that the codes re-
quire the dataset to be downloaded and placed in the appro-
priate folder before evaluation.

B.3 Hosting
All the source codes of TILECLIPPER are open-sourced on
GitHub at https://github.com/shubhamchdhary/TileClipper.
The datasets can be downloaded from Zonodo at
https://doi.org/10.5281/zenodo.11179900.

B.4 Requirements
Although TILECLIPPER is evaluated on a diverse set of hard-
ware (like Raspberry Pi, nVidia Jetson Nano, and Odroid
H3+), it can also be run on any Linux-based (tested on Ubuntu
20.04) computer with nVidia GPU. It depends on a few frame-
works/tools that can be easily built using the instructions in
the repository. The detailed requirements are specified in the
README file.
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